
ISO/IEC JTC1/SC22/WG5 N1174

International Standards Organization

Interoperability between Fortran and C

Technical Report de�ning extensions to
ISO/IEC 1539-1 : 1996

fDraft PDTR produced 08-Jan-96g

THIS PAGE TO BE REPLACED BY ISO CS

The most recent version of this working document may be obtained from
http://www.uni-karlsruhe.de/~SC22WG5/TR-C/

Comments may be sent to the Project Editor, hennecke@rz.uni-karlsruhe.de,
or to the email list sc22wg5-interop@ncsa.uiuc.edu.

08-Jan-96 Interoperability between Fortran and C i

Contents

Foreword iii

Introduction iv

1 General 1

1.1 Scope . 1
1.2 Organization of this Technical Report 1
1.3 Inclusions . 1
1.4 Exclusions . 2
1.5 Conformance . 2
1.6 Notation used in this Technical Report 2
1.7 Normative References . 3

2 Rationale 5

2.1 Justi�cation of the Technical Report 5
2.2 Rationale for name binding . 5
2.3 Rationale for datatype mapping . 5
2.4 Rationale for procedure calling conventions 5

3 Technical Speci�cation 7

3.1 Name binding . 7
3.1.1 The binding attribute . 7
3.1.2 The BIND statement . 9

3.2 Datatype mapping . 10
3.2.1 Matching C basic types with Fortran intrinsic types 11
3.2.2 Numerical limits of the C environment 13
3.2.3 Mapping the C array type to Fortran 14
3.2.4 Mapping the C structure type to Fortran 15
3.2.5 Mapping the C union type to Fortran 15
3.2.6 Handling of C pointer declarators 15
3.2.7 No support of typedef . 15
3.2.8 No support of <wchar.h> and <wctype.h> 15

3.3 Procedure calling conventions . 16

4 Editorial changes to ISO/IEC 1539-1 : 1996 17

A Possible extensions 21

A.1 Features not selected for the Technical Report 21
A.1.1 Access to global C data objects via COMMON 21
A.1.2 Name binding for Fortran global entities 22

ii Draft PDTR 08-Jan-96

A.1.3 Support of unrestricted C pointers 23
A.1.4 Support of the C union datatype 23

A.2 Features planned for C9X . 23
A.2.1 Complex C Extensions . 23
A.2.2 Big integers in C . 24

08-Jan-96 Interoperability between Fortran and C iii

Foreword

[This page to be provided by ISO CS]

iv Draft PDTR 08-Jan-96

Introduction

This Technical Report de�nes extensions to the programming language Fortran
to permit Fortran procedures to call C procedures. The current Fortran language
is de�ned by the International Standard ISO/IEC 1539-1:1996, and the current C
language is de�ned by the International Standard ISO/IEC 9899:1990.

This Technical Report has been prepared by ISO/IEC JTC1/SC22/WG5, the
technical Working Group for the Fortran language. It is the intention of ISO/IEC
JTC1/SC22/WG5 that the semantics and syntax described in this Technical Re-
port shall be incorporated in the next revision of IS 1539-1 (Fortran) exactly as
they are speci�ed here, unless experience in the implementation and use of this fea-
ture has identi�ed any errors which need to be corrected, or changes are required
in order to achieve proper integration, in which case every reasonable e�ort will be
made to minimise the impact of such integration changes on existing commercial
implementations.

These extensions are being de�ned by means of a Type 2 Technical Report in
the �rst instance to allow early publication of the proposed speci�cation. This
is to encourage early implementations of important extended functionalities in a
consistent manner, and will allow extensive testing of the design of the extended
functionality prior to its incorporation into the Fortran language by way of the
revision of IS 1539-1 (Fortran).

