
Minutes of the

Fortran Experts Group

Meeting at Geneva, 9-12 April 1984

X3J3/163

[This title page is not strictly correct.  The Fortran Experts Group had been formally established
as SC5/WG9 at the SC5 Plenary meeting in Ottawa in September 1983]



CONTENTS

Page

Agenda......................................................................1
Attendance List.............................................................4
Synopsis of the Meeting.....................................................6

Administrative:  Opening Business.....................................6
General Overview - Document X3J3/S7.89................................7

Introductory Concepts...........................................7
Data Concepts..................................................12
Statement Concepts.............................................23
Event Handling.................................................24
Unit Concepts..................................................29
General Concepts...............................................33

Liaison Activities...................................................40
Comments from the Delegates..........................................42
Presentation by the Delegates........................................43

Results from SEAS Fortran Questionnaire........................43
Comments on X3J3 from Sweden...................................45
Fortran Processor Requirements.................................46

Remaining Comments and Presentations.................................48
FIB to be forwarded to SC5 for Comments........................48
Event Handling.................................................51
Draft international Standard...................................51

Recommendations......................................................51
Requirements for subsequent meeting..................................52
Closing Business.....................................................52

[The appendices are not included in this copy]

Activity Reports (Appendix A)..............................................53
France...............................................................53
Germany..............................................................54
Netherlands..........................................................55
United States........................................................57
United Kingdom............................................ ......... 72

Slide Presentations (Appendix B)...........................................73
X3J3 Formal Votes since 6/82  ...................................... 73
Core-plus-modules model..............................................83
Data Concepts -General ..............................................88
The Proposed Vector/Array Extensions.................................90
Statement Concepts..................................................122 
Unit Concepts.......................................................125
General Concepts....................................................131
GKS Fortran Binding.................................................139
Some Comments Raised by the UK Fortran Community....................144
Paged I/O...........................................................148
ECMA Questionnaire..................................................149
FORTRAN Processor Requirements......................................158



Page

Documents (Appendix C)....................................................166
Survey..............................................................166
CERN Computer Seminar...............................................170
ECMA Questionnaire..................................................171
Canadian Working Group on Fortran Positions (Draft Copy)............183
Response by IBM & DEC to FIB........................................206 
Comments on X3J3 from Sweden........................................212
Event Handling (Activate block).....................................222
Event Handling (Block-oriented).....................................225
90(13) AW/JKR-1 (Rewrite Sections 13 & 14 of S7)....................228
90(9) JKR-3 (Intrinsic for CPU time)................................286
90(*) JKR-5 (Conformance to the Standard)...........................287
The Role of Computing in High Energy Physics........................289
(WG9) JAMS-1 (Event Handling in FORTRAN 8X).........................302
89(2) JAMS-2 (Extended Monitoring Facilities).......................305
89 (2) JAMS -3 (Multitasking and parallel processing)...............311
Fortran Processor Requirements......................................315
Computer Weekly Article.............................................346
WG9 Position Paper..................................................347
Minutes of SC5 Advisory Group Meeting...............................348
List of Attendees...................................................357
Event Handling in Fortran...........................................367
Data Processing -Vocabulary (Title Page)............................370



AGENDA

Geneva, Switzerland
April 9 -12, 1984

Monday, April 9, 1984, 9:30 A.M.

1. Opening of the meeting (Jeanne Martin, Convener)

2. Welcome of delegates

3. Roll call of delegates (Mario Surdi, Secretary)

4. Election of chair

5. Minutes of the Vienna Meeting (June 1982)

6. Adoption of agenda

7. National activity reports (Heads of Delegations)

8. Procedural matters

9. Restructuring of TC97 (Jeanne Adams, Chair, SC5)

10. Summary of X3J3 Actions since June 1982 (Jeanne Martin,
Secretary, X3J3)

Monday, April 9, 2:00 PM

11. General Overview - Document X3J3/S7.89

(S7 is constantly undergoing revision. It currently consists of five major sections, and this 
breakdown seems to be fairly stable. The revisions occur within the sections. Our review 
is thus organized into five sessions that correspond to the five sections of the document. 
At the present time, Event Handling is covered in a separate chapter, so there is a separate 
session for this topic.)

Discussion Leaders (Moderator)

I. Introductory Concepts Marshall (Matheny)

a. General Hirchert (Hendrickson)

Agenda 1



Tuesday, April 10, 9:00 AM

b. Arrays Paul (Marusak)

III. Statement Concepts Matheny (Marusak)

Tuesday, April 10, 2:00 PM

IV. Event Handling Koblitz (Muxworthy)

V. Unit Concepts Crowley (Snoek)

VI. General Concepts Wagener (Hendrickson)

Wednesday, April 11, 9:00 AM

12. Liaison Activities

Graphical Kernel System Wagener (Hirchert)
Fortran Binding
Reference Document: N 762 Fortran Interface of GKS 7.2

Wednesday, April 11, 2:00 PM

13. Tour of CERN (4:00 -6:30 PM)

Agenda 2



Thursday, April 12, 9:00 AM

14. Comments from the Delegates

15. Presentations by the Delegates

Results of the Questionnaire about the present use of the Fortran language and the desired 
orientation of the future standard Fortran 8X. Presenter Mas.

Results from SEAS Questionnaire on the attitudes toward Fortran and directions for 
Fortran 8X. Presenter Metcalf.

Standard Method of Specifying Requirements for Fortran language Processors.
Presenter Meek.

Thursday, April 12, 2:00 PM

16. Remaining Comments and Presentations

17. Recommendations

18. Requirements concerning a subsequent meeting

19. Closing Business

20. Adjournment

Agenda 3



ATTENDANCE LIST

1. Jeanne Adams, United States 

2. Cornelius G.F.Ampt, The Netherlands

3. Bert Buckley, Canada

4. Paul Alan Clarke, United Kingdom

5. Ted Crowley, United States

6. Ingemar Dahlstrand, Sweden

7. Jeremy J. DuCroz, United Kingdom

8. Francoise Ficheux-Vapne, France 

9. Richard Hendrickson, United States

10. Kurt W. Hirchert, United States

11. Werner Koblitz, Austria

12. Ulrich Kulisch, Germany

13. Alain Leteinturier, France

14. Herman Luttermann, Germany 

15. Neldon H. Marshall, United States

16. Jeanne T. Martin, United States

17. Alex Marusak, United States

18. Christian Mas, France

19. James Matheny, United States

20. Brian L. Meek, United Kingdom

21. Michael Metcalf, Switzerland

22. David Muxworthy, United Kingdom

Attendance List 4



23. Ikuo Nakata, Japan

24. George Paul, United States

25. Aurelio Pollicini, Italy

26. Karl-Heinz Rotthaeuser, Germany

27. Gerard J. Schmitt, Austria

28. Mok-Kong Shen, Germany

29. Jan A.M. Snoek, The Netherlands

30. Hieronymus Sobiesiak, Germany

31. Mario Surdi, United States

32. Christian Ullrich, Germany

33. David M. Vallance, United Kingdom

34. Nico Vossenstijn, The Netherlands

35. Jerrold Wagener, United States

36. John D. Wilson, United Kingdom

Attendance List 5



SYNOPSIS OF THE MEETING

1. The meeting was opened at 9:30  AM by the Convener, Jeanne Martin

2. The delegates were welcomed by Prof. Ian Butterworth, Director of Research, CERN

3. Delegates were present from the following countries: Austria,  Canada, France, Germany, 
Italy, Japan, Netherlands, Sweden, Switzerland, United Kingdom and United States.

4. Jeanne Martin was elected to chair the meeting; David Muxworthy was elected Vice-
Chair.

5. Corrections were made to the Minutes of the Fortran Experts Group Meeting at Vienna 
June 14 - 17, 1982.

6. The agenda was amended and adopted (the adopted agenda appears on Page 1).

7. National activity reports were presented by the delegates from each of the countries.

References: Al,  A2,  A3,  A4,  A5.

8. It is customary to take straw votes to record opinions.  Everyone may vote (Yes-votes, 
No-votes, undecided).

9. Restructuring of TC97

References: C-18,  WG 9  Position Papers.

STRAW VOTE: Would you like to see a resolution proposing that we disagree with the 
reorganization for the reasons put forth? (18,  0,  11)

10. Summary of X3J3 Actions

References: B-1, X3J3 Formal Votes since 6/82.

