1ISO/IEC JTcl/sc22iweiN1173

International Standards Organization

Data Type Enhancements
in
Fortran

Technical Report defining extension to
ISO/IEC 1539-1 : 1996

{Produced 18-Dec-95}

THIS PAGE TO BE REPLACED BY ISO CS

ISO/IEC TR Data - WD © ISO/IEC ISO/IEC JTC1/SC22/WG5/N1173

Contents

1: GENERAL 5
1.1 Scope 5

1.2 Normative References 5
2 : RATIONALE 2

3: REQUIREMENTS 3

3.1 ALLOCATABLE Attribute Extension
3.1.1 Allocatable Attribute Regularisation
3.1.2 Allocatable Arrays as Dummy Arguments
3.1.3 Allocatable Array Function Results
3.1.4 Allocatable Array Components

mbwww

3.2 Description of parameterized derived type enhancements 6
3.2.1 The Type Definition
3.2.2 Object declaration
3.2.3 The form of the Constructor
3.2.4 Type parameter value inquiry
3.2.5 Intrinsic assignment
3.2.6 Argument association and overload rules

[l
OO ©w~N N

4 REQUIRED EDITORIAL CHANGES TO ISO/IEC 1539-1 : 1996 11
4.1 Edits to implement ALLOCATABLE attribute extension 11
4.2 Edits to implement parameterized derived types 17

4.2.1 Edits to implement inquiry function 18
4.2.2 Constructor as generic function 19

ISO/IEC TR Data - WD ISO/IEC JTC1/SC22/WG5/N1173

Foreword

[This page to be provided by ISO CS]

ISO/IEC TR Data - WD © ISO/IEC ISO/IEC JTC1/SC22/WG5/N1173

Introduction

This technical reportiefines a proposed extension to theta-typing facilities of the programming
languagd~ortran.The current Fortrafanguage is defined by tleternational standard ISO/IEC 1539-
1:1996. Thidechnical reporhasbeenprepared by ISO/IEC JTC1/SC22/WGbe technical working
group for the Fortran language. The language extension defined by this technical iefeortiésl to be
incorportated in the next revision of th@rtranlanguage without change except where experience in
implementation andisage indicatethat changesare essential. Suahanges will only be madshere
serious errors in the definition or difficulties in integration with other new facilities are encountered.

This extension is being defined by means of a techmigpbrt inthe first instance to allow early
publication of the proposed definitiohhis is to encourage eatipplementation of importaréxtended
functionalities in a consistent manner and will allow extensive testing of the design eftéheed
functionality prior to its incorporatiointo the language by way of the revision of the international
standard.

TECHNICAL REPORT TR Data - WD © ISO/IEC ISO/IEC JTC1/SC22/WG5/N1173

Information technology - Programming Languages - Fortran
Technical Report: Data-type enhancements

1 : General
1.1 Scope

This technical reportiefines a proposed extension to thea-typing facilities of the programming
languagd~ortran.The current Fortrafanguage is defined by tleternational standard ISO/IEC 1539-
1:1996.The enhancementiefined inthis technical reportover two mairareas.The firstextends the
capability of parameterizatiodefined for intrinsic types toderived types and the second allows
components of derived types to be allocatable arrays.

Section 2 of this technical report containgieneral informabut precise description of the proposed
extended functionalitieS his isfollowed by detailed editorial changes which if applied todheent
international standard would implement the revised language definitions.

1.2 Normative References

The following standards contain provisiomgich, through reference in thisxt, constitutgrovisions
of this technicateport. Atthe time ofpublication, the editions indicatedere valid. Allstandards are
subject to revision, and parties tmreements based on this technioghort areencouraged to
investigate the possibility of applying the most recent editions ofsthiedardsindicated below.
Members of IEC and ISO maintain registers of currently valid International Standards.

ISO/IEC 1539-1 : 199@nformation technology - Programming Languages - Fortran

TECHNICAL REPORT TR Data - WD © ISO/IEC ISO/IEC JTC1/SC22/WG5/N1173

2 : Rationale

There are many situations when programming in Fortran where it is necessary to allocate and deallocate
arrays ofvariable sizebut the full power of pointearrays isunnecessary and undesirable. In such
situations the abilities of a pointer array to alias other arrays dral/¢onon-unit (variable a&xecution

time) strides are unnecessary, ahdy are undesirable because this limits optimization, increases the
complexity of theprogram, and increases tlieelihood of memoryleakage. The ALLOCATABLE
attributesolves this problerbut cancurrentlyonly be usedor locally storedarrays, avery significant
limitation. The most pressingeed isfor this to beextended tarray components; without allocatable

array components it is overwhelmingtifficult to create opaquédatatypes with a sizehat varies at

runtime without serious performance penalties and memory leaks.

A major reason foextending théALLOCATABLE attribute toinclude dummyarguments and function
results is to avoid introducing further irregularities into the language. Furthermore, allodatatig
arguments improve the ability tode inessentiadletails during problem decomposition by allowing the
allocation and deallocation to occur in caltbprogramswhich is often the mostatural position.
Allocatable function results ease ttask of creatingarray functions whoseshape is notletermined
initially on function entry, without negatively impacting performance.