08-Jan-96 Interoperability between Fortran and C 1

Information Technology {

Programming Languages { Fortran

Technical Report:

Interoperability between Fortran and C

1 General

1.1 Scope

This Technical Report de�nes extensions to the programming language Fortran
to permit Fortran procedures to call C procedures. The current Fortran language
is de�ned by the International Standard ISO/IEC 1539-1:1996, and the current
C language is de�ned by the International Standard ISO/IEC 9899:1990. The
enhancements de�ned in this Technical Report cover three main areas. The �rst
area addresses the mapping of external names of C to Fortran names. The second
area provides mechanisms to map data types of C to Fortran data types, and the
third area addresses the calling conventions of inter-language procedure calls.

1.2 Organization of this Technical Report

This document is organized in four sections, covering general issues and the three
main areas mentioned above. Section 2 provides a rationale, which explains the
need to de�ne the features contained in this Technical Report in advance of the
next revision of IS 1539-1 (Fortran) and motivates the speci�c implementation of
these features. Section 3 contains a full description of the syntax and semantics of
the features de�ned in this Technical Report, and section 4 contains a complete
set of edits to ISO/IEC 1539-1:1996 that whould be necessary to incorporate these
features in the Fortran standard. The non-normative annex A outlines possible
extensions to the features speci�ed in this Technical Report.

1.3 Inclusions

This Technical Report speci�es:

1. The form that a Fortran interface to an external procedure de�ned by means
of C may take

2. The rules for interpreting the meaning of a call to an external procedure
de�ned by means of C

2 Draft PDTR 08-Jan-96

1.4 Exclusions

This Technical Report does not specify:

1. Mixed-Language Input and Output

2. Methods to access global C data objects from Fortran

3. Methods to automatically convert C header-�les to Fortran

4. Methods to access Fortran program units from C

1.5 Conformance

The language extensions de�ned in this Technical Report are implemented by
de�ning a number of �rst-class language constructs, and some intrinsic modules
which make various named constants accessible to the Fortran program.

A program is conforming to this Technical Report if it uses only those forms and
relationships described in IS 1539-1 or in this Technical Report, and if the program
has an interpretation according to these two documents.

Note 1.1

Because this Technical Report de�nes extensions to the base Fortran lan-
guage, a program conforming to this Technical Report is, in general, not a
standard-conforming Fortran 95 program.
However, since it is the intention of WG5 to incorporate the semantics
and syntax described in this document into the next revision of IS 1539-1,
it is likely that a program conforming to this Technical Report will be a
standard-conforming Fortran 2000 program.

A processor is conforming to this Technical Report if it is a standard-conforming
processor as de�ned in section 1.5 of IS 1539-1, and makes all �rst-class language
constructs and all intrinsic modules de�ned in this Technical Report intrinsically
available. Additionally, a USE statement for an intrinsic module ISO C shall be
supported, that module shall be interpreted as containing one USE statement
(without rename or only clauses) for each of the intrinsic modules de�ned in this
Technical Report.

Editor's Note 1

See the edit for subclause 2.5.7 for accessibility of entities de�ned in intrinsic
modules.

1.6 Notation used in this Technical Report

The notation used in this Technical Report is the notation de�ned in section 1.6
of IS 1539-1 (Fortran). However, deviations from these conventions are possible
in descriptions of C language elements. In such cases, the syntactic conventions
of IS 9899 (C) [actually, of ANSI X3.159-1989] are followed.

08-Jan-96 Interoperability between Fortran and C 3

Editor's Note 2

During the drafting process, this Technical Report also contains non-
normative \Editor's Notes" to spot out places in the document that need
further processing.

1.7 Normative References

The following standards contain provisions which, through reference in this text,
constitute provisions of this Technical Report. At the time of publication, the
editions indicated were valid. All standards are subject to revision, and parties
to agreements based on this Technical Report are encouraged to investigate the
possibility of applying the most recent editions of the standards indicated be-
low. Members of ISO and IEC maintain registers of currently valid International
Standards.