Synopsis of the Meeting 6



lI. GENERAL OVERVIEW -DOCUMENT X3J3/S7.89

I   INTRODUCTORY CONCEPTS

References: B-2, Core-plus-modules Model

The presentation contrasted the old module concepts of "core plus modules" with the current 
single "core plus deprecated features" model of FORTRAN 8X. Emphasized were deprecated 
features, abstract data type => derived data type => bundle.

Discussion:

Ampt

Paul

Ampt

Marusak

Ampt

Hirchert

Wilson

Snoek

Ampt

Wilson

Wilson

Ampt

Wilson

This is a natural progression, but in '97 with PC's et al and new 
applications, only core Fortran will be around. Hence this is a 
mistake. We should treat core as a subset.

It is not a problem to implement on a PC

Wrong way

Is the concern complexity of a compiler, or of the language?

The language. It's still a general language

There should be two levels of conformance. There is now a single 
language for processors. For teaching, there are no objections. Even 
for the PC, there is old code around.

Why call it Fortran if deprecated features are omitted?

Concerned with the document -- one document. Better if deprecated 
features were removable. The idea, what is obsolete, are now 
known.

Assign is still there.

There is a difference between the Standard and books. There are 
now two Fortran 77 Standards, but vendors say merely "Standard".

Look at the sales literature.

Don't talk about deprecated features. Arrange document.

How many people learn from Standards document?

II. General Overview -Document X3J3/S7.89 7



Ampt

Dahlstrand

DuCroz

STRAW VOTE

Vallance

Hirchert

Hendrickson

Paul

DuCroz

Meek

Hirchert

Hendrickson

STRAW VOTE

Dahlstrand

Schmitt

Meek

Marusak

The standard is the ultimate text.

The text may be pretty good re above discussion. It is very close to a 
core subset.

I support Ingemar. A good text processor should be able to edit out 
deprecated features.

The text of the Standard should be such that  deprecated features can 
be left out. (22-2-5).

Should we require that instances of use of deprecated features be 
flagged?

The Standard has few words to say about requirements on 
processors.

Some non-standard things are not detectable at compile time, et al.

The opinion is that deprecated features will definitely be removed. 
The next committee will do what it wants.

Indeed? We can still mark them.

This topic has received a good deal of thought. Mark them. Then 
you can get rid of them. I support F8X. But I would go further, 
would like to see requirements on a processor to accept only core. 
This is effectively a subset. A third option is the changing of code to 
something which is core-conforming.

Marking is important. F9Z will be a superset of core.

Not all of the problems are syntax. Some things are difficult to 
detect.

A Fortran processor should be required to optionally flag the use of 
deprecated features (18-2-11).

Can't do it within the text constraints of Standardese.

The font of deprecated features is not clear, and it should be.

I support this, we should use white ink.

Originally these were " obsolete" features. Should we say 
"deprecated"?

II. General Overview -Document X3J3/S7.89 8



Hirchert

Matheny

Metcalf

Hirchert

Meek

Martin

Hirchert

Paul

Meek

Buckley

Metcalf

Marusak

Hendrickson

Meek

Metcalf

Clarke

There is a difference. Deprecated is not a module off in a corner. It 
must be part of the language.

Our experience with a flagger is that people don't use it.

We require the Standard at CERN.

More people are more and more aware.

Re the /S7 document. You say that deprecated features are a part 
of the language. In fact they are a separate Section 18.  They 
should be in an appendix. Re meta-language. It isn't, not a full 
language, with production rules. It ought to be. /S7 could get to be 
a proper meta-language.

We are only on the way.

We haven't gotten there yet.

I agree with Brian, but not regarding appendix. This must be in the 
text. If too strange, they are going to remove the X3J3 committee.

You are standardizing the reasons for deprecating.

I support the idea that deprecated features belong in an appendix.

I support this. In Fortran 8X, section 18 belongs in the appendix. 
The information is excellent.

Re the FIB, questions, survey -- these are extremely useful, and 
tend to deal with the revision. Re the discussion of deprecated 
features -- is the list the current one? Nothing in F9Z can be 
removed unless deprecated in F8X.

Section 18 is the way it is for two kinds of reasons: COMMON 
must be deprecated to get new stuff; Arithmetic IF is just bad, 
religiously.

Probably the list is right.

Five people want to retain the arithmetic IF.

Of the list, four features are Fortran 77.

II. General Overview - Document X3J3/S7.89 9



Discussion on difficulty of getting Fortran 77 accepted:

Metcalf

Muxworthy

Vallance

Marusak

Ampt

Meek

Ampt

Schmitt

Snoek

Paul

Can't introduce new standard without support from 
manufacturers, especially the larger ones. Slowness in getting 
Fortran 77 accepted lies squarely at the door of IBM

The fault has not been totally with IBM. The main problem 
has been the reliability and efficiency of the compilers

Another problem is that many user programs are written in 
F66 (e.g. CADCAM software)

66 to 77 has many trivial changes. The change from Hollerith 
to character. When does one convert?

There were more basic problems especially at the 
universities. More education, formal training is required. It is 
not just a vendor problem.

It is not just education. The production of a product must be 
sold through publicity  (FORTEC, UK trade press, Computer 
Weekly). Also users must write into their contract a 
mandatory standard conforming compiler.

The technical magazines do not have the right people for the 
promotion of FORTRAN.

In industry there was a low usage. When a company brought 
out a compiler they installed the current language. In the 
technical universities 80% FORTRAN 77, Graphic programs 
only in 66, new programs are still written in Fortran 66.

IBM sites started with Release 2. 400 compilations/week - 
not sure how much is 66 . CDC change was more gradual. 
Users were satisfied with results.

In early 76 there was a movement to Fortran 77. Product 
shops were resistant to the change. There were no customer 
requirements for Fortran 77. When it became a FIPS standard 
the new compiler became a requirement. 77 Fortran didn't do 
anything for the scientific user. The universities said Fortran 
was dead. They didn't require students to use Fortran. The 
Engineering/ Scientific Community doesn't really care about 
modern language aspects. It's job oriented. Give them 
something they really want (eg array extensions).

II. General Overview - Document X3J3/S7.89 10



Hirchert

Schmitt

Paul

Meek

Buckley

Lutterman

Hirchert

Marusak

Paul

DuCroz

CDC was abrupt in some aspects. The 77 Fortran object 
programs were not quite compatible with 66. Upgrading 
Fortran version 77 required version 66 to be upgraded. The 
Block IF was wanted but users don't want to be the first to use 
new compilers.

Technical universities were upset that no new computer 
supported Fortran 77.

Computer Science students in the United States must pass a 
proficiency test in PASCAL. Fortran is still the second most 
used language.

We must ensure that students live in the real world. There are 
language snobs in computer science departments. Purpose of 
a standard is to promote portability. Standard is driven by a 
minority of users. If we want to sell the standard it must 
service all users. Fortran 77 would be more popular if it had a 
bit data type. Part of the standard should include quality and 
performance.

I agree with what George said. Fortran 77 was not accepted 
because it didn't include what the scientist wanted. Computer 
Science graduates have not seen Fortran. Fortran is not a dead 
language. If the next standard is well done we can n convert 
PASCAL users.

80% of the programs in the universities are written in Fortran. 
In 81 they switched to Fortran 77. There are no problems with 
the new generation of students. They only know Fortran 77. 
Problems exist with converting the previous generation of 
users.

100%. of computer scientists use PASCAL. Numerical 
analysis and engineers use Fortran.

Do not understand the value of character type. At Los Alamos 
all work is done in Fortran.

70-75%. of all user work is done in COBOL. Less than 25%. 
in Fortran. Less than 5% all others.

It will be a serious problem if there are any incompatibilities 
between Fortran 77 and 8X.  Reliability and efficiency are not 
questions regarding this standard.

II. General Overview - Document X3J3/S7.89 11



II.   Data Concepts

a.1. GENERAL
References: B-3, Data Concepts  -  General
Discussion:

Schmitt

Metcalf

Buckley

Shen

Ampt

My students have most problems understanding these 
chapters. Arrays vs. new arrays is poor. Need re-write. 
Chapter on numerical approximation seems to be missing a 
section on precision. Comment: Began to take action at 89 
meeting, no time to do it. We agreed we need to “clean-up." 
Will try again. Should be careful in S7 about text, sometimes 
use MAX or max; > or .GT. Use standard Fortran.

1) If no varying length character we need a function that gives 
length to last non-blank. Comment: Canadian proposal 
coming which does several string things in forward and 
backward direction.

2) Physicists need pointer, they are willing to run risk of 
storage association problems.