* * *

Parameterized derived typaserequired for twomainreasons. Firstiythereare many circumstances
where a derived type is required to work together with intrinsic types wheabithg to parameterize
the kind of thelatter and nothe former causes very considerable problems.onicasedifferent
versions of the program can belected by the use of tparameter but tenable the derived type to
properly interwork a different type with a differaramemust be used. This results in very clumsy and
inflexible programs and a significant progranaintenance overheaslibstantiallydefeating the object
of the kindparameterization. Secondly, thexee a largenumber of types where there isnaed to
manipulate objects where the only difference betwessious entities is in the size ebme internal
component. For example, therare entities likevectors thatmay differ in the dimensionality of the
spacethey span andherefore in the number of realsat areinvolved intheir representation, or in
matrices thadiffer in their order. Thesare very like theintrinsic charactedatatype wheredata
objects may differ in the number oharacters irthe string andvherethis is specified by dength
parameter on the type. This is clearly preferableatong multipleseparate typeshich differ only in
such a sizaleterminingproperty. Boththese requirementsre met by the addition of parameterized
derived types to the language.

TECHNICAL REPORT TR Data - WD © ISO/IEC ISO/IEC JTC1/SC22/WG5/N1173

3 : Requirements

The following subsections contain a general description of the extensions required to the syntax and
semantics of the currenfortran language to provide facilitiesfor regularization of the
ALLOCATABLE attribute and for user defined parameterized derived types.

3.1 ALLOCATABLE Attribute Extension

3.1.1Allocatable Attribute Regularisation

In order to avoid irregularities in the language, the ALLOCATABitEibuteneeds to be allowed for
all dataentitiesfor which it makes senseThus, this attributevhich was previouslhlimited to locally
stored array variables is now allowed on

* array components of structures,

e dummy arrays, and

» array function results.

Allocatable entities remain forbidden from occurring in all plaglkesre they may be storage-associated
(COMMON blocks and EQUIVALENCE statements). Allocatableay components magppear in
SEQUENCE types, butobjects of such typesare then prohibited from COMMON and
EQUIVALENCE.

The semantics for the allocation status of an allocatable entity remain unchanged:

« If it is in a main program ohasthe SAVE attribute, it has an initial allocatiostatus of not
currently allocated. Its allocation status changes only as aesult of ALLOCATE and
DEALLOCATE statements.

« If it is a modulevariable without the SAVEttribute,the initial allocationstatus isnot currently
allocated and the allocati®statusmay becomanot currently allocated (by automatic deallocation)
whenever execution of a RETURN or END statement results in no active procedure having access to
the module.

» Ifitis a local variable (not accessed by use association) and does not have thatBdte, the
allocation statusbecomes noturrently allocated on entry to the outermost proceeneh has
access to it. Omxit from this procedure it is automatically deallocated and the allocstiidns
changes to not currently allocated.

Since an allocatable entity cannot be an alias for an array section (unlike pointers arrays), it may always
be stored contiguously.

3.1.2Allocatable Arrays as Dummy Arguments

An allocatable dummy argument array must have associated with it anaguwlent which iglso an
allocatable array.

TECHNICAL REPORT TR Data - WD © ISO/IEC ISO/IEC JTC1/SC22/WG5/N1173

On procedure entry the allocatistatus of arallocatabledummyarray becomeshat ofthe associated
actual argument. tthe dummyargument is not INTENT(OUT) antthe actualargument is currently
allocated, the value of the dummy argument is that of the associated actual argument.

While the procedure iactive, an allocatabldummyargumentarray thatdoes not havéNTENT(IN)
may be allocated, deallocated, definedbecome undefined. Oneey of these events have occurred
no reference to the associated actual argument via another alias is permitted .

On exit from the routine thactual argument hagshe allocationstatus ofthe allocatabledummy
argument (there is no change, of course, if the allocathfteny argument has INTENT(IN)). The
usual rules apply for propagation of the value from the dummy argument to the actual argument.

No automatic deallocation of the allocatabigmmy argument occurs as a result efecution of a
RETURN or END statement in the procedure of which it is a dummy argument.

Note that since anINTENT(IN) allocatabledummy argumentarray cannot havets allocationstatus
altered, it is noseem to be of very mualse (theonly difference betweesuch adummyargument and
a normal dummy array is that it might be, and thus remain, unallocated).

Example:

SUBROUTINE LOAD(ARRAY, FILE)
REAL, ALLOCATABLE, INTENT(OUT) :: ARRAY(, 3, 2)
CHARACTER(LEN=*), INTENT(IN) :: FILE
INTEGER UNIT, N1, N2, N3
INTEGER, EXTERNAL :: GET_LUN
UNIT = GET_LUN()
OPEN(UNIT, FILE=FILE, FORMAT="UNFORMATTED")
READ(UNIT) N1, N2, N3
ALLOCATE(ARRAY(N1, N2, N3))
REAL(UNIT) ARRAY
CLOSE(UNIT)
END SUBROUTINE LOAD

Implementation Cost

Minimal, similar to pointer dummy arrays (except that the descriptor need not be so big).
3.1.3Allocatable Array Function Results

An allocatable array function must have an explicit interface.

On entry to an allocatablarray function, the allocatiorstatus ofthe result variabldbecomes not
currently allocated.

TECHNICAL REPORT TR Data - WD © ISO/IEC ISO/IEC JTC1/SC22/WG5/N1173

The result of the function must be allocated defined at the time oéxit from the function. No
automatic deallocation of the result variable occurs on exit from the funbhb@rmever, this does occur
after execution of the statement in which the function reference dccurs.