ISO/IEC 646 : 1991 Information Technology { ISO 7-bit coded

character set for information interchange

ISO/IEC 1539-1 : 1996 Information Technology {

Programming Languages { Fortran

ISO/IEC 9899 : 1990 Information Technology {

Programming Languages { C

Editor's Note 3

Currently, ISO/IEC 1539-1:1996means the Fortran 95 CD (WG5 document
N1122), and references to ISO/IEC 9899:1990 are actually references to
ANSI X3.159-1989.
Non-normative reference is made to the HPF Language Speci�cation v1.1
and the HPF calling C Interoperability Proposal v1.3.

4 Draft PDTR 08-Jan-96

08-Jan-96 Interoperability between Fortran and C 5

2 Rationale

2.1 Justi�cation of the Technical Report

From WG5 document N1131 (Request for subdivision):

\A signi�cant fraction of the standard (de-facto or de-jure) computing
environment comes with a C API. Examples include X-windows li-
braries, Motif, TCP/IP socket calls and interfaces to system routines.
The Fortran programmer is currently unable to exploit this wealth of
software in a portable manner. This causes many problems for those
who, for example, wish to front-end a powerful scienti�c visualisation
package, written in Fortran, with a sophisticated graphical user inter-
face (GUI). Due to the di�culties of providing such an interface in a
standard fashion, many users are turning to alternative languages for
such applications, even if Fortran is ideally suited to the "computa-
tional" component of the task.

It is therefore very important that a standard mechanism by which
C procedures can be called from Fortran procedures is de�ned as soon
as possible."

2.2 Rationale for name binding

2.3 Rationale for datatype mapping

2.4 Rationale for procedure calling conventions

Editor's Note 4

Rational material will be added when the technical speci�cation is com-
plete. Background material of features from Fortran and C can be
found in the \Notes" and \Rationale" sections of WG5 document N1147,
available from ftp://ftp.nag.co.uk/sc22wg5/. Email sc22wg5.920 con-
tains comments on N1131 (the request for subdivision), it is archived at
ftp://dkuug.dk/JTC1/SC22/WG5/920.

6 Draft PDTR 08-Jan-96

08-Jan-96 Interoperability between Fortran and C 7

3 Technical Speci�cation

This section describes the extensions to the base Fortran language that this Tech-
nical Report de�nes to facilitate interoperability with the ISO C language, or more
precisely to allow a Fortran program to call C procedures.

3.1 Name binding

Fortran provides two methods to declare an external procedure: the EXTERNAL
statement and attribute which declare the name of the external procedure, and
the interface-body in an interface-block which declares the name and interface of
the external procedure.

If the external procedure is de�ned by means other than Fortran, there are two
interoperability issues related to the name of the external procedure: The other
language may have di�erent rules for names, and the other processor may apply
di�erent transformations to generate a \binder name" from a name.

Note 3.1

Interoperability issues related to the interface of the external procedure are
discussed in section 3.3 of this Technical Report.

Note 3.2

Even if the external procedure is de�ned by means of Fortran, there may be
a portability problem: It is not uncommon for Fortran processors to support
di�erent transformation rules to generate a \binder name", like appending
or not appending an underscore character.

This section introduces a mechanism to specify a binding name (often abbrevi-
ated to binding) of a Fortran name, including features to addresses both of the
above problems.

3.1.1 The binding attribute

The binding name for a Fortran name can be established by a bind-spec spec-
i�cation. This binding attribute may be used in a bind-stmt (3.1.2), in a type
declaration statement for an external function, and in a function or subroutine
statement within an interface-body.

Editor's Note 5

The extension of name binding to COMMON, to procedure de�nition, and
to all other Fortran global entities have been moved to the appendix to keep
the Technical Report small.

8 Draft PDTR 08-Jan-96

This section de�nes the form and semantics of the bind-spec binding speci�cation,
which may appear as an attr-spec (R503) or pre�x-spec (R1219). The BIND
statement is introduced in section 3.1.2. It is a speci�cation-stmt (R214), the
statement form of the bind-spec.

Riop? bind-spec is BIND ([NAME=] name-string 2

2 [, [LANG=] lang-keyword])

Riop? name-string is scalar-default-char-init-expr

Riop? lang-keyword is FORTRAN
or C

The support of other lang-keywords than those speci�ed in Riop? is processor-
dependent. When no LANG clause is speci�ed, the binding names generated are
processor-dependent, as are those for processor-dependent lang-keywords. The
processor shall report the use of unsupported lang-keywords.