3) They need efficient bit data type. Derived data won't be 
good enough. Should be easy to extract from S6, or at least, 
INTEGER*2 for bytes.

1) Must have pointer, else derived data types are useless. 
Syntax isn't important.

2) Remove entity oriented declarations. Don't fit into current 
existing framework. Duplicate existing stuff.

3) Character function proposal coming.

4) Need more regular syntax in character, (e.g. A(I:)) to mean 
rest of string. Comment: it is in F-77.

If we have heap anyhow, why not allow varying upper 
bound?

Problems with bit data type IRTF has it, but assumes 2's 
complement, etc. We need to get away from hardware. 
Possibly logical. Implementor could do it efficiently.

Do we want "strings of bit values." Then don't have SHIFT 
etc. since it is so hardware oriented.

II. General Overview - Document X3J3/S7.89 12



Metcalf

Ampt

Metcalf

We need conversion intrinsics from string of bits to integer.

We have 160,000 tapes of bits. They are the fundamental data 
type and we must deal with them efficiently. This is the real 
world.

Don't you need I/O into strings of bits.

We need to get efficient implementation.

II. General Overview - Document X3J3/S7.89 13



a.2   POINTER DATA TYPE

At the next X3J3 meeting a proposal to introduce a POINTER data type will be made. Pointers 
can point to either derived data types or arrays. There will be strict type checking on pointers. 
Once declared a pointer cannot point to a different derived data type or array of different rank. 
The name of the pointed-to object is a normal Fortran name. The pointer name is the object name 
suffixed with a  ¢. (The actual suffix will be determined at a later time).

Examples:
TYPE   PERSON

AGE:    REAL
NEXT GUY¢:   POINTER  (PERSON)

END TYPE

DAD¢:   POINTER (PERSON)

RALPH: TYPE (PERSON)

The TYPE - ENDTYPE defines a derived data type.
DAD¢ is declared to be a pointer to a structure -DAD- of type person.
RALPH is a normal static person, there are no pointers associated with RALPH.

To use DAD it is necessary to

ALLOCATE (DAD¢)

This will create a PERSON "on the heap" and assign a "pointer value" to DAD¢

DAD may be used in the normal way

DAD % AGE = 39  or  DAD % NEXTGUY¢ =  .NULL.

(where .NULL. is a special "unassigned" value for pointer)

or ALLOCATE (DAD % NEXTGUY¢)

The proposal will also replace allocatable arrays with pointers.

P¢, Q¢: POINTER (REAL  (:,:))

declares P¢ and Q¢ as pointers to 2 dimensional arrays and implicitly declares

P and Q as rank 2 arrays. The arrays would be created via ALLOCATE statements.

e.g. ALLOCATE (P(10,10))
ALLOCATE (Q(20,30))

II. General Overview - Document X3J3/S7.89 14



After allocation, P and Q would be used as normal arrays

P  = 0
Q = 7
P = Q  (1:10,  11:20)

Storage would be "returned to the heap"  with a FREE statement.

FREE (P¢)
FREE (DAD¢)

The pointer could be explicitly used.

P¢  = Q¢  or
IF (DAD¢  .EQ.  .NULL.)  STOP

to manipulate storage or process lists.

Comments:

1 . The pointer concept is unnecessary for most allocatable arrays. The current scheme does 
everything we need without introducing an un-used pointer variable.

(ALLOCATE and FREE should accept either a pointer or an allocatable array as an 
argument.)

2. The "¢" shouldn't be used in ALLOCATE or FREE

3. In the example

P¢ = Q¢

should we require P and Q to be conformable or merely both of rank 2. The consensus 
seemed to be rank only.

4. A pointer to an external would be useful.

STRAW VOTES

1. Include pointers in the 8X standard with no storage association implied (20, 3, 10).

2. Define allocatable arrays without explicit user defined pointer (WG9) (11, 2, 17).

3. Use of allocatable arrays regardless of pointers (Implementation dependent) (25, 2, 7).

II. General Overview - Document X3J3/S7.89 15



a.3. BIT DATA TYPE

Discussion:

Buckley

Metcalf

Ampt

Metcalf

Ampt

Marusak

Ampt

Marusak

Crowley

Meek

Matheny

Buckley

Metcalf

Dahlstrand

Why don't arrays of logical work?

Logical is word,/byte oriented

Could be implemented as bits.

250,000 bits for 1 event requires efficiency. Bit is a bit.

Don't insist on hardware, it's a two valued thing, need string I/O 
and conversion functions, not shift, etc.

Users of "bits" don't think of it as "8 logical bits," it's an entity, it 
might be represented  as a string of bits, but physicists don't think 
that way.

Don't standardize hardware in the language.

We need to help the physicist. Even if it isn't completely 
independent of hardware.

F77 says logical is 1-unit of storage, can't use current logical for 
efficient bits.

Disagree with Kees, don't need 1 data type with 2 values. e.g. 
Pascal enumerated datatypes aren't just 0 and 1. Don't force 
logical on people who don't want it. Prefer bit data and require 
that it be implemented "efficiently" and be packed, etc.

12 years ago F77 had bit like character. Discarded because 
couldn't be done efficiently. F-8X had it and was kicked out for 
"efficient" reasons. Generalized, arbitrary length string can't be 
done efficiently.

Size of language? Bit just makes it bigger. Could we define a bit 
module and allow efficient local implementation.

Would be okay if they could move from vendor to vendor 
efficiently: SHIFT, SHIFTL, SHFTL, ...

Raster graphics needs efficient bit type. The S6 proposal likely to 
rally the bit users.
 

II. General Overview - Document X3J3/S7.89 16



Hirchert

Snoek

Adams

Ampt

Crowley

Metcalf

Buckley

Schmitt

Metcalf

Could map logical into bit in F77 unless it's in common or 
equivalence. But bit data type doesn't guarantee packed 
"efficiency". Might mean 1 bit per word.

62 bit string not efficient on a 60 bit machine. Can't be 
standardized. Will need to know details of machine. Why not 
formulate as abstract data type, probably not the most efficient, 
but could be and users could pressure vendor into efficient 
implementation.

CDC 205 bit addressable and very useful.

We know it is possible, but it won't be efficient. Perhaps an 
appendix describing an efficient low-level data type.

Otherwise have a set of environment inquiry functions which 
allow coding, of portable efficient bit operations.

Efficient bit not portable.

Bit implies "save storage," trade memory for speed. Let 
implementor use I bit, 1 byte, 1 word as he sees fit.

2 types of bit data type:

1)   Arrays of bit things

2)   Bit string (like character)

Bit string is what we want.

Efficiency is both storage and execution.

Fortran is for science, bits are more basic than character. "Put bits 
in, toss character out." We don't have access to most fundamental 
unit the bit.

We have parameterized REAL, why not parameterized 
LOGICAL.

What operation do we want on bit? Is it "logical" AND, OR or is 
it "integer"?

S6,  chapter 8: strings of bits; SHIFT, MASK, etc.

II. General Overview - Document X3J3/S7.89 17



Paul

Marusak

Hirchert

Snoek

Meek

Want bits as "logical" and use them in array masking operation - a 
vector of logical. Want bit arrays, not strings. Also want to 
concentrate, etc. Must force as 1 bit in storage.

Sections and sub-arrays of a bit array is hard to implement.

If we had bit could naturally define byte and possibly REAL, etc. 
Fortran originally word oriented, invented character because we 
didn't have byte. Could define character in terms of bit.

Difference between bit string and bit array, same as between 
character array and string. Some comparisons give array of true or 
false, some a single true or false.

Could define LOGICAL (LEN=) as a family like REAL (PREC=) 
and make it work like bit.

Arrays and strings. Need variable length either way. Might be 
easier to get variable length strings.

If logical really could do what was wanted users would have 
forced vendors to implement it.

But operations are different. People have asked for 12 years, basic 
facility for solid core of Fortran users.

STRAW-VOTES:

1. Do you want bit data type in the language'?   (20, 1, 11)

2. Should they be implemented as bit strings?   (17, 0, 12)

3. Is it sufficient to implement as a derived data type (as an application module)? (11, 7, 11)

II. General Overview - Document X3J3/S7.89 18



a.4. CHARACTER FUNCTIONS EXTENSIONS

Discussion:

Buckley

Ampt

Valiance

Shen

Hirchert

Answer

Adams

Adams

Ampt

STRAW VOTE

Proposes adding "REV" as an optional 3rd argument to INDEX, 
VERIFY and ISCAN. Will cause a right-to-left scan and find last 
occurrence.

