
ISO/IEC JTC1/SC22/WG5 - N250 !
Fortran 8x: the Canadian position: August 1987	
!!!
1.0 Introduction	
!
For several years. the Canadian Fortran group has prepared a paper on its position on the proposed Fortran
8x standard for the annual WGS meeting. This current paper updates our position, and re-states some of
our previous observations.	
!!
2.0 Comments on the results of the WG5 and X3J3 letter ballots	
!
While we voted ‘yes’ in the informal WGS letter ballot. like several other WG5/X3J3 members this did
not represent the fact that we were satisfied with the draft proposed standard as it stood but that we felt it
was time that the 8x document be made available to a wider audience for comment. Therefore, our
comments were primarily editorial, to aid the production of a coherent, readable document for public
review. It remains our hope that the public comment period will enable the 8x document to converge more
quickly to an acceptable Fortran standard.	
!
We are pleased to note that the thorough processing of the letter ballot comments by X3J3 has resulted in
a much-improved document S8.104. However. the letter ballots themselves raised a number of concerns
for us:	
!
l.	
 There is still disagreement on the fundamental approach to the standardisation process (e.g. Harris,

Lakhwara, Weaver), and we expect that this will not be resolved.	
!
2.	
 It is disconcerting that some of the major vendors are still strongly opposed to Fortran 8x.	
 !
3.	
 Despite our ongoing concern with the size of the language. we have some sympathy for the re-

introduction of the bit data type, as requested in several of the ballots (e.g. Metcalf, Moss) since the
introduction of an additional data type does not change the nature of the language.	
!

4.	
 The size and nature of the language is still causing concern. Although Fortran 8x is ‘only’ about 50%
larger than Fortran 77, measuring in terms of keywords or syntax rules, the nature of Fortran 8x is
significantly different from Fortran 77. While many of the traditional Fortran features are retained
(e.g. COMMON, EQUIVALENCE), they are no longer needed in 8x (due to the introduction of new
features), and their use is not recommended. These obsolescent and deprecated features constitute
almost 25% of Fortran 77. Thus only about half of Fortran 8x consists of surviving Fortran 77
features.	
!!!!!!!

Fortran 8x: the Canadian position: August 1987 l	
!

!!!!
3.0 Requirements of the Fortran language standard	
!
We feel that the Fortran language standard should define a language that is easy to learn and use. that is
suitable for both the casual scientific/engineering user and the experienced" professional programmer.
While each new feature of Fortran 8x has its individual merit, we remain unconvinced that all the new
features proposed in Fortran 8x will be of value to a substantial fraction of the user community. We are
concerned that they will contribute adversely to the cost and the quality of implementation, for both
compilation and execution.	
!
We are also concerned that the new Fortran standard is overdue. Much of this problem has been due to the
ambitious attempt to introduce many contentious new features into the language. Despite the effort and
high quality of the work done by X3J3, consensus is difficult to reach when new ground is being broken.	
!!!!
4.0 Classification of Fortran 8x language features	
!
The table on the next page is an attempt to classify some of the main features of Fortran 8x and some
current Fortran implementations, in order to be able to consider the merits of each in the context of the
whole language. The list also includes some features which have been recently moved to the ‘Removed
Extensions’ appendix, but upon which we would like to comment.	
!
This classification arises from the guidelines that we feel can be applied to the production of a new
standard for an existing language:	
!
• remove unused or obsolete features of the old standard,	

• standardise common extensions of the old standard,	

• adopt common features from other languages,	

• include new features.	
!!!!
5.0 Obsolescent and. deprecated features	
!
We support the list of obsolescent features in Fortran 8x, since it is essential to have a mechanism to allow
ancient features to be deleted from the language.	
!
The list of deprecated features is also reasonable (assuming that the new features which replace them
remain in Fortran 8x), since they will be present in the next revision of the standard, at least. However, we
note that there is no list of deprecated features actually in the proposed standard; it is only specified in
Appendix B, which "is not part of ANS X3.9-l98x, but is included for information only".	
!!!!!
2	
!

!

