1SO/EC rTcyscaawas - N 1042

To: X3J3

From: John Reid
Subject: Enable proposal
Date: 10 August 1994

1. RATIONALE

If an operator invokes a process (in hardware or in a procedure for a defined operator) and
hits a problem with which it cannot deal, such as overflow, it needs to quit and ask the caller
to do something else. A simple example of this proposal is

ENABLE (OVERFLOW)

=X
HANDLE

END ENABLE

If the multiply is intrinsic and an overflow occurs, a transfer of control is made to the biock of
code following the HANDLE statement. Similarly, if the multiply is a defined operator, it can
be arranged that the OVERFLOW signals in comparable circumstances. The handle block
may contain very carefully written code that is slow to execute but circumvents the problem,
or may arrange for a graceful termination.

2. TECHNICAL SPECIFICATION

For dealing with exceptional events, this proposal involves the addition of integer-valued
intrinsic conditions, a new construct, and some new statements. The intrinsic values are all
positive, but negative values may be set by execution of a SIGNAL statement. For the
definition of the conditions, see the proposed new section 15 at the end of this paper.

Also, there are more examples in the proposed new sub-section 8.1.5.5.

The enable construct has the general form
enable statement
enable block
[handie statement
handle block]
end enable statement -
Nesting of enable constructs is permitted. An enable or handle block may itseif contain an
enable-construct. Also, nesting with other constructs is permitted, subject to the usual rules
for proper nesting of constructs.

The enable statement lists the names of the conditions to be signaled. If any of these
conditions signals during the execution of the enable block, control is transferred to the
handle block. A simple example is the following:
! Example 1
ENABLE (OVERFLOW)
! First try a fast algorithm for inverting a matrix.
HANDLE
| Fast algorithm failed; use slow one.
END ENABLE

Here, the code in the enable block takes no precautions against overflow and will usually
execute comrectly. Should it fail with overflow, the alternative algorithm is used instead.

40

The transfer to the handle block is imprecise in order to allow for optimizations such as
vectorization. Any variable that is defined or redefined in a statement of the enable biock
becomes undefined. In Example 1, a copy of the matrix itself would need to be available for
the slow algorithm.

The transfer may be made more precise by adding within the enable block a nested enabte
construct without a handler. If any of the conditions is signaling when its enable statement is
executed, control is transferred to the handle block. This reduces the imprecision to the
statements within the inner construct or outside it. Adding such a construct to the code of
Example 1 gives:

I Example 2
ENABLE (OVERFLOW)
| First try a fast algorithm for inverting a matrix.
: | Code that cannot signal overflow
DOK=1,N

ENABLE

END ENABLE
END DO
ENABLE

END ENABLE
HANDLE
! Aitemative code which knows that K-1 steps have executed normally.

END ENABLE
Note that the enable, handle, and end-enable statements provide effective barriers to code
‘migration by an optimizing compiler.

If there is no handler for a signafing condition (for example, if a condition signals outside any
enable canstruct for the condition), a transfer of control as for a retumn statement takes place
in a procedure or as for a stop statement takes place in a main program. The condition
continues to signal.

If any conditions are signaling when an enable statement is encountered, a transfer of control
to the next outer handler for a signaling condition (or a return or stop) takes place. This
ensures that all conditions are quiet on entering the enable block. Upon normal completion of
the handle block, any of the handled conditions that is signaling is reset to quiet.

There is an option on the enable statement to specify that some of the conditions enabled
are 'immediate’. Any construct of the enabie block that might signal one of the immediate
conditions is treated as if it were followed by an enable construct with an empty body and no
handler. An example of such an enabie statement is

‘ENABLE, IMMEDIATE (OVERFLOW)

For some conditions (mainty those that may require additional code, for example,
BOUND_ERROR), the processor is required to signal the condition only within the
statements of the enable block. Whether such a condition signals outside any enable block
for the condition is processor dependent. There is no requirement to signal such a condition
in a procedure that is called from within an enable block.

There is an option on the handle statement to specify the handling of further conditions. For
example,

HANDLE (ALL)
specifies that any condition that signals during the execution of the enabie block be handied,
including those that the processor handles outside enable blocks.

There is a facility for making a specified condition signal with a specified value. This is done
with the SIGNAL statement. An example is

2 1

SIGNAL(OVERFLOW, -3)
! Negative values of intrinsic conditions can be set this way.
It causes a transfer to the handler if in an enable block that has a handler for the condition or
a return (stop in @ main program) otherwise. This may also be used to set conditions quiet.
For example,
SIGNAL(ALL, 0)
sets all conditions quiet. In this case, there is no transfer of control.