New functions:

CUT (STRING, SEQ , REV) Would normally count number of 
leading non-blanks - let you easily trim off trailing blanks. 
Returns index of last non-blank.  With REV would return index 
of first non-blank.

We really need varying length character, if not then CUT for 
sure.

What do you return for a string of all blanks?  Best answer is 1.  
Answer:  Use MAX (1, CUT(...))

A function to reverse a string is needed.

PL/I proposal in 1982 added a starting point find the first blank 
then easily find the next blank without needing to do the index 
arithmetic.

I think CUT is VERIFY(  ,  , REV) with “    “ as the sequence.

Could be

X3J3 has decided to not accept any new proposals. We are out of 
time for F-8X. We need: 1) List of things that are urgently 
needed;  2) List of things that should be removed.  Answer: 
Extremely unfortunate that X3J3 closes doors JUST when 
international community getting a chance to provide input.

We've got foreign members and meet with WG/9 every 1-2 
years.

Not all Europeans can easily go to X3J3 meetings

X3J3 should insure that facility to obtain nonblank length is in 
the language? (28, 0, 2)

II. General Overview - Document X3J3/S7.89 19



a.5  ENTITY ORIENTED DECLARATION

Hirchert

Buckley

Paul

DuCroz

Pollicini

Vallance

STRAW VOTES

Entity Oriented Declaration are an alternative way to declare 
attributes.

Take them out. They would be better if we started from scratch. We 
aren't. They are redundant.

Kurt's example doesn't show problems. The declarations are long 
and verbose.

We have deprecated current declarations, implies major 
compatibility problem for 9X.

Likes them, people use them.

Likes these. But we should have only 1 way to do it in standard.

Easy to do automatic conversion.

1. Should entity oriented declaration be kept in F8X (9, 13, 11).

2. Variable Length character.  Should they be included in F8X
(14, 3, 15).

II. General Overview - Document X3J3/S7.89 20



b. ARRAYS

References: B-4, The Proposed Vector/Array Extensions.

The presentation consisted of a review of extensions related to array data types. The presentation 
included a discussion of array sections, array-valued functions and new statements for operation 
oil arrays.

Discussion:

Question

Answer (Paul)

Question (Suggestion)

Question

Answer

Question

Answer

Question (observation)

Why is there not a matrix multiply operator? (Rather than an 
intrinsic function?)

There are problems with the character set -- is a lack of available 
new, suitable symbols. It was further pointed out that there are 
now new facilities to define or override operators, so that users 
can DEFINE a matrix multiply operator if they wish.

The document must do a better job of explaining automatic 
arrays, assumed size, adjustable arrays etc. There is considerable 
confusion in the existing terminology.

In the use of elemental functions -- where is a scalar expanded, 
on the calling side or in the function?  

1.  In the caller.

2.  Elemental functions are intrinsic (users cannot define them), 
so the compilers will know what to do.

What about duplication of indices in vector-valued subscripts? 
This hinders portability, in that the result is processor-dependent.

Many people (on the X3J3 Committee) dislike this as well, but 
feel that the functionality outweighs the disadvantages. The 
problems arise in STORES, not in FETCHES. In the discussion 
that followed, the suggestion was made not to allow vector- 
valued subscripts on the left side of the equals sign(=). Many-to- 
one mapping through IDENTIFY, for example, is not allowed on 
the left side of the equals sign(=)

If one wants to shrink the size of the language, a good candidate 
is the block form of the WHERE construct, especially the 
OTHERWISE, Or perhaps remove the entire construct.

II. General Overview - Document X3J3/S7.89 21



STRAW VOTES 1. Shall the Block WHERE construct as it currently exists in 
Fortran 8X be retained? (11-7-12)

2. Shall vector-valued subscripts be allowed on the left of an 
equals sign (=)? (11-5-15)

3. Shall FORTRAN 8X include an algorithm that defines the 
store sequence into a multi-valued vector-subscripted array?
(15-5-12)

4. Shall the many-to-one vector subscript be prohibited on the 
left of the equals sign (=)?   (13-5-13).

II. General Overview - Document X3J3/S7.89 22



III. STATEMENT CONCEPTS

References: B-5, ANSI 8X Statements
Discussion:

Comment: (The Canadian Community) Wishes to present to X3J3 a document on relatively 
minor concerns: for example, the use of END DO versus REPEAT in the Block DO. Wants a 
DO-WHILE construct in the language, even though functionally it is already there. Feels that 
X3J3 should consider the use of the colon symbol in the Block DO construct.

Question

Answer (Matheny)

Comment

STRAW VOTE

Question

Answer

Question

Answer

STRAW VOTE

Comment

STRAW VOTE

Has X3J3 considered the use of variables in FORMAT 
statements -- for example, N(15), where N is a variable?

One can achieve this with CHARACTER strings.

There are very mixed feelings about the new Source Form; the 
Metcalf (SEAS) survey found 13 for and 13 against. Particularly 
intense was the feeling about multiple statements per line.

Shall Fortran 8X allow multiple statements per line? (9-12-5).

Has any thought been given to handling color (on terminals)?

It is not obvious that the Fortran language should concern itself 
with this.  Once again, there is the problem with a limited 
character set (even the full ASCII set).

Concerning Character Sets -- Will keyboards be able to 
interchange upper/lower case?

Yes

Do we approve of the new source form as to allowing statements 
to begin before column 7? (20-3-7)

Source should be rigidly structured -- what goes into the terminal 
should go through a syntax-directed editor that is, input to a 
TERMINAL may be free-form, but input to the COMPILER 
should be rigidly structured. The biggest cost of software is in 
maintenance, and that requires reading code, and that requires 
structure.

1. Should Fortran 8X include a DO-WHILE construct? (7-16-9)

2. Shall Fortran 8X include significant blanks? (16-8-7)

II. General Overview - Document X3J3/S7.89 23



IV. EVENT HANDLING

References: C-20, Event Handling in Fortran
Presenter:    Koblitz

Discussion:
Dahlstrand

Ans (Koblitz)

Dahlstrand

Hirchert

Paul

Hirchert

Marusak

Ampt

Answer

How are overflows handled?

Overflows are covered by the current proposals but it is not possible 
to continue in a way that might be desired. A handler may pass 
control to the next Fortran statement or may RETURNUP (or may 
STOP).

This is clumsier than the old-fashioned CALL OVCHK. Control has 
to leave the environment so that values of variables cannot be 
changed.

The EWICS/TC1 work is too general. An alternative proposal is 
being put forward by X3J3 subgroup 7/'8. This addresses itself to a 
smaller problem.  Everything related to a possible event can be 
determined statically at compile time. The granularity of 
determination of the event can be defined. This proposal is amongst 
the papers in the pre-meeting, distribution for the May X3J3 meeting 
(paper 90(7) KWH-1).

The proposal cannot deal with matrix arithmetic, only scalar 
arithmetic.

The intent is not to resume an operation which has failed. It is more 
an escape mechanism.

I sense frustration in EWICS at X3J3's reaction to proposals. 
Resumption after an event is the stumbling block. I suggest a straw 
vote on whether it makes sense to proceed after an event.

Hirchert's proposal will not be upwards compatible. The EWICS 
proposal is more general. A programmer should know that a 
problem exists whether a fix-up is available or not. We have to -
recognize that there will be no handler in many real-world 
situations. The requirement that resumption from a handler is at the 
next Fortran statement is a mistake by X3J3; resumption has to be at 
the leave-off point. ACTIVATE /DEACTIVATE and SUSPEND 
cater for all possibilities, provided there is a decent RESUME.

(To Marusak) Yes, we are frustrated because we want to do real 
time and parallel processing and we are cut down to dealing with 
overflow.

II. General Overview - Document X3J3/S7.89 24



Marusak

Snoek

Dahlstrand

Hirchert

Ampt

Hirchert

Answer

Martin

Ans

Hendrickson

X3J3 asked you to write an overflow handler and rejected that too.

EWICS TC1 is not writing a general overflow handler. We are not 
writing for the 3-second student program. We are writing for 
foreground or real-time mode where a program has been running for 
an hour and can go on to get results after an hour and twenty 
minutes; this is preferable to rerunning for an hour. Event handling 
costs something; you pay something but you get back more.

I would draw attention to “Program Structures for Exceptional 
Condition Handling" by Roy Levin, Carnegie -Mellon University, 
June 1977, NTIS report AD/A043449. There is a summary in my 
paper for this meeting (Paper 5). Event handling seems to be too 
much for Fortran 8X. I suggest it is left for 9X.