Example

FUNCTION INQUIRE_FILES_OPEN()
LOGICAL,ALLOCATABLE :"INQUIRE_FILES_OPEN(;)
INTEGER 1,J
DO 1=1000,0,-1

INQUIRE(UNIT=I,0PENED=TEST,ERR=100)
IF (OPENED) EXIT

100 CONTINUE
END DO
ALLOCATE(INQUIRE_FILES_OPEN(0:1))

DO J=0,|
INQUIRE(UNIT=J,0PENED=INQUIRE_FILES_OPEN(J))

END DO

END

Implementation Cost

Minimal, mostlyjust to establish an appropriatalling convention. Deallocation of thesult can be
handled exactly asxplicit-shape-spearray functions currently.

3.1.4Allocatable Array Components

Allocatablearraycomponentsreultimate components because the value is ssegwhere else (and
they do notcomeinto existance with theest ofthe structure, jusiike pointers). As with ultimate
pointer components, variables containing ultimate allocatabley componentsare forbidden from
appearing directly in input/output lists - theer must list any allocatabégray orpointer component
for i/o.

As per allocatablearrays currently, they are forbidden from storage association contexts (so any
variable containing an ultimate allocatabégray component canno@ppear in COMMON or
EQUIVALENCE); this maintains the clarity and optimizability of allocatableays. However,
allocatablearray componentsare permitted in SEQUENCE typewshich can be used as globglpe
definitions without recourse to modules.

Example
{To be added}

Implementation Cost

! This storage is thus reclaimed at the same time as that of array temporaries and the esglittd-shape-
specfunctions referenced in the expression.

TECHNICAL REPORT TR Data - WD © ISO/IEC ISO/IEC JTC1/SC22/WG5/N1173

Minimal. It will be necessary to store a descriptor in the derived type, but this need not be as powerful
as a pointer array descriptor.

3.2 Description of parameterized derived type enhancements
There areseven mairareas oflanguage design where an extenssoich as this impacts tlexisting

language and where syntax and semantics must be defined. These are:
. the definition of the type,

. declaration of objects of such a type,

. constructing a value of such a type,

. inquiring as to the value of a type parameter for an existing object of such a type,
. intrinsic assignment for objects of such a type,

. argument association and overload resolution, and

. the visibility and scoping rules.

Syntactic forms and semantic rules existering the use of parameterized intrinsic typeallitout the
first of these areas; for obvious reasons there is hodigfirdition for an intrinsic type. The aim of all of
the following is to extend the notion of typarameterization to usdefinedtypes in such a way as to
make the manipulation of derived types and intrinsic types as consistent and as similar as possible.

In this section the technical nature of the proposal in each of the abea® iscovered with sufficient
detail to indicate the essential nature of the proposed syntax and semanticsddresingormally with

the approach illustrated by example rather than with detailed syntactic and seatesitithese formal
ruleswill be defined insubsequent sections in the form of proposed edits to the current international
standard for the programming language Fortran which would implement the proposed extensions.

All parameters for intrinsic types are quantitiesypke default integer. This technical report proposes
that parameters faterived types be similarlsestricted at this time; however, the detailed form of the
extension defined irthis technical report is sudhat parameters afther types could be added by
further extension if that proves to be desirable.

The intrinsic types have parameters of two quite diffenatires. There atbe static parameters that
determine theature of thanachine representation. Theme all characterised ftie intrinsic types by

the same parametaame KIND . This is used both fahe keyword in théype-speand as thgeneric

name of thgarameter-value inquiry function for such a parameter. The other parameter varesy,

the value is not necessardyatic,only applies intrinsically fothe character type. Heithe parameter,

LEN, determines the length or the number of characters in the datum. ¥isdarthenameLEN is also

both the parametdeyword name and the generic name of the inquiry function used to find the value of
the parameter for an appropriate data object.

This technical reportiefines the extension to derived typespafameterization in such a way as to
allow for any number of botlsorts oftype parameter. It also preserves the consistencythatethe
keyword name for a type parameter is alsogirgeric name of an inquiry functitimatmay be used for
inquiring as to theactualtype parameter values for agjven object of aparameterized type. This
provides for full regularity of treatment between intrinsic and derived types.

TECHNICAL REPORT TR Data - WD © ISO/IEC ISO/IEC JTC1/SC22/WG5/N1173

3.2.1The Type Definition

The syntax optionally allows a list afummy type parameter names to beded in parentheses
following the type-name in the type-definition statement. These dummy type parameters are permitted as
primaries in the expressions used to specifyatirbutes ofthe variouscomponents of the type. The
inclusion of names in such a list@ddmmytype parameter namesdensidered to declare these names
to be type parameter names and to be of default integer type. It is astiandte majority of
parametersvill be "size-determining'like LEN, and so the defaubor a parameter that teclaredonly

on the type-definition statementtisat it isnot "kind-determining”.Type parameters that are to umed

to determine the kind of a componentst be distinguished Hyeing declared asuch. This is to be
done by declarin@ll such type parameters to have gD attribute within the body of the type
definition.

For example, the extended syntax would allow a type definition such as,

TYPE MATRIX(wkp,dim)
KIND :: wkp
REAL(wkp),DIMENSION(dim,dim) :: element
ENDTYPE MATRIX

Wherewkp anddim are dummy type parameters; one usedetermine the kind of thmatrix elements
and the other the order of the matrix.

The expressions used to declaredtidbutes ofcomponents of a parameterized type shall be constant
expressions, possiblgvolving the typeparameters as primarie&ny parameter used tetermine the
kind of a componennust be declared asstatic"kind" parameter and any type parameterdemiared

in this way with the kind attribute shall not be used to determine the kind of components.