In a handler, if it is desired to resignal the signaling conditions, this can be achieved with the
pair of statements

ENABLE

ND ENABLE
A transfer of control to the next outer handler for a signaling condition (or a retum or stop)
occurs without the values of the conditions changing.

There is a facility for finding the value of a condition. This is done with the
CONDITION_INQUIRE statement. An example is
CONDITION_INQUIRE(OVERFLOW, 1)
which stores the value of the overflow condition in the variable 1. Another form of the
statement:
CONDITION_INQUIRE(CHAR_ARRAY)
returns the names of the conditions that are signaling in the character array variable
CHAR_ARRAY.

Each condition has a default integer value. The scoping rules for intrinsic conditions are as
for intrinsic procedures. A future enhancement might allow the declaration of user conditions
with scoping rules similar to those for variables.

If a condition is still signaling when the program stops, the processor must issue a waming on
the default output unit.

Neither a handle statement nor an end-enable statement is permitted to be a branch target. A
handle-block is intended for execution only following the signaling of a condition that it
handles, and an end-enable statement is not a sensible target because it would permit
skipping the handling of a condition.

Branching out of an enable construct is not permitted. This limits the extent of uncertainty
over which statements have been executed when a handler is entered.

3. EDITS TO THE STANDARD

8/18+. Add
IEC 559:1989, <Binary floating-point arithmetic for
microprocessor systems> (also ANSI/IEEE 754-1985,
IEEE standard for binary floating-point arithmetic).

8/45+. Add
<<or>> <enable-construct>

10/4-24. Add to R218 (in alphabetic positions) the lines
<<or>> <condition-inquire-stmt>
<<or>> <signal-stmt>

12/53+. Add:

(4) Execution of a signal statement (8.1.5.4) may change the execution sequence.
(5) Execution of an enable statement (8.1.5.1) may change the execution sequence.

15/33+ Add
<<2 4.8 Condition>>

A <<condition>> is a default integer flag associated with the occurrence of an exceptional
event. The value 0 corresponds to the quiet state and this is its initial value. Nonzero values
correspond to signaling states. Negative values can occur only through execution of

the SIGNAL statement. There is one value for all scoping units and it may be found by
execution of a CONDITION_INQUIRE statement or altered by execution of the SIGNAL
statement.

[Footnote: The reason for specifying that conditions have integer values is that this leaves
open the possibility of providing detailed information about the condition. This will be useful
when a procedure (for example, in a fibrary) signals a condition so that it can indicate

the cause of the problem. The intrinsic values are forced to be positive so that a negative
value can be seen to be created by source code and not by the system.]

[Footnote: Although muttitasking is not part of Fortran 90, X3J3 has considered the
interaction of this proposal with multitasking extensions. Its model is that each virtual
processor has a flag for each condition. Condition handling is permissible within a pure
procedure. Enable, handle, and end-enable statements act as barriers and a transfer of
control takes place if any processor is signaling.]

22/23+ Add to the Blanks Optional column:
END ENABLE

95/10+ Add
{4) ENABLE construct

107/0+. Add
<<8.1.5 Condition handling>>

A condition has a name with the same scoping rules as for intrinsic procedures and a defauit
integer value. The value zero comesponds to the normal or ‘quiet’ state and nonzero values
correspond to exceptional circumstances. All conditions have initial value zero. The
processor is required to signal a condition if the associated circumstance occurs during
execution of an intrinsic operation or an intrinsic procedure call specified in the scope of an

4 93

enable block for the condition. Some conditions are also required to signal when the
circumstance occurs outside an enable block, but whether other conditions signal outside an
enable block is processor dependent. Which is which is specified in 15. When the processor

signals a condition, it has a positive value. The SIGNAL statement (8.1.5.4) may be used to
give it a negative value.

[Footnote: The proposal allows the in-lining of procedures with na change to the enable
constructs. The effect is as if any condition enabled in the calling procedure but not in the
called procedure is a condition that always signals.]

[Footnote. On many processors, it is expected that some conditions will cause no aiteration
to the flow of control when they signal and that they will be tested only when the enable block
completes or another enable statement is encountered. Thus the overheads of testing the
condition are confined precisely to the places where the programmer has requested a test.
On other processors, this may be very expensive. They may instead cause a transfer of
control to the handler (or a retum or stop) as soon as the condition signals or soon
thereafter.]