Event-handling increases costs by a factor of 2 or 3. It is too 
expensive. I see no long-term solution.

That is the basic problem with X3J3.

The EWICS proposals are unacceptable from a performance point of 
view.  Multi-tasking and exception handling should be separated. 
The EWICS model is inappropriate for exception handling.

Consider the simple loop: read-check input-read-check input etc. 
The reading and checking could be done in parallel instead of 
waiting for the read. I propose a straw vote on interest in the 
possibility of parallel processing in Fortran.

Whether people want it or not, parallel processing will be provided 
by suppliers. There was a workshop on programming the next 
generation of supercomputers at Albuquerque on February 27 and 
28. It was clear that users and suppliers of large computers do not 
want language features yet.  They want to be able to associate names 
with threads of control, but do not want synchronization, forking, 
joining or other primitives.

DIS 7846 (IRTF) does not mention hardware. it uses an abstract 
system and is not implementation dependent. It is possible for 
control to run sequentially or for there to be parallel tasks.

This is like motherhood - it is hard to vote against but it is premature 
to standardize now. We need to get experience, then standardize, 

II. General Overview - Document X3J3/S7.89 25



Answer

Hendrickson

Answer

Hendrickson

Ampt

Hendrickson

Answer 

Hirchert

Schmitt

Paul

DuCroz

Ampt

Marusak

just like the Fortran language itself in the 1950's and 60's.  It may 
inhibit development to standardize now.

We are talking at different levels. We want the facility.

But what about the details?  Can multiprocessors access the same 
variables?

DIS 7846 is written at the task level.  It deals with communication 
of programs.

That is not what people mean by multitasking.

The programmer should have the facility in the language to organize 
execution of pieces of code in parallel.

What size piece?

That is a matter for another straw vote.

There is a difference between allowed parallelism and required 
parallelism, that is what can be parallel and what must be parallel, as 
in IRTF.  We have now implicit parallelism, e.g. array processing, in 
Fortran 8X but there are still many unresolved problems.

The basic problem is: at what point of time can an event occur? If it 
is only between statements, there is no reason for special language 
features. IRTF shows it can be done. Otherwise, if events can occur 
during execution of statements then language features are needed.

The Albuquerque meeting showed that people working in the field 
for up to 15 years do not know what features are really needed. Ada 
fails in this. People know what they want but do not know how, to 
do it.

If no one can point to a model that works, the area should be 
dropped.

You are saying that if we do not know the end of  the road, we 
should not start the journey.

Tightly coupled processors are different from loosely coupled 
processors. In Albuquerque the discussion was confined to tightly 
coupled processors. Forking and joining can be done on loosely 
coupled systems by subprogram calls so there is no need for new 
syntax. How does one deal with synchronous handling of data, 

II. General Overview - Document X3J3/S7.89 26



Crowley

Schmitt

Hendrickson

Matheny

Martin

Hirchert

Snoek

Marusak

Hirchert

Snoek

shared data? Do not add to the language now for fear of inhibiting 
progress.

Consider the granularity.  One line is not one task, the compiler 
could cope with that. If 20 to 50 lines were a task we could use a 
subroutine call. We can experiment now by having run time 
libraries, and standardize after gaining experience.

There exist languages now with event handling, for example for 
micros reading tapes, Ada, PL/I, even some versions of Basic, so it 
is not right to say there is no experience.

Two points. First, not every user is free to use library routines. On 
the Cray we have to revamp the procedure calling sequence in order 
to use a stack. Second, there is definitely a need to split memory so 
that different tasks can access memory.

This discussion makes the subject sound something new. It is not 
new. It has been possible to time slice for many years, consider for 
example the Univac 1108 Exec 8 fork and join. The only problems 
are to do with record-lock, consideration of which was rejected by 
X3J3. This is not a language problem.

The organizers of the Albuquerque meeting invited representatives 
of IRTF. It was unfortunate that they were unable to be present.

We have been discussing not event handling but multitasking for the 
last half hour. There is obviously disagreement over the correct 
model. Even for loosely coupled processors there are no widely 
accepted models.

EWICS has discussed "global common" for the last two years but it 
is not in the papers for X3J3 and is not at the point of being put 
forward.

The Albuquerque discussion was restrictive: it considered only 
processors in close physical proximity. X3J3 and EWICS can deal 
only with loosely coupled processors.

Even the loosely coupled processor problem is ill-defined.

I would draw attention to my paper (paper 13) in the documents for 
this meeting which discusses possible functionalities for the model 
in chapter 19 of S7 which has as yet no  useful

II. General Overview - Document X3J3/S7.89 27



functionality.  The requirement of X3J3, to return from a handler to 
the next Fortran Statement affects the entire model.  EWICS/TC1 
has erred in not making clear to X3J3 the possible functionality of 
its model.

The session was adjourned and continued on the afternoon of Thursday April 12.

Ans

Snoek

STRAW VOTE

I suggest that after this delay and at this time of the day it makes no 
sense to take the straw votes we suggested on Tuesday.

I agree. I very much regret that event handling has not been removed 
from the current deadlock by WG9. I suggest a general straw vote.

Should work continue to allow Fortran 8X users to have access to 
event handling? (20-0-3)

II. General Overview - Document X3J3/S7.89 28



V. UNIT CONCEPTS

References:   B-6, Unit Concepts.

Presenter:  Crowley

Discussion:

Question

Answer

Question

Answer

Question

Answer

Hendrickson/Wagener

Muxworthy

Answer

Wagener

Muxworthy

Wagener

Buckley

Is "private" limited?

Yes.

How are bit-constants to be declared?

Probably by means of functions or by defining an extended 
assignment (Bitvar = Charconst), etc.

What is allowed as operators?

All those that are there in Fortran or letters, but you cannot overload 
an operator for its current types.  Chair objects to now allowing 
operators like tt, etc.

You can define different types of arguments for a coercion, eg. 
integer to bit, character to bit, etc.

Doubts if an abstract data-type can be efficient.

It may be not as bad as you think. The subroutines may be in 
assembler.

Most routines indeed will have faster solutions available. However, 
should the module be standardized, it is allowed to be implemented 
as efficient  as a machine can do it. The advantage is that the 
programs using it are portable, also to machines that did not 
implement it that way. Besides, there is nothing that prevents in-line 
expansions of functions from a module.

How can you standardize a module?

X3J3 can do it. Bit datatype is high on my list for that.  Furthermore, 
anybody can propose a standard through ANSI or directly through 
ISO. It would result in a collateral standard.

The discussion on modules is relevant. Don't discuss bit again now.

II. General Overview - Document X3J3/S7.89 29



Hendrickson

Answer

Wagener

Hendrickson

Hirchert

Crowley

Metcalf

Marusak

Muxworthy

Answer

Muxworthy

We think of modules as definitions of intrinsic functions. It does not 
necessarily have to be described as an implementation. But how?

The public routines of the module should return always the same. 
The rest can be implemented as you wish.

Any proposal for an implementational description has to be 
accompanied by a functional description. It is the functional 
description that is the more important. The implementational 
description just gives one way of doing it.

For bit that is OK, because it is sufficiently discrete. But for e.g. a 
matrix inversion the answer would be radically different if you 
allow implementors to do what they want.

The functional description is what should be standardized. We 
cannot force an implementor to do his job well. The users should try 
to do so.  As a means of documenting e.g. IRTF or GKS could be 
such modules. So probably other standardizing committees may be 
the most likely ones to write those collateral standards.

The example is just to show how an individual user could use the 
facilities we put in the language to write his own derived datatype

The example (bit datatype) is rather unhappy, for it rekindles the 
discussion on bit-data type.

There are much better examples indeed. e.g. Modules are to replace 
common. They are highly useful to replace a lot of deprecated 
features.

The example is good, because it shows some of the problems, e.g. 
efficiency. This can only be solved by standardized modules, 
proposed by X3J3 soon, preventing other groups to come up with all 
kinds of different solutions. Furthermore, I like more general 
operators. It is essential to be able to define operator symbols of at 
least two symbols like XX  X/, etc. You used priority rules for 
operators.

X3J3 discussed priority rules, but could not resolve it, for it seemed 
to be too complicated. Bit datatype was voted on yesterday. Should 
we have a straw-vote about the multi-symbol operator?

No. Nobody here has experience with it, so nobody has a biased 
opinion.