Parameterized types may be declared to haveRheENCEproperty. Twosequence typearethe same
if and only if they have the same name, define the dgyme parameters of the saikiad in the same
order anddefine the same components with the same nameéshe sameéependencies on the type
parameters. Two objects of a parameterizeguence typean becomestorage associatemhly when
their sequence typesethe same and they have the sgraeameters with the same valugsen if all
components okuch a typeare numeric sequencg/pes, a parameterizeskquence typshall not be
considered to be a numeric sequence type.

3.2.20bject declaration

Objects of a parameterized type shall be declared in ways entirely analogous to thdseiosetsic
types. Where the type has parameters, actual values shall be provided for these pavheretdigcts
of such types are declared. For example, objects of the above matrix type could be declared,

type(MATRIX(4,3)) :: rotate,trans
type(MATRIX(KIND(0.0),4)) :: metric
type(MATRIX(wkp=8,dim=35)) :: weight
type(MATRIX(wkp=8,dim=*)) :: hessian
type(MATRIX(dim=2*n+1,wkp=4)) :: distance

TECHNICAL REPORT TR Data - WD © ISO/IEC ISO/IEC JTC1/SC22/WG5/N1173

For purposes of illustration it could lbensideredhatthelasttwo declarationgre in subprogram units
where the value , is possiblythat of adummyvariable. In such a context tlheest statement would be
declaring an automatic or dummy object and the next to last would be decldtingrgyargument that
was to assume the value for thede type parameter from that of the associated actual argument, c.f.
similar usage with the length parameter for characters.

Where a type islefined withparameters, thé/pe-spedn an object declaration shall spectgtual
values to be used to supply valuestfeer dummytype parameterthat determine thattributes of the
components as defined in ttype definition. Thesactualtype parameter values shall be specified as if
they were aractualargument lisfollowing the type namelThe associatiobetweenactual ancdummy
type parameters may be positionalkesyword and the sammelles as for argument association shall

apply.

Any valuethat becomesassociated with a type parameter declared to havkirttiattribute shall be

specified by an integescalarinitialization expression. The rules for type parameters wittiaikind

attribute areghe same afor the intrinsicLEN type parameter; iparticularthe actual values fosuch
parameters shall be specification expressions or assumed. If such an object is to apyamionaor
equivalence context the type must have the sequence property and the actual type parameter values must
be constant.

{{{ Note, atthis time the possibility of derived types having parameters witloATeONAL
attribute is not being proposetHowever, such a future extensionnist ruled out. It
would be possible for a parameter to be declared as optional in the type definition, and
some suitable syntax for providing a default value to be wdezh anactual value is
omitted. This added capability is cosmetic and although possibly desirable is considered
to add unnecessary complexity at this stage. I3y

3.2.3The form of the Constructor

The syntactic similarity of a type value-constructor and a generic function reference is recognised and
extended. Theonstructor reference tefined to be identical to a function referentlke model of the

REAL type conversion function is used aextended taall derivedtypes. The constructor iberefore

defined to be amtrinsic procedure with generic name the same as the type name. Where the type is
parameterized the constructor reference shalude theparameters as an extra setasfuments
following the list of component expressions. The analogy with

REAL(A,KIND)

for the matrix type would be

MATRIX(element,wkp,dim)

where the expressiassociated with thelement component would need todssignment conformant
with a rank 2 array of shageim,dim/) and type real oKIND=wkp .

The general form is therefore,

type-namé&omponent-expr-ligype-param-expr-ligt

TECHNICAL REPORT TR Data - WD © ISO/IEC ISO/IEC JTC1/SC22/WG5/N1173

which is identical to the function reference syntax,
function-name(argument-expr-list)

provided the keyword namdisat correspond to the argument keywofdsthe component expressions
arethe component names afat the parameter expressions #eyword namesre those of the type
parameterers. A constructor reference of the following form now becomes valid,

MATRIX(wkp=4,dim=10,element=0.0)

As a furtherexample of the greater expressive utility provided considecdhstructors produced by
the following. Given a type defined by,

TYPE STOCK_ITEM
INTEGER :: id,holding,buy_level
CHARACTER(LEN=20) :: desc
REAL :: buy_price,sell_price
ENDTYPE STOCK_ITEM

the two constructor references below would mean the same thing.
STOCK_ITEM(12345,75,10,"Pencils HB",1.56,2.49)

STOCK_ITEM(desc="Pencils HB", id=12345, &
holding=75, sell_price=2.49, &
buy_level=10, buy_price=1.56)

By defining aconstructer reference to be a function reference, the assignment sethantagply the
correspondence of component to expression, in effect nleaithe constructoname is generic. The
set of overloadsare defined asall thosewhich would produce valid assignments to each of the
componentskor pointer components the keyword is the component name and the semmattaysply

to the expression to component correspondentt@isof pointer assignment; the expression in this case
shall deliver aresult that hashe target attribute. Thigrovides forthe constructor exactly theame
relationship betweeactualexpression and corresponding componentbetweenactual anddummy
argument of the relevant characteristics.

As with function reference actual arguments, positional correspondence shall be permitted €ipsto the
use of thekeyword form, all subsequent component/expression argumeotsd have to be of the
keyword form.

3.2.4Type parameter value inquiry

For each type parameter declaredpast of atype definition there is a generic function with the type
parametename asts generic namerThis function takes as igngle non-optional argument any entity
of any rank ofthe relevant type and it delivers an integer valasdiltwhich is the value of theamed
type parameter.