[Footnote: If additional code is needed (for example, for integer overflow), this is required
only within the scope of the enable block.}

<<8.1.5.1. The enable construct>>

The ENABLE construct specifies a set of conditions, an enable block, and (optionally) a
handle block with (optionally) a further set of conditions. The handle block is executed only if
execution of the enabie block leads to the signaling of one or more of the conditions.

~ R835a <enable-construct> <<is>> <enable-stmt>
<enable-block>

[<handle-stmt>
<handle-block>]

<end-enable-stmt>

R835b <enable-stmt> <<is>> [<enable-construct-name>:] #
ENABLE [(<condition-name-list>)]
[IMMEDIATE (<condition-name-list>)]

R835¢ <enable-block> <<is>> <block>

R835d <handle-stmt> <<is>> HANDLE [(<condition-name-list>)] #
[<enable-construct-name>]

R835e <handle-block> <<is>> <block>
R835f <end-enable-stmt> <<is>> END ENABLE [<enable-construct-name>]

Constraint: If the <enable-stmt> of an <enable-construct> is identified
by an <enable-construct-name>, the corresponding
<end-enable-stmt> must specify the same-
<enable-construct-name>. If the <enable-stmt> of an
<enable-construct> is not identified by an
<enable-construct-name>, the corresponding
<end-enable-stmt> must not specify an
<enable-construct-name>. If the <handle-stmt> is identified
by an <enable-construct-name>, the corresponding
<enable-stmt> must specify the same <enable-construct-name>.

Constraint: A condition name must not appear more than once in an <enable-stmt>.

5 94

Constraint: A condition name must not appear more than once in an <handle-stmt>.

The set of conditions enabled during execution of the enable block consists of all those
named on the enable statement. The set of conditions handled by the handle block consists
of all those named on the enable statement or on the handle statement.

An <enable-stmt> may be a branch target statement (8.2).

[Footnote: Neither a handle statement nor an end-enable statement is permitied to be a
branch target. A handle-block is intended for execution only following the signaling of a
condition that it handles, and an end-enable statement is not a sensible target because it
would permit skipping the handling of a condition.]

[Footnote: Nesting of enable constructs is permitted. An enable or handle block may itself
contain an enable-construct. Also, nesting with other constructs is permitted, subject to the
usual rules for proper nesting of constructs.]

Execution of an enable statement causes a transfer of control if any condition is signaling. If
the enable statement is nested in an enable block that has a handler for a signaling condition,
the transfer is to the handler of the innermost such enable block. Otherwise, it is as for a
retum if in a subprogram, or a stop if in @ main program. The values of the conditions are not
altered. :

[Footnote: Note that in a function subprogram it is very desirabie to ensure that the function
value is defined even if an eror condtion has been diagnosed and this is expected to be
handled in the calling subprogram. If the function value is not defined, further conditions will
probably be signaled during the evaluation of the expression that gave rise to the function
call, which may mask the condition that was the root cause.]

- The value of each condition handled by the construct is set to the quiet value upon
completion of execution of the <handle-block>. If a transfer of control out of the <handle-
block> occurs, the conditions retain their values.

<<8.1.5.2 Enable construct>>

Execution of an <enable-construct> begins with the first executable construct of the <enable-
block>, and continues to the end of the block unless a branching statement is executed or an
handied condition is signaled. If a condition handled by the canstruct is signaling on
completion of execution of the <enable-block>, control is transfeired to the <handle-block>.
Transfer of control to the <handle-block> may also take place sooner after the signaling of
the condition. If the <enable-block> contains no nested enable constructs, any variable that
might be defined or redefined by execution of a statement of the enable block is undefined. If
the <enable-block> contains one or more nesied enable constructs, the variables that are
undefined are those that might be defined or redefined by execution of a certain subset of the
statements of the enable block. The subset consists of statements that lie within an enable
block but do not lie within any enable constructs nested inside it.

Branching out of an enable construct is not permitted.

[Footnote: The ban on branching out of an enable construct limits the extent of uncertainty
over which statements have been executed when a handler is entered.

Any <executable-construct> of the enable block that might signal one or more of the
conditions in the immediate list on the enable statement is treated as if it were followed by an
<enable-construct> with an empty block and no handler.