!
Figure l. Classification of Fortran 8x features	

3	

Obsolescent and deprecated features Common extensions to Fortran 77

Obsolescent features:	
!
• arithmetic if	

• real do variables	

• shared do terminal statement	

• branch to endif from outside its if block	

• alternate return	

• pause	

• assign and assigned go to	

• assigned format specifiers	
!
Deprecated features:	
!
• storage association	

• passing array element substring to dummy array	

• block data	

• entry	

• common, dimension, equivalence	

• fixed form source	

• specific names for intrinsic functions	

• statement functions	

• computed go to statement	

• list-oriented data statement	

• double precision statement	

• *char_length in type specifier

Features included in Fortran 8x:	
!
• namelist	

• ! comments	

• free-form source format	

• lower-case names	

• long names	

• use of underscore in names	

• alternate form of relational operators (e.g. = =)	

• implicit none	

• " to delimit character constants	

• enddo	

• lengths of real variables	

• random, clock and date intrinsics	

• recursive procedures	
!
Features not included in Fortran 8x:	
!
• include	

• hexadecimal constants	

• octal constants	

• binary constants	

• lengths of integer and logical variables	

• do while	

• bit manipulation intrinsics

Features common in other languages New features, not common in other languages

Features included in Fortran 8x:	
!
• ; as statement separator (multi-statement lines)	

• structures (records)	

• whole array operations	

• allocatable arrays	

• case construct	

• exit and cycle	

• internal procedures	

• intent specification	

• inquiry intrinsics	

• character intrinsics	
!
Features not included in Fortran 8x:	
!
• significant blank	

• bit data type	

• simple pointers	

• allocatable structures	

• variant structures	
!

Features included in Fortran 8x:	
!
• real(*,*)	

• modules and use	

• parameterized user types	

• user-defined operators	

• array sections	

• range	

• identify	

• alias	

• where	

• optional and keyword dummy arguments	

• many array intrinsics	
!
Features not included in Fortran 8x:	
!
• vector-valued subscripts	

• forall	

• exception handling	
!

!!
6.0 Common extensions. to Fortran 77	
!
In general, we support the inclusion in Fortran 8x of those extensions to Fortran 77 which are now
commonly available. In particular, the simpler extensions to the lexical elements of the language (e.g.
free-form source, ! comments, lower case, long names) are ‘obviously desirable’. We have comments
below on some of these features which are not currently included in Fortran 8x, but most of which we
expect vendors to continue to support. If vendors are likely to continue to support these features, is this
good reason for standardising them ? 	
!!
6.1 Lengths of integers and logicals	
!
We expect vendors will continue to offer short integer and short logical data types(e.g. integer*2,
logical*l), even if they are not included in Fortran 8x. They are not particularly portable and they are not
aesthetic, but they do get the job done.	
!!
6.2 Hexadecimal, octal and binary constants	
!
Although the hexadecimal representations of characters is available through the CHAR intrinsic function,
we see no good reason why these very common extensions should not be standardised.	
!!
6.3 Include	
!
The include is a commonly provided extension, which is simple to understand and easy to implement.
Even if it is not included in Fortran 8x, vendors are still likely to support it in the long term. However, if
modules remain in Fortran 8x, then we agree that include is redundant.	
!!
6.4 Namelist	
!
We were satisfied with the standardisation of namelist made in Fortran 8x since the 1986 letter ballot.	
!!
6.5 Do while	
!
Although the do while construct is a common extension to Fortran 77, we see no reason for its inclusion,
given the do constructs provided in Fortran 8x.	
!!
6.6 Bit manipulation intrinsics	
!
Since the bit data type is not currently included in Fortran 8x, we are satisfied with the availability of these
intrinsics in the supplementary standards for specialised users (as specified in S8, appendix A).	
!!!!!!!!
4	
!

!!!
7.0 Features common in other languages	
!
Some of the proposed Fortran 8x features are new to Fortran. yet are commonly found in other languages.
Since such features are generally well-understood by both compiler writers and language users, in general
we support their presence in Fortran 8x. We also have some comments on those features which are not
included. 	
!!
7.1 Structures	
!
A structure facility is clearly required in a new Fortran standard. and we support its presence in Fortran
8x, via derived data types.	
!!
7.2 Case,.exit and cycle	
!
These statements have proved useful in other languages, and are they simple to implement and
understand. We support their inclusion in Fortran 8x.	
!!
7.3 Internal procedures	
!
We feel that internal procedures should essentially be multi-statement statement functions, and we support
the simplification that has been made in Fortran 8x.	
!!
7.4 Interface (intent) specification	
!
We support this relatively simple addition to the language. It provides useful function at little cost.	
!!
7.5 Character and inquiry intrinsics	
!
We support the inclusion of these intrinsics. since they promote the production of portable code.	
!!
7.6 Significant blank	
!
We still support the inclusion of the significant blank in the new free-form source (while retaining the
insignificant blank in the old fixed-form source) at this opportune time. We were not convinced with the
response by X3J3 to our letter ballot that the insignificant blank ‘is something that many long-time Fortran
users like and want to retain’. This is not in agreement with the Halifax WG5 vote, which was heavily in
favour (28-4) of the significant blank. We believe that most Fortran programmers write code which looks
‘natural’, with blanks interspersed between words to improve readability, and not imbedded in keywords
and symbolic names to hinder readability (though we accept that there may be a small number of
exceptions to this, such as imbedded blanks in long numeric constants). Also, if they prefer to write code
with insignificant blanks, then they may still continue to do so in the fixed-form source.	
!!!

