
ISO/IEC JTC1/SC22/WG5 - N245!!
K.H. Rotthäuser              1987-07-27 !!

German Position on Fortran 8x/S8.104 
==================================== !

We would like to make some comments about the proposed features for Fortran 8x. !
+ We believe that the BIT DATA TYPE which has been removed from the draft 
proposal should be incorporated directly into the standard. In addition, we 
feel that the related BIT Functions should be reinstated in the document. 
Real time applications; in particular» require these features. !

+ The statement FORALL and "vector valued subscripts“ should be reinstated in 
the document. These features have been implemented in numerous Fortran 
Compilers and should therefore be standardized. !

+ The DIN/WG Fortran believes that significant blanks are logically associated 
with free source forms and should be introduced at the same time as the free 
source form is introduced. The presence of significant blanks in Fortran 8x 
will provide greater flexibility and safety for the future development of the 
language. !

+ We feel that pointers are important: and we urge that they be 
incorporated. The combination of pointers, derived data types and dynamic 
storage allocation would permit the implementation of graph- and list- 
processing algorithms in Fortran. Many other programming languages» already 
have pointers. !

+ We are very disappointed that Fortran 8x does not include a stream-oriented 
I/0 method. The problem is to provide a user friendly, portable way for a 
Fortran program to read and write a stream of characters on a terminal, screen 
etc.. !

================================================================================ !
- Variant Structures should be removed as intended by X3J3 because their 
application is limited. !

- The features IDENTIFY and RANGE should be unified because these two 
facilities can be used to solve some of the same problems. !

- Remove "passed-on" precision REAL(*, *) !
* Current draft !
The current draft has one REAL type and one COMPLEX type: which correspond to 
the mathematical real and complex numbers. Because entities of these types 
can only be approximated in a computer» the minimum approximation 
requirements for the representation of real entities are specified 
(parameter PRECISION and EXPONENT_RANGE). These are used to select a native 
floating point representation. Complications occur with argument passing: The 
rule is that if type parameters are declared explicitly for the dummy 
argument then only actual arguments with identical explicit parameters will 
match. 
If a procedure has dummy arguments which are declared with asterisks for 
PRECISION and EXPONENT_RANGE the processor can implement REAL(*,*) by 
generating overloaded versions of the procedure, one for each native floating 
point data representation supported. 
The generic feature for intrinsics is also based on the native floating 
point representation. !



- 2 - !
* Disadvantages of REAL(*,*) !
REAL(*,*) can indeed be implemented very cheaply: if REAL(*,*) is 
interpreted simply as REAL with the highest effective precision. This 
implementation, however, will cause an extreme loss of performance (for 
Siemens and IBM type computers, e.g. the instructions for 16 Byte-REAL’s may 
be 4 times slower than corresponding instructions for 4-Byte REAL’s). 
Therefore users will tend to avoid the REAL(*,*) feature altogether. 
Furthermore, we don't really believe that the feature REAL(*,*) is actually 
sufficient to cover customers’ needs: the intrinsic functions of the 
FORTRAN library, for example, have an entirely different implementation for 
the different precisions: different degrees and coefficients of the 
polynomials, different size of the intervals used for approximation, special 
tests to ensure accuracy. 
Hence, we assume that users may also wish to choose different algorithms for 
different precisions. !!
* Proposed changes for user-defined overloading to replace REAL(*,*) !
Change the rule for association of actual and dummy REAL arguments of a 
procedure as follows: If type parameters are declared explicitly for the 
dummy argument then all actual arguments with identical effective parameters 
match this dummy argument. The effective parameters depend on the floating 
point representation. 
If this is implemented then we think that user-defined overloading would be an 
efficient and perfect way to satisfy all user needs: the user could decide 
himself for which (explicit) precision he wants to offer different algorithms, 
and the compiler would select the suitable one. 
No conflicts would arise with the previous types as DOUBLE PRECISION, 
which can be mixed. 
This solution would also conform to the generic feature which is based on 
the native floating point representation of data. !