Execution of the <handle-block> completes the execution of the <enable-construct>.

[Footnote: The transfer to the handle block is imprecise in order to allow for optimizations
such as vectorization. As a consequence, some variables become undefined. In Example 3
of 8.1.5.8, a copy of the matrix itself would need to be available for the siaw aigorithm.]

If no condition handled by the construct is signaling on completion of execution of the
<enable-block>, the execution of the entire construct is complete.

[Footnote: Nested enable constructs without handlers can be employed to reduce the
imprecision of an interrupt. Note that enable, handle, and end-enable statements provide
effective barriers to code migration by an optimizing compiler.]

<<8.1.5.3 Signaling conditions that are not enabled>>

A processor may signal a condition while executing a statement that is not in an enable block
for the condition. If in a subprogram, a return is executed without alteration of the values of
the conditions. If in a main program, a stop is executed and the processor must issue a
waming on the default output unit.

[Footnote: On retum to the caller, the condition will be signaling. If the invocation is within an
enable block that has a handler for the condition, there will be a transfer to the handler (or a
return or stop), but not necessarily until the execution of the block is complete. If the
invocation is not within an enable block that has a handler for the condition, there may be a
return (or stop) at once, or the processor may continue executing.]

<<8.1.5.4 Signal statement>>
R835¢g <signal-stmt> <<is>> SIGNAL (<condition-name>,<scalar-int-expr>)

Constraint: If the condition name is DEFAULT, 10, FLOATING, INTEGER,
or ALL, the <scalar-int-expr> must be the literal constant 0.

The SIGNAL statement changes the value of the condition it names to that of the expression
it contains. If the value is nonzero, it causes a transfer of control. If the statement is in an
enable block that has a handler for the condition, the transfer is to the handler of the next
outer outer such handler. Otherwise, it is as for a retum if in a subprogram, or a stop ifina
main program.

[Footnote: in a handler, the pair of statements

ENABLE

END ENABLE :
has the effect of a resignal statement. It causes a transfer of control if any condition is
signaling. If the pair of statements is in an enable block that has a handler for a signaling
condition, the transfer is to the next outer such handler. Otherwise, it is as for a retum ifina
subprogram, or a stop if in a main program. The values of the conditions are not altered.]

<<8.1.5.5 Examples of ENABLE constructs>>
Example 1:

MODULE MATRIX
! Module for matrix multiplication of real arrays of rank 2.
INTERFACE OPERATOR(.mul.)
MODULE PROCEDURE MULT
END INTERFACE
CONTAINS
FUNCTION MULT(A,B)
REAL, INTENT(IN) :: A(..2).B(:,)

REAL MULT(SIZE(A,1),SIZE(B.2)
ENABLE (INTRINSIC, OVERFLOW)
MULT = MATMUL(A, B)
HANDLE .
SIGNAL(INEXACT, 1)
END ENABLE
END FUNCTION MULT
END MODULE MATRIX

This module provides matrix multiplication for real arrays of rank 2. If there is insufficient
storage for the necessary temporary array, it signals the condition
INSUFFICIENT_STORAGE. If an INTRINSIC or OVERFLOW condition occurs, it signals the
condition INEXACT with vaiue 1.

Exampile 2:
I0_CHECK: ENABLE (IO_ERROR, END_OF_FILE)

READ (*, '(I5)) |
READ (*, '(15), END = 90) J

90 J=0
HANDLE
CONDITION_INQUIRE(END_OF_FILE K)
IF (K/=0) THEN
WRITE (*, *) 'Unexpected END-OF-FILE when reading ', &
‘the real data for a finite element’
ELSE
CONDITION_INQUIRE({IO_ERROR,K)
IF (K /= 0) THEN
WRITE (*, " /O error when reading ', &
'the real data for a finite element’
END IF
END IF
STOP
END ENABLE I0_CHECK

In this example, if an input/output error occurs in either of the READ statements or if an end-
of-file is encountered in the first READ statement, the appropriate condition will be signaled
and the handier will receive control, print a message, and terminate the program,

However, if an end-of-file is encountered in the second READ statement, na condition will be
signaled and control will be transferred to the statement indicated in the END= specifier.