TECHNICAL REPORT TR Data - WD © ISO/IEC ISO/IEC JTC1/SC22/WG5/N1173

If the parameter inquiredbout is akind parameter the inquiry function mappear ininitialization
expressions. If the parameternisn-kind parameter, the inquiry function mappear inspecification
expressions. In both thesases the same restricticist apply to theKIND andLEN functions also

apply.

In general such type parameter inquiry functions have the same scope and accessibility as the type to
which they relate. However, if the type is defined in a module the visibility of the type name and the type
parameter names can be controlled separately, although it woultdibeal for such separate control to

be exercised. The rule to be appliedhat if atype parametename is declared to h@ivate to a

module, neither the inquiry function tifatnamenor the type paramet&eywordarevisible in a using
program. Similarly if access to a type paramegmne is deniethecause of &SE statement with an
ONLYclause, neither the inquiry function nor tkeywordare accessibléll declarations of objects of

the associated type would have to use the positional formctoal parameter specificatidrinally if

such aname is renamed onWSE statement both the function and the type parametearesesally

renamed.

3.2.5Intrinsic assignment
Intrinsic assignment is to lefined only when theariable and expression have the same typeyged
parameter values.

3.2.6Argument association and overload rules

The rules for argument association shalthet dummyargument andctualargument must match in
type and type parameters, as for objects of intrinsic types. miatshing of parameters may be
achievedor nonkindparameters by theummyargument assuming its type parameter values from the
associated actual argument. Thied type parameters cannot be assum#tky must always be
explicitly and statically specifiedyut aswith intrinsic kind parameters these may be usedesolve
generic overloads.

10

TECHNICAL REPORT TR Data - WD © ISO/IEC ISO/IEC JTC1/SC22/WG5/N1173

4 Required editorial changes to ISO/IEC 1539-1 : 1996

The following subsections contain the editorial changekSO/IEC 1539-1 : 199@equired to include
these extensions in a revised definition of the international standard for the Fortran language.

Note, where new syntax rules are inserted theyamgbered with a decimal addition to the rule number
that precedes them. In thectual document these will have to Ipeoperly numbered in theevised
sequence.

Comments about each edit to the standard appear within braces {}.

4.1 Edits to implement ALLOCATABLE attribute extension
{Page and line number references in these edits are to the F95CD.}

4.4, first paragraph [37/39]
insert “, are allocatable arrays” before “or are pointers”.
{This makes allocatable array components iticmate components, just as pointer components.}

4.4.1, R42&omponent-attr-spec [38:31+]
add new production to ruleof ALLOCATABLE".
{Allow ALLOCATABLE attribute in component-def-strht

R427, sixth constraint [38:45]
change “the POINTER attribute is not”
to “neither the POINTER attribute nor the ALLOCATABLE attribute is”

{Do not require arexplicit-shape-spec-listhen ALLOCATABLE is specified.}

Two new constraints at end of list [39:1+]

Add:
“Constraint: If the ALLOCATABLE attribute is specified for a component, the component shall be a
deferred-shape array.
Constraint: POINTER and ALLOCATABLE shall not both appear in the samgonent-def-stmt
{Require ALLOCATABLE components to be deferred-shape arrays. Ensure POINTER and
ALLOCATABLE are exclusive.}

R428component-initialization [39:3+]
Add new constraint to end of list:
“Constraint: If the ALLOCATABLE attribute appears in tt@mponent-attr-spec-list
component-initializatiorshall not appear.”
{Forbid default initialization - allocatable array components are already effectively default-initialized to “not
currently allocated”.}

4.4.1, paragraph beginning “If the SEQUENCE statement” [39:22-23]

add “or allocatable arrays”
after both occurrences of “are not pointers”.

11

TECHNICAL REPORT TR Data - WD © ISO/IEC ISO/IEC JTC1/SC22/WG5/N1173

{Allocatable array components, like pointer components, stop a SEQUENCE type from being a standard
(numeric or character) sequence type.}

4.4.1, after Note 4.25, [41:45+]
add new example:
“Note 4.25.1
A derived type may have a component that is an allocatable array. For example:
TYPE STACK

INTEGER :: INDEX
INTEGER, ALLOCATABLE :: CONTENTS(:)
END TYPE STACK

For each variable of tyf&TACK the shape of compondBONTENTS determined by execution of
an ALLOCATE statement or evaluation of a structure constructor (of type STACK) that is associated with a
dummy argument.”
{Example needed.}

4.4.4, add new paragraphs to end of section: [45:15+]

“If a component of a derived type is an allocatable array, the corresponding constructor expression
shall evaluate to an array. The value of the constructor will have a component that has an allocation status of
currently allocated with contents given by the constructor expression.

Note 4.34.1:

The allocation status of the allocatable array component is available to the user program only if the
constructor is associated with a dummy argument. Also, when the constructor value is used in an
assignment, the corresponding component of the variable being defined shall already be allocated with
the same shape as the component in the constructor.

If a derived type contains an ultimate allocatable array component, its constructor shall not apgata-as a
stmt-constantin a DATA statement (5.2.9), as amitialization-expr in an entity-decl (5.1), or as an
initialization-exprin acomponent-initializatior{4.4.1).”