II. General Overview - Document X3J3/S7.89 30



Wagener

Crowley

Tony

Crowley

Marusak

Hirchert

Muxworthy

Hirchert

Wilson

STRAW VOTE

Crowley

Hirchert

Tony

Hirchert

Tony

Hirchert

See the FIB. Refer to Alex. By far the major use of modules will be 
to replace common. The second purpose will be to define global 
data-structure definitions. Thirdly, e.g. defining new operators on 
new data-structures (like Codasyl databases.) Fourth, procedure 
interfaces to allow the compiler to check at compile time.

What about intrinsic functions?

The rewrite of CH 13 and 14 is a big improvement.  Go on this way. 
Ch. 14 should be an alphabetical list with short descriptions.

X3J3 was still not happy with it as a finish product and gave me 
detailed comments.

We started putting in the functionality. Now we are trying to make it 
readable. Any suggestions are welcome.

X3J3 took a straw-vote on how to order this material.

About matrix transpose. I only want those functions that can be 
implemented efficiently. Can it?

In a smart processor: yes.  X3J3 SG6 is going to propose it 
differently anyway.

The list of intrinsics is growing constantly.  Is there a mechanism to 
decide how many there should be and which ones? There is no 
RANDOM and no ERROR.

Do we prefer the rewrite in Paper 9 to Chapter 14 in S7? (14,0,11)

We are trying to reduce the size of each functional section. Probably 
the array stuff has most.

RANDOM should be rather an intrinsic subroutine. We have a 
precedent for that now, so it can come in now.

How about-dependent compilation?

We have only the restricted form of the modules.

How about inherited precision?

Depends on your implementation, but it can be done cleverly.

II. General Overview - Document X3J3/S7.89 31



Metcalf

Ulrich

Marusak

Hirchert

Warning: Ada is useless to build subroutine libraries because of 
such problems

You need only one precision as soon as the product is available.

The current proposal deals with both evaluations, algorithms and 
using them.

Do not agree. Follows a discussion between Alex and Kurt

II. General overview - Document X3J3/S7.89 32



VI. GENERAL CONCEPTS

References: B-7, General Concepts. The issues related to the definition of terms, scope and 
classes of symbolic names and deprecated features were discussed. Presenter: Wagener

a. DEFINITIONS
Discussion:
Hirchert

Shen

Answer

Crowley

Snoek

Wagener

Snoek

Hirchert

Crowley

I don't like "user-defined" since we don't recognize a "user," say 
"program."

We use "defined" to describe what processor does to assign a value. 
Extending it would be confusing.

Should we have a specific value for "undefined" (like .NULL. for 
pointer)?

PRESENT is similar to this. Would like a value that could be set and 
checked for.

For integer, for example, there are no free bit patterns. Term 
"defined" is poor word to use for "doesn't have a valid value." 
Confusing English.

"Defined" also means "specified" or "declared" in English.

The 3 examples are all valid use of "defined". A variable is 
"defined" if it has a value. A procedure is "defined" if it has a valid 
source.

In part difference is compile-time vs. run-time. Defining a value 
seems different from defining a procedure.

Doesn't feel that it is impossible to make "undefined" detectable. 
Merely reserve a bit pattern. Answer: Won't work for existing 
programs.

In F77, the standard "defines" things; the program "specifies" things. 
This is reasonably consistent in F77.

Some processors "sort-of" can assign an undefined value. BUT it is 
often extremely difficult to detect. We should not require a 
processor to detect it.

In F77 an "undefined" variable may not be used. However, a 
"processor dependent" value is not "defined" by the standard but 
may be used. Need different terms.

II. General Overview - Document X3J3/S7.89 33



b. ARRAY ARGUMENT ASSOCIATION

Du Croz

Du Croz

Buckley

Snoek

Hirchert

Crowley

Snoek

Hirchert

Surdi

Answer

Surdi

"An array becomes defined when all of its elements become 
defined."  Can I use only "upper triangle?" Answer: In theory a 
problem if INTENT IN.

S7 seems to be best attempt at compatibility.

#1 requires recompilation of all program libraries.

Yes, we'll have to recompile but get benefits - especially no storage 
association.

#1 not upwards acceptable; #3 not functional; #2 doesn't describe 
S7.  S7 says "use dope vectors unless actual argument is continuous 
and dummy is not assumed shape.".  Also: Recompilation is hard to 
manage in University environment. New rules require recompilation 
since old routines don't tell loader" which they are. Could we allow 
"storage association" call and new call.

S7 doesn't specify implementation but says old combination must 
work e.g. array element -- array.

For sections, etc., as actual arguments we need new rules. In effect 
can't use "storage association" if pass a section to an array, implies a 
dope vector needed. Also must match rank if passing into an 
assumed shape array. Expect to eliminate storage association in 
F9X.

S7 as described by Ted seems to be best choice now.

Now, if a dummy argument is a constant array, it could have a 
section as an actual argument. Since it is possible there must be run-
time overhead.

All dummy argument arrays require dope vectors and hence 
recompilation.

Why not require that an argument which might get a section be 
declared as assumed-shape?

Implies all dummy arrays will be declared assumed shape.

#2 guarantees upward compatibility from F77 source and probably 
object code as well.

II. General Overview - Document X3J3/S7.89 34



Wagener

STRAW VOTE

Re-word #1 and then it seems to match S7. Requires "expanded 
association mechanism" involving "in part passing dope vector."

Do you favor:

Proposal #1 - 11

Proposal #2 - 5

Proposal #3 - 0

Undecided - 4

II. General Overview - Document X3J3/S7.89 35



c. VARIABLES

Discussion:

Snoek

Marusak

Crowley

Hirchert

Clarke

Hirchert

Crowley

STRAW VOTES

Obviously, a variable is anything which can change it's value.

We would qualify "array variable" and "scalar variable."

Variables, to me, are atomic. Therefore an array can't be atomic if an 
element is.

"Variable" in F77 is fairly useless. We need to be able to describe a 
thing which can be "set", i.e. Jerry's definition.

Also need to be able to describe objects which have a simple name - 
e.g. "variables and arrays."

F77 uses variable as a restricted case. Prefers current S7 version.

In S7 "variable plus..." is hard to read.

Prefer "assignable object" or "definable object."

1. A variable is any object that can appear on the left side of an 
assignment statement and may be either scalar valued or array 
valued (12, 6, 5)

2. The term "variable" needs to be changed to include arrays.
(15, 1, 4)

II. General Overview - Document X3J3/S7.89 36



d. DATA STRUCTURES

Discussion:

Buckley

Hirchert

Wagener

STRAW VOTE

Common is deprecated, don't extend deprecated features.

Common is there, we must consider interaction.

Also can't allow function entry to be structure valued.

Don't allow any derived data type objects in  COMMON (16, 0, 6)

II. General Overview - Document X3J3/S7.89 37



e. DEPRECATED FEATURES

Discussion:

Snoek

Answer

Buckley

Answer

Mas

Hirchert

STRAW VOTE

Shen

Answer

Snoek

STRAW VOTE

Du Croz

Hirchert

Shen

Answer

Answer

Buckley

Could also add FORMAT to deprecated list.

Difficult to know where to draw the line

Difficult to put strings in character formats.

Could use " and ' as delimiters

Useful for several uses of same FORMAT.

A "character string" not likely to be checked at compile time, as 
optimized FORMATs often are.

Should any F77 features be deprecated?   (21, 0, 3)

Need to justify each item in list, but not necessary to put into your 3 
groups.

S7 tries to do that, but by group.

Not important, it's merely how to present to an audience.

Should FORMAT be deprecated? (2, 13, 7)

Shouldn't DPROD be deprecated.

Need to generalize to general precision.

What if there are name conflicts in modules?

Error, unless you use the rename part of USE. How are aggregates 
equivalent? Same name or same structure.

Must be from same TYPE definition. To get "equivalent" types into 
2 or more programs required MODULE and USE.

Scopes. Don't use word "scope."  It confuses when: A) NAME is 
known;  B) Entity has a value;  C) Object is accessible.

Fortran is very different from block-structured languages and our 
use is somewhat different from common usage.

II. General Overview - Document X3J3/S7.89 38



Answer

Snoek

Snoek

Answer

Snoek

Metcalf

Matheny

Marusak

Wagener

Hirchert

Matheny

STRAW VOTE

Yes, we don't have good handle on terms.

EWICS TC1 spent a lot of time discussing scope. We think we 
understand part of it.

Deprecating, "source form" is very controversial. Probably not 
acceptable.

In X3J3 controversy was over new source form.