Example 3

ENABLE
! First try the "fast” algorithm for inverting a matrix:
MATRIX1 = FAST_INV (MATRIX)
HANDLE (ALL)
! "Fast" aigorithm failed; try "slow” one:
SIGNAL (ALL, 0)
ENABLE
MATRIX1 = SLOW_INV (MATRIX)
HANDLE (ALL)
WRITE (*, *) 'Cannot invert matrix'
STOP
END ENABLE
END ENABLE

In this example, the function FAST_INV may cause a condition to signal. If it does, another
try is made with SLOW_INV. If this still fails, a message is printed and the program stops.
Note the use of nested enable constructs. Note, also, that it is important to set the signals to
‘quiet’ before the inner enable. If this is not done, a condition will still be signaling when the
inner ENABLE is encountered, which will cause an immediate transfer to an outer handler (or
a stop or retum).

Example 4:

ENABLE (OVERFLOW)
| First try a fast algorithm for inverting a matrix.
: | Code that cannot signal overflow
DOK=1,N

ENABLE

END ENABLE
END DO
ENABLE

END ENABLE
HANDLE
| Alternative code which knows that K-1 steps have executed normally.

END ENABLE

Here the code for matrix inversion is in line and the transfer is made more precise by adding
. to the enable block two enable constructs without handlers.

Example 5:

The following subroutine finds a zero of <f(x)> on an interval [<a,b>]. It is limited to take one
second of real time as measured by the system clock. If it fails to obtain the requested
accuracy after this time, the condition INEXACT signals with the value -1.

SUBROUTINE ZERO_SOLVER (A, B, X, TOLERANCE, F)
REAL A, B, X, TOLERANCE
INTERFACE; REAL FUNCTION F(X); REAL X; END INTERFACE

INTEGER COUNT, RATE, START ! Local variables
CALL SYSTEM_CLOCK(START, RATE)

I The following code is executed every iteration
CALL SYSTEM_CLOCK(COUNT)
| If time has run out, retum, signaling condition INEXACT.
IF (COUNT > START+RATE) THEN
SIGNAL (INEXACT,-1)
END IF

EP;ID SUBROUTINE ZERO_SOLVER
The application code handles the exception in a way that only it knows. An example is:
ENABLE
CALL ZERO_SOLVER (A, B, X, TOLERANCE, F)

9 93

(047

HANDLE (INEXACT)
! Exceeded time limit. Fix up and go on.

END ENABLE

Example 6:

REAL FUNCTION CABS (2)
COMPLEX 2
! Calculate the complex absolute value, using a scaled algorithm
! if the straightforward calculation underflows or overflows. Set the
| overflow condition to the value -1 if the result is too large to
! be representable.

REAL §, ZI, ZR
INTRINSIC REAL, AIMAG, SQRT, ABS, MAX

ZR = REAL(2Z)
Zl = AIMAG(Z)

quick: ENABLE(OVERFLOW, UNDERFLOW)

! This is the quick and usual calculation.
: CABS = SQRT(ZR**2 + Z|™2)

HANDLE quick

! Will try again using a scaled equivalent method.
S = MAX(ABS(ZR),ABS(ZD))
SIGNAL (OVERFLOW,0) ; SIGNAL (UNDERFLOW,0)
slow: ENABLE(OVERFLOW, UNDERFLOW)

CABS = S*SQRT((ZR/S)*2 + (ZI/S)"2)

HANDLE slow

CONDITION_INQUIRE(OVERFLOW,K)

IF (K/= 0) THEN

! The result is too large to be representable.
SIGNAL(OVERFLOW, -1)

ELSE
CONDITION_INQUIRE(UNDERFLOW,K)
IF{(Ki=0) CABS=S

END IF

END ENABLE slow

END ENABLE quick
END FUNCTION CABS

This illustrates the setting of a special condition vaiue when the problem really has a result
that overflows,

Example 7:
MODULE LIBRARY

CONTAINS

0 49

SUBROUTINE B

X = Y*Z(1) ! No condition enabled.
IF(X>10.)SIGNAL(OVERFLOW, 1)

END SUBROUTINE B
END MODULE LIBRARY

SUBROUTINE A
USE LIBRARY
ENABLE
CALLB
HANDLE (OVERFLOW)

END ENABLE
END SUBROUTINE A

This illustrates the use of a library module that may signal the condition OVERFLOW. The
signal statement causes a transfer to the handler in the calling subroutine A.

This also illustrates the effect of an intrinsic condition that is not enabled. An overflow in
Y*Z(1) would cause OVERFLOW to signal and hence a transfer to the handler in the calling
subroutine A. An out-of-range subscript value 1 might or might not signal BOUND_ERROR,
but it would not be handled by subroutine A.

