
ISO/IEC JTC1/SC22/WG5 - N909

Future Revision of Fortran

UK Input to Requirements Specification

1 General Position
The UK believes that the revision scheduled for publication in 1996 should be
limited to the incorporation of the corrigenda material and other editorial
improvements agreed before 1995, the movement of F90 obsolescent features into
the obsolete category, the definition of a new set of obsolescent features,
plus a very small number of extensions. This list of extensions should be
agreed by WG5 no later than July 1994.

The UK believes that extensions considered for inclusion in F96 should be
limited to those that serve a significant well-recognised need, are relatively
cheap to implement (both in terms of changes to the standard and in changes to
F90 compiling systems) and are relatively uncontroversial; accordingly, the UK
proposes that the extensions discussed below be those included in F96.

The revision planned for 2001 could, and probably should, be a more
comprehensive updating of the language and as such the requirements
specification will need to be completed relatively sooner to allow the
implementation body time to develop the necessary document changes. The UK
also includes in this paper an initial list of major areas that should be
considered for incorporation in F2001.

2 Extensions to be included in Fortran 96
The following extensions are those that the UK believes should be included in
Fortran 96; they are expressed in the format specified in WG5-N870. As stated
above, the UK does not believe that F96 should include major new
functionalities; the list of extensions accepted for F96 should be restricted
to enhancement or regularisation of the functionality already present in
Fortran 90.

Number: 13
Title: FORALL statement
Submitted by: UK Fortran Panel
Status: For consideration for 1995/96 Revision
References: High Performance Fortran Language Specification,

 Version 1.0, May 1993, section 4.1.
X3J3/S8.104, section F.2.3, June 1987.

Basic Functionality: Allows array assignments to be specified in terms of a
set of array element and array section assignments, as in

HPF.
Rationale: The UK believes it was a mistake that this statement was

left out of F90, and would wish for it to be included in
F96. Although there is some sympathy for the view that a
FORALL construct as well is desirable, the consensus opinion
of the UK is that only the statement form should be included
at this stage. It is recommended that the proposals in this
area of the HPF group be considered as the prime starting

point for the design. However, given the deficiencies of the
current HPF draft, this should be a guide only.

Estimated impact: No effect on existing standard-conforming programs.
Possible effect on HPFF programs. Small effect on
processors.

Detailed specification: As in HPF
History: Submitted by UK Panel, June 1993.

Number: 14
Title: Kind Parameters for Derived Types
Submitted by: UK Fortran Panel
Status: For consideration for 1995/96 Revision
References: X3J3/S8.104, June 1987.
Basic Functionality: Allows derived types to have Kind parameters.
Rationale: The lack of Parameterised Derived Types is a glaring anomaly

in F90. All the intrinsic types are parameterised but the
derived types are not. This is already greatly restricting
the use of derived types in any context where selected kind
intrinsic types are used.
A common requirement is for libraries of procedures that are
generic over floating-point kinds. This is straightforward
in F90 provided all arguments are of intrinsic type; the
kind parameterisation enables this well. This is not the
case if any argument of a derived type is required because
the lack of parameterisation requires separately defined and
named types for each relevant kind. Similarly the lack of
parameterisation of derived types means that separate
modules would need to be written for each character kind,
with different type names etc., for a facility like the
varying string module.
Very nearly complete proposals existed in F8x which were
dropped as part of the political processes leading to the
finally adopted version of the language. These could be
used as an indication of the possibilities for developing
an extension to meet this need.

Estimated Impact: No effect on existing standard-conforming programs. Medium
impact on processors.

Detailed Specification: The UK believes that the Fortran 96 development
body would wish to define the detailed specification but the
UK is willing to provide a detailed specification if
requested. The following serves to illustrate the
requirement.
The basic idea behind the proposals involved in this area
for F8x was that a type definition could include a set of
essentially dummy parameters of type integer. These could
be used in any specification expressions used to declare
values such as lengths and bounds for components. When a
structure of such a type was declared, actual values would
have to be provided again by specification expressions for
these parameters; hence determining the relevant values
for the components. The complication is on how to deal with
KIND type parameters where the values have to be statically
determinable.
We are suggesting here that a restrictive but practical

solution to this problem is to allow only one kind type
parameter for any derived type and that this be called KIND.
This restricted parameterisation would nevertheless allow
all but the most esoteric types to be created and problems
to be programmed.
We could with this proposal define types
 TYPE VECTOR3(KIND)
 REAL(KIND=KIND) :: x(3)
 ENDTYPE VECTOR3
 TYPE VECTOR4(KIND)
 REAL(KIND=KIND) :: x(4)
 ENDTYPE VECTOR4

We could then declare variables
 INTEGER,PARAMETER :: sp=KIND(0.0),dp=KIND(0.0D0)
 type(VECTOR3(sp)) :: displ,vel,acceln
 type(VECTOR4(dp)) :: spacetime,mmtmeng
where the variables for displacement, velocity and
acceleration are declared as single precision three-vectors,
and the spacetime and momentum-energy vectors are declared
as double precision four-vectors.
As in the F8x proposal, each such type declaration
implicitly creates a KIND inquiry function with argument of
the type. This inquiry function returns the declared value
for the KIND parameter of the argument. Because of the
special nature of KIND, this is simply an overload of the
existing generic function. The overloads will be resolved
by the type of the argument. In structure declarations and
elsewhere, the KIND parameter value must be determined by
a static expression.