Doesn't want to have to specify which he uses.

If we have new, we must deprecate old.

We tried to make old a subset of new and couldn't. Column 72 is the 
hard part.

There are still reservations about new source form. Personally, I 
think this will prevent F8X from being accepted.

Source form is only incompatibility between F77 and F8X.

X3J3 did a similar thing, for Hollerith. We think we must do this. if 
public comment is negative we might have to change.

As many will be unhappy if we don't do something

F-66 Hollerith was very weak. What most people used was a vendor 
extended Hollerith.

Should F77 source form be deprecated.   (14, 3, 5)

II. General Overview - Document X3J3/S7.89 39



12. GKS FORTRAN BINDING

REFERENCES: B-8, GKS Fortran Binding

Discussion:

Snoek

Wagener

Snoek

Hirchert

Metcalf

Buckley

On behalf of NNI, I would like to make two comments:

1) This binding demonstrates the error of not providing varying 
length character strings. We should not continue this error in 8X

Much of the problem seems to result from using the subset, which 
has no length available, rather than from the lack of a varying 
length.

2) The DATA statements defining the values of the enumerated type 
constants should not be required and these should be in an appendix, 
not the main body of the standard.

I have several points:

1. Is CHARACTER *(*) allowed in the subset? The binding appears 
to be using it there.

2. The functional compression you suggested could have been done 
with additional enumerated types rather than character strings in 
order to avoid performance problems.  I believe the reason that this 
was not done is that these functions are not so compressed in GKS 
and they wished to preserve a 1-1 correspondence between GKS 
functions and FORTRAN procedures.

3. If only part of your CHARACTER variable is relevant, you can 
keep the lengths right by passing the appropriate substring of the 
variable. This may not be as convenient as a varying length 
character string, but it certainly isn't impossible.

4. The DATA statements are not required in this version of the 
binding.

We need to take some straw votes whose results I can pass on to J. 
Martin at the SC5 conveners meeting.  How about one on whether 
we regret the emphasis on the subset in this binding?

I also was going to point out that the DATA statements are not 
required. Should we suggest

12. GKS FORTRAN BINDING 40



Muxworthy

DuCroz

Muxworthy

Wagener

Snoek

Muxworthy

STRAW VOTE

Muxworthy

Du Croz

Metcalf

Shen 

Muxworthy

that separate bindings to subset and full FORTRAN 77?

It is my understanding that the vote was close between DATA and 
PARAMETER for the enumerated constants, so we might be able to 
sway WG2.

There are GKS implementations which are complete now, except for 
completing the external interface, so binding to the subset could be 
an issue. What is the status of GKS? I would hate to see it 
significantly delayed by our comments.

GKS is a separate issue from this binding. I believe that it would 
already be an ISO standard, were it not for clerical errors in its 
processing. This binding is a relatively recent work item, but WG 2 
hopes to process it quickly.

I checked the standard CHARACTER*(*) is not allowed in the 
subset.

Having to keep track of the effective length of a CHARACTER 
variable in order to pass the right substring is much too 
inconvenient. I would like a straw vote on moving the DATA 
statement to an appendix.

With the error in the subset binding about CHARACTER*(*) WG2 
will have to do some rewriting anyway.

1. We regret the emphasis in the GKS binding on Subset Fortran 77 
at the expense of full language features   (19-2-2).

2. The DATA statement in the GKS binding should be replaced by 
parameter statements and moved to an appendix   (18-0-4).

We also should point out the CHARACTER (*) error in the subset 
routines.

The document seems to acknowledge this on Page 5.

Yes, but look at page 50 for an example of CHARACTER *(*) 
being used in a routine intended for the subset.

We are talking about the FORTRAN binding of GKS, but do not 
have GKS itself to reference.

The document is huge. The BSI version costs something like 26 
pounds.

12. GKS FORTRAN BINDING 41



14.  COMMENTS FROM THE DELEGATES

a. Fortran Positions of the Canadian Working Group

References: C-4, Canadian Working Group on Fortran Positions

b. Comments raised by UK Fortran Community

References: B 9, some comments raised by UK Fortran Community

c. Paged I/O

References: B-10, Paged I/O

Presenter: Clarke

Discussion:

Paul

Clarke

Matheny

Clarke

Buckley

Clarke

Snoek

Buckley

Matheny

What if X is an Array and FORMAT was longer than the space left?

Begin printing array at that point. Wrapping is undefined

Intrinsic function in the I/O list itself is preferable to the FORMAT 
statement.

Yes

READ row 14 Col 21?  Does it go there and reads what on the 
screen at that point

Yes. Intention is different than what we intended on the carriage 
control. That is still used.

There should be a lot more in this direct real full screen I/O. The 
position cannot be read or written. Setting left/right/top/bottom 
margins. All these things are highly desirable. I agree that it will not 
be portable in the next revision. This will let you do most of the 
items.

There is a full screen I/O module CDC operating system can support 
three terminals.

CODASYL has come up with a standard. We are dealing with a 
colateral standard.

14.  Comments from the Delegates 42



15.  PRESENTATION BY THE DELEGATES

a. RESULTS FROM  SEAS QUESTIONNAIRE

References: C-1 Fortran Survey
Presenter: Metcalf

Discussion:

Snoek

Metcalf

Dahlstrand

Hirchert

DuCroz

Matheny

Buckley

Clarke

Metcalf

Ampt

Buckley

STRAW VOTE

Buckley

Do you have an indication what kind of users were involved in the 
survey?

IBM. It may not be representative

Is KEYWORD crucial and require dependent completion

INTERFACE BLOCK does not require dependent compilation

We really need enhanced CALL facility (optional arguments with 
checking). We sometimes have 20 arguments where 10 are optional.

Push came from data base people

Intrinsic functions can have optional arguments but user defined 
cannot.

What is meant by conversational I/O?

Interaction with terminal

User friendly is to let the computer do the checking. We have not 
gone far enough.

Having optional arguments in intrinsic functions is independent of 
optional arguments in user defined functions

1. Should there be optional arguments in enhanced CALL?
(28, 0, 3).

2. Should there be keyword argument? (24, 1, 6)

Happy with recursion being in Fortran. Recursive functions must be 
explicitly stated.

15.  Presentation by the Delegates 43



Dahlstrand

Paul

Hendrickson

Hirchert

STRAW VOTE

Hendrickson

Buckley

STRAW VOTE

It should be a candidate for extension modules. Some need it, others 
don't.

Have found uses but not in Fortran. Appears in several 
implementations today. Has not been thoroughly investigated in 
conjunction with other extensions. I don't fully understand or looked 
at synchronization features.

There are severe problems associated with entry points and passing 
of function names.

There are three costs:   1) Local variables obtained dynamically;     
2) Loss of optimization;   3) Intelligibility.

1. Do we want recursion in the language?   (12, 5, 13)

2. Favor of a language extension module  (8, 12, 9)

Extension module would create Fortran subsets. Now I would vote 
no.

I support Dick's position. Application modules can be written and 
used by anyone.

Recursion in the core 13

Language extension module  4

No recursion  4

Undecided 10

15.  Presentation by the Delegates 44



b. COMMENTS ON X3J3 FROM SWEDEN

References: C-6 Comments on X3J3 from Sweden

c. ECMA QUESTIONNAIRE.

References: C-3, ECMA Questionnaire.

B-11, ECMA questionnaire.

Discussion:

Dahlstrand

Shen

Adams

Paul

Adams

Ampt

Marusak

Adams

Hirchert

Paul

Shen

Company replies are very similar. Data structure was different. 
There was a cool response here.

There was a similar survey in the United States.

Comments will be obtained from the FORTEC/SIGNUM FIB.

We should get more questions out to the user community.

Questionnaire is really good. We get both positive and negative 
responses.

Ideal questionnaire does not exist. If its too long, ignored. If it's too 
short it's-hard to understand. Send out questionnaire as long as you 
ignore the results.

Have someone who knows how to take surveys do it. Let's have a 
good one.

It’s not possible to ignore comments on the FIB since each one must 
be answered.

Survey assumes user understands the feature without specifying the 
productions.

There's a problem with FIB syntactic definitions. Doing a survey 
would not be meaningful.

Publishing 8X would automatically get your responses

15.  Presentation by the Delegates 45



d. FORTRAN PROCESSOR REQUIREMENTS.

References: B-12, Fortran Processor Requirements
C-11, Conformance to the standard.