Example 8:

ENABLE, IMMEDIATE (OVERFLOW)
A=B*C
WHERE(RAINING)
X() = X(O)'A
ELSEWHERE
Y() = Y(Q)'A
END WHERE
HANDLE

END ENABLE
This illustrates the use of IMMEDIATE. The construct is equivalent to

ENABLE (OVERFLOW)
A=BC
ENNABLE
END ENABLE
WHERE(RAINING)

X() = XC)*A
ELSEWHERE
Y() = YO)*A
END WHERE
ENABLE
END ENABLE
HANDLE

END ENABLE

Note that the statements of a WHERE construct are not tested separatety.

..

107/5. After '<end-do-stmt,>' add 'an <enable-stmt>,".

122/17-18. Replace sentence by
If an error condition (9.4.3) occurs during execution of an input/output statement that lies in
an enable block for the I0_ERROR condition or contains an ERR= specifier:

122/27-28. Replace sentence by
If an end-of-file condition (9.4.3) occurs and no error condition (9.4.3) occurs during
execution of an input/output statement that lies in an enable block for the END_OF_FILE
condition or contains an END= SPeCIfier:..........o.oooovoveeevoeo

122/37-38. Replace sentence by

If an end-of-record condition (9.4.3) occurs and no error condition (9.4.3) occurs during
condition of an input/output statement that lies in an enable block for the END_OF_FILE
condition or contains an EOR= specifier:

123/6. After ‘continues with' add ‘the handle block or

P

125/10. Before ‘contains' add ‘is not in a enable block for the IO_ERROR
condition and ",

125/13. Before ‘contains’ add is not in a enable block for the END_OF_RECORD condition
and .

<<15. CONDITIONS>>

In this sectian, the conditions supported by the standard and a statement far obtaining the
value of a condition are specified.

The CONDITION_INQUIRE statement returns the value of a condition.
R835i <condition-inquire-stmt> <<is>> CONDITION_INQUIRE (<condition-name>, #
[STAT=]<scalar-default-int-variable>)
<<or>> CONDITION_INQUIRE (<conditions-array>)

R835j <conditions-array> <<is>> <default-char-variable>

12 ©f

Constraint: The condition name must not be DEFAULT, 10, FLOATING,
INTEGER, or ALL.

Constraint: The <conditions-array> must be an array.

The STAT= variable is defined with the value 0 if the condition named is quiet and a nonzero
value otherwise. Negative values can occur only following execution of a SIGNAL statement.

The <conditions-array> is defined with the names of signaling conditions and blanks
according to the rules of default assignment. If there are <s> conditions signaling, the first
<s> elements are defined with the names of these conditions and the remaining elements are
given the value blank. If there are more signaling conditions than the length of the array, ail
elements are defined with condition names and which are chosen is processor dependent.

<<15.1 Storage and addressing conditions>>

ALLOCATION_ERROR

This occurs when the processor is unable to perform an allocation requested by an
ALLOCATE statement (6.3.1) containing no STAT= specifier. It is not signaled by an
ALLOCATE statement containing a STAT= specifier. The signaling values are the same as
the STAT values. It signals outside enable blocks.

DEALLOCATION_ERROR

This occurs when the processor detects an error when executing a DEALLOCATE statement
(6.3.1) containing no STAT= specifier. It is not signaled when executing a DEALLOCATE
statement containing a STAT= specifier. The signaling values are the same as the STAT
values. It signals outside enable blocks.

INSUFFICIENT_STORAGE

This indicates that the processor is unable to find sufficient storage to continue execution. It
may occur prior to the execution of the first executable statement of a main program of
procedure and it may occur during the execution of an executable statement. it need not
signal if ALLOCATION_ERROR signals. It signals outside enable blocks.

BOUND_ERROR

This occurs when an array subscript, aray section subscript, or substring range violates its
bounds. This does not include violations of the requirements derived from the size of an
assumed-size array. Whether it signals outside enable blocks is processor dependent.

SHAPE
This occurs when an array operation or assignment does not conform in shape. Whether it
signals outside enabie blocks is processor dependent.

MANY_ONE

This occurs when a many-one amray section (8.2.2.3.2) appears on the left of the equals in an
assignment statement or as an input item in a READ statement. Whether it signals outside
enable blocks is processor dependent.