{Allow structure constructors for derived types with allocatable array components, and define their
semantics.}

5.1, eighth constraint, begins “The PARAMETER attribute shall not™: [48:12]

after “allocatable arrays,”

add “derived-type objects with an ultimate component that is an allocatable array or pointer,”
{forbid such objects from having the PARAMETER attribute - unnecessary since it is impossible to construct
a value for them as an initialization expression.}

5.1, third-last constraint, beginiitialization shall not appear”: [48:29]
after “an allocatable array”
add “a derived-type object containing an ultimate allocatable array component”
{forbid such types from havingiritialization. This is also unnecessary.}

5.1.2.4.3, second paragraph [54:41]

After “An allocatable array is”, change “a named array” to “an array”.
{Do not insist on allocatable arrays being simple names, i.e. allow components.}

12

TECHNICAL REPORT TR Data - WD © ISO/IEC ISO/IEC JTC1/SC22/WG5/N1173

5.1.2.4.3, third paragraph, begins “The ALLOCATABLE attribute may be”: [55:1-5]

Replace paragraph with:

“The ALLOCATABLE attribute may be specified in a type declaration statement, a component
definition statement, or an ALLOCATABLE statement (5.2.6). An array with the ALLOCATABLE
attribute shall be declared with deferred-shape-spec-lisin a type declaration statement, an
ALLOCATABLE statement, a component definition statement, a DIMENSION statement (5.2.5), or a
TARGET statement (5.2.8). The type and type parameters may be specified in a type declaration statement.”
5.2.10, R533-R537 sead constraint [61:10]

Change “or an allocatable array”

To “an allocatable array, or a variable of a derived type that has an allocatable array as an ultimate
component”

{Forbid initialization of allocatable arrays via the DATA statement.}

5.4, R545 first constraint [65:19]
Change “is a pointer”
To “is a pointer or allocatable array”

{Do not allow derived types containing allocatable arrays in NAMELIST.}

5.5.1, R548 first constraint [66:13]

After “an allocatable array,”

Insert “an object of a derived type containing an allocatable array as an ultimate component,
{Do not allow derived types containing allocatable arrays in EQUIVALENCE.}

5.5.2, R550 s@nd constraint [68:18]

After “allocatable array,”

Insert “an object of a derived type containing an allocatable array as an ultimate component,
{Do not allow derived types containing allocatable arrays in COMMON.}

6.1.2, R612-R613, fourth constraint [73:14]
After “shall not have the POINTER attribute”
Insert “or the ALLOCATABLE attribute”
{We do not want to have arrays of allocatable array elements, one from each allocatable array component.}

6.3.1.1, new paragraph at end of section [78:26+]

“If an object of derived type is created by an ALLOCATE statement, any ultimate allocatable
components have an allocation status of not currently allocated.”
{Specify allocation status of allocatable array components created by an ALLOCATE statement.}

6.3.1.2, new paragraph following the second paragraph [78:38+]

“An allocatable array that is a dummy argument of a procedure receives the allocation status of the
actual argument with which it is associatedon entry to the procedure. An allocatable array that is an ultimate
component of a dummy argument of a procedure receives the allocation status of the corresponding
component of the actual argument on entry to the procedure.

{Specify initial status of allocatable dummy arrays. The second sentence is probably unnecessary.}

13

TECHNICAL REPORT TR Data - WD © ISO/IEC ISO/IEC JTC1/SC22/WG5/N1173

6.3.1.2, third paragraph [78:39]

After “that is a local variable of a procedure”

Insert “or an ultimate component thereof, that is not a dummy argument (or a subobject thereof)”
{Exclude allocatable dummy arrays from the initial “not currently allocated” status, and also from automatic
deallocation.}

6.3.1.2, third paragraph [78:42]
After “If the array”
Add “is not the result variable of the procedure (or a subabject thereof) and”
{Exclude allocatable function results from automatic deallocation.}

6.3.3.1, second paragraph [80:36-39]
After “has the SAVE attribute,”
Add new list items and renumber rest of list:
(2) It is a dummy argument or an ultimate component thereof.
(3) It is a function result variable or an ultimate component thereof.
{Say that these cases retain their allocation status (and thus are excluded from automatic deallocation).}

6.3.3.1, before Note 6.17, [81:2+]

Add new paragraph:
“If a statement contains a reference to a function whose result is an allocatable array or a structure that
contains an ultimate allocatable array component, and the function reference is executed, an allocatable array
result and any allocated ultimate allocatable array components in the result returned by the function are
deallocated after execution of this statement.”
{Specify when a function result is deallocated. Perhaps this is not necessary.}

7.1.6.1. [92:7]
After “(3) A structure constructor where each component is an initialization expression”
Insert “and no component has the ALLOCATABLE attribute”

{Exclude structure constructors containing allocatable components from initialization expressions.}

7.5.1.5, before Note 7.46 [108:34+]

Add new note:
“Note 7.45.1: For an ultimate component that is an allocatable array, the component in the variable being
defined must already be allocated, and its shape must be the same as that of the corresponding component of
the expression..”
{Specify semantics to be used for assignment of derived types containing allocatable array components.}
{Note that this is quite a hardship, effectively requiring the user to overload assignment if he wants it to be
useful. There are no real reasons why these semantics should be required other than that of minimal change to
the document, minimal extension to the language, and minimal effort for the implementors. Alternative
semantics for this construct are described elsewhere.}

9.4.2, paragraph after Note 9.26 [147:6]

After “If a derived type ultimately contains a pointer component”
Insert “or an allocatable array component”