Presenter:  Meek
Discussion:

Matheny

Meek

Shen

Hirchert

Ampt

Muxworthy

Paul

Meek

Ampt

Meek

Shen

What if these requirements were to be included in the standard.

Would be delighted. Having a second standard (if not included in 
ANSI standard) is not enough.

ANSI standard should be thorough enough to not require a second 
standard.  A second standard does not serve either the implementor 
or the user. Problems should be resolved using the standard. 77 
Standard is too verbose. Final documentation should be useful and 
unambiguous in every respect.

Reid's proposal is overly strong. Requirement 3 would be 
exceedingly hard to state. It would be desirable as an option.

Like the ideas expressed in Reid's proposal. There are no good 
solutions to questions such as:  1) What action is taken when error is 
detected?; 2) Where is the error detected?

I'm sympathetic with this paper. However, I feel it is doomed 
because of environmental implications and cost to implement. A 
second standard is the right approach.

Requirement 2 is much too vague.

Requirement doesn't say where error is to be detected. No 
assumptions are made as to how a processor is to implement the 
requirement.

British standard is good idea and we should continue along this line. 
We should make it an international standard without any references 
to ANSI.

There are no restrictions in its use. There is the danger of the 
wasting time in getting it accepted as an international standard. We 
should see if there is any interest in it becoming an international 
standard. BSI only tells how to define vendor specifications.

Can the BS metalanguage be used in 8X?

15.  Presentation by the Delegates 46



Meek

Dahlstrand

Schmitt

Adams

Meek

Du Croz

Matheny

Meek

Would a single metalanguage be defined for all languages. BS is not 
quite up to this task.

The question is safety versus speed. The cost to check everything is 
high. There should be an option to check or not to check.

Giving a message is not very useful

There's a difference between BS and a conformity module. In the 
future 8X needs a conformity module.

The difficulty is how to make the language modular. Conformity 
checks must be built in the design of the processor rather than as 
library routines. The only way 8X can include conformity is to go 
through and specify what the processor must do at each point. Part 1 
of the standard takes on the conventional form. Part 2 defines the 
processor requirements and Part 3 are additional requirement. 
Section 6 in the Fortran Processor Requirements (Reference B-12). 
Each part should be separated out or else the standard would be 
unreadable. We could produce a Fortran 77 processor specification 
standard from the BSI standard.

I support removing any ambiguities from the standard. There should 
be recommendations as to what the processor should do for the 
ambiguities. We need to tighten up the loose ends. 8X should have 
an appendix to define what the processor should do.

Extensions are required for new hardware. Standardization of 
extension misses the point.

It is desirable to allow core plus module to allow a consistent way to 
meet this requirement.  There are two answers to Jeremy's question: 
1) The only way to get agreement on the standard is to purposely 
leave certain items vague; 2) If standard is permissive the user can 
voluntarily be restrictive in its use. User builds specification to his 
requirements. Voluntary, not mandatory.

15.  Presentation by the Delegates 47



16.   REMAINING COMMENTS AND PRESENTATIONS

a. FIB TO BE FORWARDED TO SC5 FOR COMMENTS

Discussion:

Buckley

Adams

Marshall

Adams

Hendrickson

Adams

Buckley

Martin

Adams

Schmitt

Koblitz

Snoek

Meek

Ampt

Meek

Adams

Buckley

I believe IBM's comments should be forwarded with the FIB.

No. I feel IBM/DEC's responses should not be publicized.

Wouldn't that cause problems with X3

Yes

Why would WG9 want to send the FIB out if it's a X3J3 document?

We cannot send it to SC5. There is no reason.

What's the purpose of sending it to SC5?

We would like it moved along at the same pace on both the national 
and international scene.

It's usual for WG9 to send documents out for informational 
purposes.

X3J3 can send it to WG9, then WG9 can put cover letter on it with a 
WG9 number and send it to SC5

That will allow a wide circulation for comments

FIB should be documented without comments

The FIB that is issued by X3 with an ANSI # and an official WG9 # 
should be distributed.

Comments are not part of the document. FIB should be distributed 
without comments.

FIB should be whatever X3 sends with or without comments.

This was discussed at X3J3 and we concluded not to include 
comments.

Although there are just two comments, they are from two non trivial 
members of X3J3.

16. Remaining Comments and Presentations 48



Dahlstrand

Meek

Adams

Koblitz

Buckley

Schmitt

Paul

Ampt

STRAW VOTE

Meek

Schmitt

Ampt

Shen

Martin

Wagener

I would like to see the final document with cover letter and letter 
ballot.

Reporting to SC5 is the responsibility of the convener. If letter ballot 
is required, there will be a 3 to 4 month delay. There is no need for a 
letter ballot. It is not a standard. The convener can decide.

The instruction from ISO WG9 is to reach a consensus. Formal 
voting is discouraged.

It is worth while sending the FIB without comments. Response 
should not be influenced by two companies.

Send it to SC5 with a letter from the convener stating that it's for 
information only

Send the FIB as is

The FIB is now X3 document. The only option is to withdraw it.

I want to be sure that no comments are included

Forward FIB to SC5 without comments   (15, 7, 6)

If X3 requires any revision the same document must be distributed 
in the United States and internationally. Once the FIB is approved 
for distribution, the convener should be authorized.  Send it to SC5 
with a cover letter including any comments SC5 ought to know.

I agree with Brian. If X3 is rewriting the FIB they can include any 
comments but not in the same document.

It’s alright for X3J3 to change the text of the FIB for clarification. 
But comments should not be part of the SC5 document.

I don't know what value it is to have comments at this stage. Why 
not accompany the FIB with the complete S7 document. Several 
members of this WG did not receive the S7 document until after the 
meeting.

S7 is only a working document. It is not a completed document. We 
will be happy to distribute it.

Purpose of the FIB is the desire to get the information out in a 
timely, complete and honest manner. We wanted to provide a

16. Remaining Comments and Presentations 49



Koblitz

Adams

Meek

STRAW VOTE

Meek

STRAW VOTE

document that clearly summarized the status of the language. We 
wanted the distribution to be as wide and as soon as possible and to 
get as many comments as we could. Some of the language in the 
comments are inflammatory and prejudiced.

FIB should be distributed ASAP with as few working changes as 
possible.

X3 official copy of the FIB should be forwarded to SC5

If the WG9 copy of the FIB should be stamped DRAFT copy and 
can be distributed to whomever we like.

WG9 strongly objects to the inclusion of comments in the FIB
(17, 6, 3)

Send ASAP to WG9 the FIB that has been approved in the United 
States. If there is a delay, request members of WG9 to distribute 
draft copies of the FIB.

SC5, WG9 welcomes an official FIB on the status of work of X3J3 
and charges its convener upon receipt to forward such FIB to SC5 
for comments. (22, 0, 3)

16.  Remaining Comments and Presentations 50



b. EVENT HANDLING

STRAW VOTE:   Does it make sense to continue working to find a way for Fortran 8X users to 
use event handling in a standardized way?   (22, 0, 3)

c. DRAFT INTERNATIONAL STANDARD

Reference: C-22, Draft International Standard ISO/DIS 2382/15

Ampt I draw your attention to Data Processing Vocabulary Part 15: 
Programming Language. The Fortran part should be reviewed by 
X3J3 and WG9. Voting terminates 8/9/84.

17. Recommendations

None

16.  Remaining Comments and Presentations 51



18. REQUIREMENTS CONCERNING A SUBSEQUENT MEETING

Discussion:

Ampt

Meek

Adams

Rotthaeuser

STRAW VOTE

Buckley

Metcalf

Meek

Paul

About two years ago I asked that a list of inexpensive hotels be 
provided. Send Hotel address in Bonn including a price list. Also 
include recommendations

The middle of June is impossible in the United Kingdom since it 
falls in the middle of examinations in the universities.

September is the same problem as June in the United States.

1st or 2nd week in July is better than August

1st Week of July -   6

2nd week of July -   1

Either - 15

None -   1

In 1986 we can host a meeting at the university of Halifax. 
Alternatives would be Ottawa University. Residence moderately 
priced.

It’s difficult to get money to travel outside Europe

It would be appreciated if we held a colateral meeting with the full 
X3J3.

We may have an ANSI meeting in Oxford. Possibly a consecutive 
meeting 7/1 and 7/8 in Bonn and Oxford.

19. The delegates expressed appreciation to CERN, Mike Metcalf and all others who assisted 
with local arrangements.

20. The meeting adjourned at 5:30 PM on Thursday, April 12, 1984.

18. Requirements concerning a subsequent meeting 52