If lang-keyword is FORTRAN, the value of name-string shall follow the rules for
Fortran names. If lang-keyword is C, the value of name-string shall follow the
rules for C external names. In all other cases, the set of characters allowed in the
name-string is processor dependent.

Note 3.3

Note that although names of C entities are normally case-sensitive, a C
processor may ignore the distinction of alphabetic case of external names.
This limitation is implementation-de�ned.

A strictly conforming C program shall not rely on implementation-
de�ned behavior. For this reason, a Fortran processor that does not
support lowercase letters may still claim conformance to this Technical
Report because it will be able to generate bindings to all external names
that are allowed in a strictly conforming C program.

Interpretation of the bind-spec speci�cation:

Editor's Note 6

To be added. Basically, generate binder name from name-string using For-
tran transformation rules if LANG=FORTRAN and C transformation rules
when LANG=C. Mention as a Note that compiler switches may alter these
transformation rules. Blame the user if name conicts occur.
Decide if the binding is part of the characteristic of the procedure.
Give LANG=FORTRAN interpretation: NAME="xyz-name" is redundant
if the Fortran name is xyz-name, and a rename to xyz-name if the Fortran
name is abc-name.

08-Jan-96 Interoperability between Fortran and C 9

3.1.2 The BIND statement

A BIND statement speci�es the binding attribute for the name of an external
procedure.

Riop? bind-stmt is bind-spec [::] external-name

Constraint: The external-name shall be the name of an external procedure.

The interpretation of the bind-spec appearing in the BIND statement is given in
section 3.1.1. The BIND statement shall not be used to establish a name binding
for an external subprogram in whose speci�cation-part it appears.

Editor's Note 7

There is a similar ambiguity for the EXTERNAL statement in the current
Fortran standard, and in the Fortran 95 CD. I have submitted a defect item
to ensure that the external-name in an EXTERNAL statement shall not be
the name of an external subprogram in whose speci�cation-part it appears.

Note 3.4

Examples of name bindings to the C routine double MPI_Wtime(void)

that show the bind-spec in various places are:

USE iso_c, ONLY: c_dbl_kr

REAL(c_dbl_kr), EXTERNAL, BIND("MPI_Wtime",C) :: MPI_WTIME

REAL(c_dbl_kr) MPI_WTime

EXTERNAL MPI_Wtime

BIND("MPI_Wtime",C) MPI_WtImE

INTERFACE

FUNCTION MPI_WTIME ()

USE iso_c, ONLY: c_dbl_kr

REAL(c_dbl_kr), BIND("MPI_Wtime",C) :: MPI_WTIME

END FUNCTION MPI_WTIME

END INTERFACE

INTERFACE

BIND("MPI_Wtime",C) FUNCTION MPI_WTIME ()

USE iso_c, ONLY: c_dbl_kr

REAL(c_dbl_kr) MPI_WTIME

END FUNCTION MPI_WTIME

END INTERFACE

(The kind value c_dbl_kr is de�ned in section 3.2.)

10 Draft PDTR 08-Jan-96

Editor's Note 8

Relation to the HPFF proposal:
HPFF couples interoperability with C to the EXTRINSIC mechanism and
de�nes a new extrinsic-kind-keyword \C" for the extrinsic-pre�x (H601,
H602). This implicitly takes care of the transformation rules to generate
\binder names". To address the case-sensitivity of C names, an EXTER-
NAL NAME clause is proposed, which takes a character string argument
like the name-string. There are two ways to merge the two proposals:

� HPFF may adopt the solution de�ned here, by de�ning that in the ab-
sence of a LANG clause, the extrinsic-kind-keyword from the extrinsic-
pre�x is used as the lang-keyword.

� WG5 may adopt the HPFF solution. This implies that an explicit
interface is always required when calling C procedures, and that the
extrinsic-pre�x is included in the language. In this case, it is always
visible for which language the binding is to be generated and the
LANG clause in the bind-spec is not needed.