14

TECHNICAL REPORT TR Data - WD © ISO/IEC ISO/IEC JTC1/SC22/WG5/N1173

{Exclude objects of derived type containing ultimate array components from appearing in i/o statements.}

12.2.1.1 [190:14]
After “whether it is optional (5.1.2.6,5.2.2),”
Insert “whether it is an allocatable array (5.1.2.4.3),”

{ALLOCATABLE-ness of a dummy argument is a characteristic.}

12.2.2 [190:25]
After “whether it is a pointer”
Insert “or an allocatable array”
{ALLOCATABLE-ness of a function result is a characteristic.}
After “is not a pointer”
Insert “or an allocatable array”
{shape is not a characteristic for an allocatable array.}

12.3.1.1 item (2) [191:19]
After “assumed-shape array,”
Insert “an allocatable array,”

{Require explicit interface if there is an allocatable dummy array.}

12411 [200:27+]

Add new paragraph to end of section before Note 12.18
“If a dummy argument is an allocatable array the actual argument shall be an allocatable array and the types,
type parameters and ranks shall agree. It is permissible for the actual argument to have an allocation status of
not current allocated.”
{Requirements for arguments associated with an allocatable dummy array.}

12.4.1.6, item (1) of first paragraph [201:44]

Replace “No action that affects the allocation status may be taken.”

With “Action that affects the allocation status of the entity or any part thereof shall be taken through
the dummy argument.”
{Allow ALLOCATE/DEALLOCATE via the dummy whilst prohibiting it via any other alias.}

12.4.1.6, item (2) of first paragraph [203:29]
After “ If the pointer association status”
Insert “or the allocation status”
{After ALLOCATE/DEALLOCATE of the dummy, prohibit all other accesses to the actual argument.}

Annex A, entry allocatable array” [289:12-13]

Change “A named array”

To “An array”

Add new sentence to end of entry “An allocatable array may be a named arrastroctare
component

Annex A, entry titimate component [295:5-7]
After “is of intrinsic typé

15

TECHNICAL REPORT TR Data - WD © ISO/IEC ISO/IEC JTC1/SC22/WG5/N1173
Insert “, has the ALLOCATABLE attribute,”

After “does not have the POINTER attribute”
Add “or the ALLOCATABLE attribute”

16

TECHNICAL REPORT TR Data - WD © ISO/IEC ISO/IEC JTC1/SC22/WG5/N1173

4. 2Edits to implement parameterizedderived types

2.4.1.2 [15/19]
before "agreement” add "and type parameter"

4 [29/15]
replace "Intrinsic data-types are" by "Data types may be"

{{{NOTE: FROM HERE ON REFERENCES ARE TO F90 NOT F95CD}}}

4.3.1.1[27/8],
4.3.1.2 [28/25],
4.3.2.1 [30/21],
4.3.2.2 [32/11]
After "(13.13.51)" add "or by a type parameter value selector (4.4.1)"

4.3.1.3[29/30]

Add sentence "The kintype parameter of an approximatiomethod usedor the parts of a
complex valueare returned byhe intrinsic inquiry function KIND(13.13.51) or by dype parameter
value selector (4.4.1)."

4.4.1 [32/41]
Add line following
[param-spec-strht.

4.4.1 [33/3]
Add to end of R424 (Hummy-type-param-ligt)

Add new rule
R424.1 dummy-type-param is type-param-name

4.4.1 [33/16]
Add following
R425.1 param-spec-stmt is KIND [::] dummy-type-param-list

A dummytype parametethat isspecified in gparam-spec-stmiith a KIND attribute is &ind type
parameter. Any otherdummytype parameter is maonkind type parameter, and must not be used to
determine the values of actual kind type parameters of components.

4.4.1 [33/26]
Add constraints
Constraint: If thetype-specspecifies a value for kind typeparameter, this must be a scal#eger
initialization expression, possibigvolving asprimaries the names ohe or moredlummy
kind type parameters specified on tezived-type-stmt

17

TECHNICAL REPORT TR Data - WD © ISO/IEC ISO/IEC JTC1/SC22/WG5/N1173

Constraint: If thetype-specspecifies a value for aonkind type parameter, this must besaalar
integer constant expression, possinlolving asprimariesdummytype parametenames
specified on thelerived-type-stmt

4.4.1 [33/36 & 38]
After ")" add ", possiblyinvolving asprimariesdummytype parameter names specified on the
derived-type-stmit

4.4.1 [33/38+]

Add following paragraph
If the typehas type parameteractual values fothese must be specifiechen an entity othis type is
declared or constructed. These values may be used via the asshaiategitype parameter names to
specify array bounds and type parameter values for components of the type.

4.4.1 [34/34]
Add following paragraph
Examples of type definitions with type parameters are:

TYPE VECTOR(WP, ORDER)

KIND :: WP

REAL(KIND=WP) :: comp(1:ORDER)
ENDTYPE VECTOR

Objects of type VECTOR could be declared:

TYPE(VECTOR(WP=KIND(0.0),ORDER=3)) :: rotation
TYPE(VECTOR(WP=KIND(0.0D0),ORDER=100)) :: steepest

The scalarvariablerotation is a three-vector with each component represented by a defaullhe
scalarvectorsteepest is vector in al00 dimensionspace and eactomponent is represented by a
double precision real.