History: Submitted by UK Panel, June 1993.

Number: 1b
Title: Initial status of Pointers
Submitted by: UK Fortran Panel
Status: For consideration for 1995/96 Revision
References:
Basic Functionality: Allows specification of a defined initial status for

pointers and pointer components. For dynamic objects, such
as unsaved local variables, allocatable arrays, and
allocated pointer targets, this must include every instance
created at run time.

Rationale: It should be possible for the F96 programmer to specify that
pointers, and pointer components, are to be created with a
defined initial status. The lack of this facility has and
will continue to result in code which is unnecessarily
inefficient; see for example the varying string module which
is by no means abnormal in its design.
A possible syntax and semantics providing this capability
is given here.

Estimated Impact: Allows significantly more efficient execution of programs.
No effect on existing programs. Small effect on compilers.

Detailed Specification: This section contains a possible syntax and
accompanying semantics that could be used to allow a user

to specify a defined initial state for pointer variables and
pointer components. It is a minimalist suggestion due
originally to Jerry Wagener. It merely allows the qualifier
NULLIFY to be specified along with the POINTER attribute,
for example,
 REAL,POINTER(NULLIFY) :: pra(:,:)
The semantics proposed is that such a pointer would
initially be disassociated. For example, the varying-string
module could use the
type:
 TYPE VARYING_STRING
 CHARACTER,POINTER(NULLIFY) :: chars(:)
 ENDTYPE VARYING_STRING
The semantics now are that whenever an object of type
VARYING_STRING is created, the pointer component will be
created in the disassociated state. It could be regarded as
having zero length and the assignment procedure could safely
check for an already allocated variable and deallocate it.
The declaration
 type(VARYING_STRING) :: page(66)
would create an array of zero-length strings. This would
greatly reduce the degree of memory leakage in the example
implementation.
This proposal is minimalist in that it permits only setting
the initial state of a pointer to be disassociated. It does
not allow the pointer to be initially associated with an
existing target, nor are any non-pointer components
specifiable as being initially defined.
If this approach is agreed by WG5, the UK is willing to
provide a detailed specification.

History: Submitted by UK Panel, June 1993.

Number: 16
Title: ALLOCATABLE Components
Submitted by: UK Fortran Panel
Status: For consideration for 1995/96 Revision
References:
Basic Functionality: Allows components of variables of derived type to be

allocated.
Rationale: It would be highly desirable for components of a derived

type to be specified as ALLOCATABLE. This would allow for
very much more efficient implementation of applications
using dynamic sized but otherwise simple structures. For
example, if the varying-string module were based on the type

 TYPE string
 CHARACTER,ALLOCATABLE :: chars(:)
 ENDTYPE string
it is likely that implementations based on straightforward
compilation of the published module would be much more
efficient.

Estimated Impact: Allows notably more efficient execution of programs. No
effect on existing programs. Small effect on compilers.

Detailed Specification:
History: Submitted by UK Panel, June 1993.

Number: 3a
Title: Features to be declared obsolescent in F96
Submitted by: UK Fortran Panel
Status: For consideration for 1995/96 Revision
References: none
Basic Functionality: Definition of the following features of Fortran 90 to be

obsolescent:
- Computed GOTO
- Alternate ENTRY
- Statement Functions
- DATA statements among the executables
- Assumed character length functions
- Old fixed form source
- Assumed size arrays
- Pointers in storage associated contexts
- The .EQ., .LT., etc. forms for the relational
 operators

Rationale: The UK believes that the features specified in the list are
essentially redundant and their use in new code is generally
undesirable. It would wish to signal that should they fall
into disuse, as we would hope, then they will be candidates
for removal in a future revision of the Fortran language.
There would be majority support in the UK for declaring all
storage association based facilities obsolescent at this
stage, particularly given the inherent inefficiency of the
mechanism in any distributed memory MIMD or SIMD
multi-processor environment, but the UK refrains from
proposing this at this point on the grounds that this would
almost certainly be controversial.

Estimated Impact: No effect on standard-conforming programs until publication
of Fortran 2001. Small effect (detection of new obsolescent
features) on compilers.

Detailed Specification: Extension to Appendix B2 and corresponding changes to
fonts in the body of the standard.

History: Submitted by UK Panel, June 1993.

3 Features to be considered for F2001
The following features form the initial set of proposals from the UK for
consideration for incorporation in Fortran 2001. They would provide much
needed extension and regular completion of the language design directions
successfully initiated in F90, but are considered too large for incorporation
in F96.

Number: 5c
Title: Exception Handling
Submitted by: UK Fortran Panel
Status: For consideration for 2000/2001 revision
References: X3J3/S8.104, section F.4, June 1987.

Basic Functionality: Allows specification of action to be taken at an
exception.