NOT_PRESENT

This occurs when a dummy argument that is not present is accessed as if it were present;
that is, when one of the restrictions of 12.5.2.8 is violated. Whether it signals outside enable
blocks is processor dependent.

UNDEFINED
This occurs when a.value that is required for an operation is detected by the processor to be
undefined. Whether it signals outside enable blocks is processor dependent.

(Footnote: This wording is intended to allow the processor to be as thorough as it chooses
with respect to the detection of undefined values.]

13 (107X

<<15.2 Input/output conditions>>

IO_ERROR

This occurs when an input/output error (9.4.3) is encountered in an input/output statement
containing no IOSTAT= or ERR= Specifier. It is not signaled when executing an input/output
statement containing an IOSTAT= or ERR= specifier. The signaling values are the same as
the IOSTAT values. It signals outside enable biocks.

END_OF_FILE

This occurs when an end-of-file condition (9.4.3) is encountered in an input statement
containing no IOSTAT= or END= specifier. It is not signaled when executing an input
statement containing an IOSTAT= or ERR= specifier. It signals outside enable blocks.

END_OF_RECORD

This occurs when an end-of-record condition (9.4.3) is encountered in an input statement
containing no IOSTAT= or EOR= specifier. It is not signaled when executing an input
statement containing an IOSTAT= or ERR= specifier. It signals outside enable blocks.

<<13.3 Floating-point conditions>>

OVERFLOW

This condition occurs when the result for an intrinsic real or complex operation has a very
large processor-dependent absolute value. Whether it signals outside enable blocks is
processor dependent. Enabling INTRINSIC may cause this condition to signal.

UNDERFLOW

This condition occurs when the result for an intrinsic real or complex operation has a very
-small processor-dependent absolute value. A processor that does not conform to IEC
559:1989 is required to set this condition when requested to do so by a SIGNAL statement,
but is not required to set it otherwise. Whether it signals outside enable blocks is processor
dependent.

DIVIDE_BY_ZERO
This condition occurs when a real or complex division has a nonzero numerator and a zero
denominator. Whether it signals outside enable blocks is processor dependent.

INEXACT

This condition occurs when the result of a real or complex operation is not exact. A processor
that does not conform to IEC 559:1989 is required to set this condition when requested to do
S0 by a SIGNAL statement, but is not required to set it otherwise. Whether it signals outside
enable blocks is processor dependent.

INVALID

This condition occurs when a real or complex operation is invalid. A processor that does not
conform to IEC 559:1989 is required to set this condition for real or complex division of zero
by zero and when requested to do so by a SIGNAL statement, but is not required to set it
otherwise. Whether it signals outside enable blocks is processor dependent.

<<15.4 Integer conditions>>

INTEGER_OVERFLOW

This condition occurs when the resuit for an intrinsic integer operation has a very large
processor-dependent absolute value. Whether it signals outside enable blocks is processor
dependent.

INTEGER_DIVIDE_BY_ZERO

This condition occurs when an integer division has a zero denominator. Whether it signals
outside enable blocks is processor dependent.

14 /03

<<15.5 Intrinsic procedure condition>>

INTRINSIC

This condition indicates that an intrinsic procedure or operation has been unsuccessful. An
unsuccessful intrinsic procedure may signal other conditions instead of INTRINSIC. Whether
it signals outside enable blocks is processor dependent. If an intrinsic procedure is an actual
argument in a procedure call within an enable block for the INTRINSIC condition, the
condition must signal if the procedure is invoked through the argument association.

<<15.6 System error conditions>>

SYSTEM_ERROR
This condition occurs as a result of a system error. Whether it signals outside enable blocks
is processor dependent.

<<15.7 Combination conditions>>

Each of the following conditions may be specified on an enable, handle, signal statement and
is equivalent to specifying a list of conditions. '

DEFAULT

This condition is equivalent to the list: ALLOCATION_ERROR,
DEALLOCATION_ERROR, INSUFFICIENT_STORAGE, I0_ERROR, END_OF_FILE,
END_OF_RECORD, OVERFLOW, DIVIDE_BY_ZERO, INTEGER_DIVIDE_BY_ZERO,
and INTRINSIC.

10
This condition is equivalent to listing all the input/output conditions.

- FLOATING
This condition is equivalent to listing all the floating-point conditions.

INTEGER
This condition is equivalent to listing the two integer conditions.

ALL
This condition is equivalent to listing all the conditions.

104
15