4.2.1Edits to implement inquiry function

4.4.1 [34/34]

continue adding the following text
For each type parameter specified there geaeric inquiry functiorthat haghe same name as the type
parameter. This function takes asdisgle nonoptional argument any entity of the deriyge, and it
returns as its resuthe integer valudor this named typgparameter that applies for its argument. For
example, WP(rotation) would return 4 on asystem where 4was the default realkind and
ORDER(steepest) would return 100. Note, the argument of such a type parameter inquiry function may
be of any rank.

4.4.4 [37/3]
Replace "value of" by "value of the"

4.4.4 [37/5]
Replace éxpr-list' by "expr-lis{,type-param-expr-li§t

18

TECHNICAL REPORT TR Data - WD © ISO/IEC ISO/IEC JTC1/SC22/WG5/N1173

Add constraint
Constraint: If thederived typehasone or moreype parameters, thigype-param-expr-listmust be
present with the same number of expressions. If the derivechagao parameters, the
type-param-expr-lisinust not be present.
Constraint: If the derived type has one or more kindtype parameters, eachorresponding
type-param-expmust be an initialization expression.

4.4.4 [37/10]

Before "A structure" add
The type parameter expressions, if present, provide values for the type parameters of thehgpesand
control the shapes and type parameters of the components.

4.4.4 [37/16]
Add the following paragph
An example of a constructor for a parameterized type is:

VECTOR(0.0,KIND(0.0D0),3)
This would construct a three-vector whose components were all zero and of double precision.

4.4.4 [37/5]
Replace éxpr-list' with "comp-expr-list
Add
R430.1 comp-expr is [component-nan¥gexpr

Constraint: Eacltomponent-namenust be thename of a component specified in the type definition
for the type-name.

Constraint: Thecomponent-name may be omitted only if ihasbeen omitted from each preceding
comp-expiin thecomp-expr-list

4.4.4 [37/7]

After "type." add sentence
The correspondenceetween expressioand component may be indicated by the componante
appearing explicitly in the form of keyword in a manner similar to procedure argument association
(12.4.1).

4.2.2 Constructor as generic function

4.4.4 [37/2]
After "corresponding” add "generic function reference that is a"

5.1 [39/24]
Replace type-naméby "type-namftype-selectdrt

19

TECHNICAL REPORT TR Data - WD © ISO/IEC ISO/IEC JTC1/SC22/WG5/N1173

5.1 [39/39]
Add constraint
Constraint: Theype-selectomust appear if the type is parameterized and must not appear otherwise.

5.1.1.7 [43/23]
Add rules and constraints
R509.1 type-selector is (type-param-selector-liyt

R509.2 type-param-selector s [type-param-nametype-param-expr

R509.3 type-param-expr is scalar-int-initialization-expr
or type-param-value

Constraint: There must be one and only type-param-selectacorresponding to each type parameter
of the type.

Constraint: Thetype-param-expmust be ascalar-int-initialization-exprif the corresponding type
parameter is a kind type parameter.

Constraint: Theype-param-name may be omitted if ilvas omitted fromall previoustype-param-
selectorin the list.

The type selector, if present, specifies valuesttertype parameters of the type dmehce the type
parameters and shapes of the components of the type.

{{{{Note for the editor: The rules associated with type-param-values, in particular automatic and
assumed type parameters, appear to be covered in the description for character length. A reordering
of this material might read better but | think the current text is actually correct even though it now
has extended effect. It is probably now in the wrong place in the chapter.}}}}

5.5.2.3[59/37]
After "type" add "and type parameters"

7.1.4.2[76/24]
After the second "The type" add "and type parameters."”

7.1.6.1[77/25 & 78/7]
After "KIND" add
", a derived-type kind type parameter inquiry function"

7.1.6.2[79/12]
After "KIND" add
", a derived-type type parameter inquiry function”

7.1.7 [80/29]
Add paragraph

20

TECHNICAL REPORT TR Data - WD © ISO/IEC ISO/IEC JTC1/SC22/WG5/N1173

The appearance of a structure constructor reqgthiesvaluation of the component expressions and
may require the evaluation of type parameter expressions. The type of an expressgioch i
structure constructor appealges notffect, and is nogffectedby, the evaluation of such expressions,
exceptthat evaluation of the kind typparameters may affect the resolution afemeric reference to a
defined operation or function and hence may affect the expression type.

7.5.1.2[89/28]
Replace "type," by "type and the same type parameter values,"

7.5.1.2[89/41]
Replace "type as" by "type and the same type parameter values as"

11.3.2 [158/16]

Add sentence
If a derived type typ@arameter is renamed, the looame is usetbr boththe type parametaenquiry
function and the type parameter keyword name used when specifying actual type parameter values.

[158/32+]

Add paragraph
Note that, if a type-name is inaccessible, the type parameter inquiry namesfar aimg,type may still
be accessible. However, such an inquiry function ardg be invoked with arargumentthat isalso
accessed by use association. If a type paramaitge is inaccessiblaut the type is accessible, objects
of this type must be declared using the positional specification of the redetaat parameter and no
reference may be made to the corresponding inquiry function by this name.

12.2.1.1 [166/6]
Replace "or character length" by " character length, or nonkind type parameter”

12.3.1.1 [167/2]
Replace "that" by "that assumes the value for a nonkind derived type parameter or that"

12.3.1.1 [167/4]
Add additional item to list and renumber list
(e) Aresult with a nonconstant type parameter value (derived type functions only)

12.4.1.1 [172/41]

Add sentence
The value of a type parameter of awctual argument of a derived typeust agree with the
corresponding value for the dummy argument.

14.1.2 [241/26]
Replace ", in" by " and type parameters, in"

21