5	
!

7.7 Bit data type	
!
As we stated in our comments on the letter ballot earlier, we would be happy for the inclusion of this
feature to be reconsidered. We feel it is a feature which fits into the traditional nature and role of Fortran.
We noted that this feature was requested by most of the ‘no’ votes in the letter ballot. Hopefully the public
review period will provide guidance on the demand for this feature.	
!!
7.8 Pointers	
!
We would like to see a simple pointer facility introduced in Fortran 8x, but we appreciate that it would
now mean significant effort at this stage. Much of the underlying implementation for pointers will be
necessary to support some of the features of Fortran 8x (e.g. allocate), yet pointers will not be explicitly
available to .users. Further, if pointers are to be introduced into Fortran then it would be preferable that
this is done before the new aliasing mechanisms, IDENTIFY and RANGE, have been incorporated into
the standard. However, we are happy for the public review period to guide X3J3 on the user demand for
this feature.	
!!
7.9 Allocatable structures	
!
Although the vote on allocatable scalars failed (11-l5-6) at the Halifax WG5 meeting, we are concerned
about the implication on structures (which are scalars of derived type, but could contain large arrays). We
feel allocatable structures could be a reasonable requirement, though this introduces the inconsistency
between scalars of intrinsic and derived types.	
!!
7.10 Variant structures	
!
Variant structures are not currently included in Fortran 8x, and we would like them to remain absent.	
!!!!!!!!!!!!!!!!!!!!!!!
6	
!!

!!!!
8.0 New, unique or unusual features	
!
These are the features which cause us most concern. We appreciate that every individual feature is useful
to someone, and that it has gained sufficient support in X3J3 for inclusion in 8x, yet we doubt that they are
useful to most of the Fortran community. If these features were already in g-eat demand, we feel that
vendors would already have provided some implementation, but such is not the case.	
!
8.1 real(*,*)	
!
We feel that the combinatorial problems with real(*,*) dummy arguments, which existed in earlier
versions of S8, have been adequately resolved (by limiting the number of arguments which can be passed
with real(*,*)) in the current version of Fortran 8x.	
!!
8.2 Modules and use	
!
While we appreciate the functionality provided by modules and use. we feel that these features have
significant impact on the nature of the language and its implementation (despite the fact that it is only 3%
of the language (ref. X3J3 response to Lakhwara)). We are concerned with the lack of practical experience
with such features, in both implementation and use. The latest letter ballot and the responses from X3J3
did not fully alleviate our concerns about these features. and so we remain unconvinced that they should
be included in the current revision of the Fortran standard.	
!!
8.3 Derived data types and user-defined operators	
!
Although derived data types and user-defined operators provide a convenient structure facility, we see
operator overloading as an unnecessary extension that should be excluded.	
!!
8.4 Identify and alias	
!
Though we are concerned with the impact on the nature of the language, a simple aliasing mechanism, via
identify, is acceptable to us.	
!!
8.5 Range	
!
We would prefer to see range removed from Fortran 8x. since similar functionality can be obtained with
identify and array sections.	
!!
8.6 Array extensions (forall and vector-valued subscripts)	
!
These features have been moved to the ‘Removed Extensions’ appendix, and we would prefer that they
are not re-introduced into the language.	
!!!

7	
!

!!!!
8.7 Exceptional handling	
!
We do not support the inclusion of exceptional handling in Fortran 8x. but we would be happy to see this
feature defined in an appendix or journal of development.	
!!
9.0 Conclusion	
!
We have been pleased that X3J3 has attempted to reduce the size of the proposed Fortran 8x standard. and
some of our concerns have been partially addressed since the first letter ballot. However, the second letter
ballot indicates that there is still much work to be done to achieve consensus.	
!
We feel it is important that a new Fortran standard should be available in the near future, but we urge that
it should indeed be a standard that will gain widespread acceptance and implementation for these are the
criteria by which the standard will be measured.	
!!!!
Canadian Standards Association, Fortran Working Group	
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
8	