Rationale: There is a clear need to include facilities in the language
to handle exceptions. There should be both a standard
mechanism for handling exceptions and a set of defined
standard exception conditions, e.g. divide by zero.

Estimated impact: No effect on existing standard-conforming programs.
Significant effect on processors.

Detailed specification: The UK is willing to produce a detailed specification
if requested by WG5. It should be a significant
simplification of the proposal in X3J3/S8.104, section F.4.

History: Submitted by UK Panel, June 1993.

Number: 17
Title: Input/Output for Derived Types
Submitted by: UK Fortran Panel
Status: For consideration for 2000/2001 revision
References: X3J3/S8.104, Section F.4, June 1987
Basic Functionality: Extends intrinsic input/output syntax to cover derived

types.
Rationale: The lack of facilities to extend the intrinsic I/O syntax

and semantics to cover derived type objects consistently is
a major constraint on both proper
data-abstraction/semantic-extension capabilities and will
similarly constrain any attempts to extend these ideas
further into "Object Oriented" programming.

Estimated impact: No effect on existing standard-conforming programs.
Medium effect on processors.

Detailed specification: The UK is willing to produce a detailed specification
if requested by WG5.

History: Submitted by UK Panel, June 1993.

Number: 23
Title: Multi-threaded execution facilities
Submitted by: UK Fortran Panel
Status: For consideration for 2000/2001 revision
References:
Basic Functionality: Allows program execution to proceed using multiple

execution threads.
Rationale: This facility is needed to make better use of current

and likely future architectures. This should be implicit
rather than explicit in much the same way as "parallel"
execution of array operations is possible without being
mandated. The language should provide facilities for whole
blocks of code that can be executed out of sequence or in
any sequence.

Estimated impact: No effect on existing standard-conforming programs.
Medium effect on processors.

Detailed specification: The HPF proposals should be studied and used as a
guide in production of a detailed specification.

History Submitted by UK Panel, June 1993.

Number: 18
Title: Object-oriented facilities
Submitted by: UK Fortran Panel
Status: For consideration for 2000/2001 revision
References:
Basic Functionality: Allows the object-oriented model to be realised

in Fortran.
Rationale: The F2001 language must provide support for and interfacing

capability to object oriented programming. Much of the
data-abstraction infra-structure included in F90 is already
OO but there are other features of the OOP paradigm that
need to be considered, if for no other reason that F2001
programs will have to be able to call/invoke facilities from
libraries built in other languages to exploit OO techniques.
One specific defect which hampers both the semantic
extension and object oriented paradigms stems from the
inability for the user of a type extension module to declare
named constants of a type whose structure is private. This
is essential to for true OOP. This problem arises because
of the classification of expressions and the restrictions
placed on what may appear in initialisation expressions.
The F90 classification of expressions is overly restrictive,
complicated and irregular. We have general expressions
which are employed in the general execution of the program.
These can use any data-object and procedure that is
accessible and defined at the point of execution. However
we also have constant expressions, initialisation,
expressions, restricted expression, specification
expressions and KIND expressions. These have highly
involved overlapping definitions relating to the
restrictions that apply and the contexts in which they must
be used. These should be extensively revised and
restrictions applied only where absolutely necessary.
Since we require that the KIND of an object be determined
at compilation it is essential that expressions determining
KIND values, wherever they might occur, can be evaluated
statically. PARAMETER values, except where they are used
to determine KIND values, do not strictly need to be known
at compile time. They, along with the initial values for
variables, need be known only at load time or even as late
as the first invocation of the procedure. Specification
expressions where array bounds and character lengths are
determined do not have to be evaluated, and frequently
cannot even now be evaluated, until run time. This analysis
leads to a simpler and less restrictive classification of
expressions:
- KIND or static expressions that involve primaries that
are literal constants, symbolic constants whose values
are determined by static expressions, possibly involving
intrinsic operators, and a restricted set of intrinsic
functions;
- Initialisation expressions that involve primaries that
are static expressions, accessible explicit procedures that
are proper functions; and

- Specification expressions that involve any data-object
or proper function that is accessible and defined at the
time of invocation of the program or procedure.

We need to define "proper function". This would need to be
a function whose value was uniquely determined by its
arguments and which had no side effects. (The HPF concept
of the PURE procedure is relevant here). This relaxation
has vast benefits in allowing regularisation of treatment
of derived type and intrinsic type objects. For instance,
it allows the override definition of assignment to be used
to initialise structure variables where this is necessary.
It would also with the changes above allow the construction
of facilities for a user to declare structured symbolic
constants when USEing a type with its structure declared
PRIVATE.
These are necessary steps towards full data-abstraction and
OO facilities but require small upward compatible changes
to the existing language. There would be other more
significant changes and additions to fully support a Fortran
flavour of the OO paradigm.

Estimated impact: No effect on existing standard-conforming programs.
Medium effect on processors.

Detailed specification: The UK panel is willing to provide detailed
specifications if requested by WG5.

History: Submitted by UK Panel, June 1993.

David Muxworthy, for BSI Fortran Panel
June 1993