In both cases, I prefer bind-spec to HPFF's EXTERNAL NAME. (The
names of the keywords are irrelevant, but the detailed speci�cation of where
they are allowed to appear and how they are interpreted is not. I have not
seen speci�cations for EXTERNAL NAME yet...)

3.2 Datatype mapping

When a Fortran program accesses C code there are three interoperability issues
caused by the fact that the two languages have di�erent datatypes:

1. the argument association of data objects de�ned in Fortran with a C proce-
dure's dummy arguments,

2. the use of a result value of a C function in a Fortran expression, and

3. the access of global C data objects from within the Fortran program.

This section de�nes facilities to map C datatypes to Fortran datatypes, which is
a necessary prerequisite to address these issues.

Note 3.5

To specify an inter-language procedure call, the last item is irrelevant (ex-
cept for the possibility of side-e�ects of the C procedure), but a complete
interoperability facility should include it.

08-Jan-96 Interoperability between Fortran and C 11

Editor's Note 9

The third area, access of global C data, has been moved to the annex
because a processor's implementation of COMMON may cause problems
that are too time-consuming (for the development body, not the processor)
to deal with in this TR. However, WG5 may wish to include this area in the
TR, provided that the main goal (to facilitate portable procedure calling)
is achieved in time...

Both languages de�ne types that are intrinsically available, these are called in-

trinsic types in Fortran and basic types in C. Di�erent sorts of derived types can
be constructed from them. Section 3.2.1 speci�es a complete mapping of C basic

types to Fortran types, the remaining sections deal with C's derived types.

3.2.1 Matching C basic types with Fortran intrinsic types

The basic types of C are the character types, integer types and oating types.

Note 3.6

The C enum type is not speci�ed to be a basic type in the C standard (it is
an integral type, but not an integer type), but neither is it speci�ed to be a
derived type. This Technical Report treats enum as a basic type.

This Technical Report utilizes the kind type parameters of Fortran's intrinsic
types to establish a one-to-one matching of C's basic types to Fortran character,
integer and real types: An intrinsic module ISO C KINDS de�nes Fortran kind
type parameters for all C basic types. The processor shall provide access to the
named constants used in the model implementation below for all scoping units
that contain a module reference to ISO C KINDS, subject to the rules of use
association.

Editor's Note 10

Relation to the HPFF proposal:
HPFF uses the C TYPE clause of a MAP TO attribute (which is only de-
�ned within an EXTRINSIC(C) interface) to do datatype mapping. Apart
from keywords for (some of) the basic types, support of char * and void *

is also required. The semantics of C TYPE is not speci�ed exactly, but
compared to a C cast which means a real conversion takes place (except
if C TYPE=NO CHANGE, but this is the same as not specifying a map-
ping). There is no restriction that forbids, for example, a use of the form
CHARACTER, MAP TO(FLOAT) :: DUMMY ARG, but neither does the proposal
specify the semantics for such uses.
Implementation of MAP TO is much more di�cult than de�ning kind type
parameters. Unrestricted pointers are controversial. The caller may do
LAYOUT using the TRANSPOSE intrinsic (for rank-2 arrays).

12 Draft PDTR 08-Jan-96

MODULE iso_c_kinds ! F95 module for C89 <basic types>

IMPLICIT NONE

! KIND values for CHARACTER datatype (C <character types>):

!

INTEGER, PARAMETER :: c_char_kc = <c-kind-param>

INTEGER, PARAMETER :: c_schar_kc = <c-kind-param>

INTEGER, PARAMETER :: c_uchar_kc = <c-kind-param>

! KIND values for INTEGER datatype (C <integer types>, enum):

!

INTEGER, PARAMETER :: c_schar_ki = <c-kind-param>

INTEGER, PARAMETER :: c_uchar_ki = <c-kind-param>

INTEGER, PARAMETER :: c_shrt_ki = <c-kind-param>

INTEGER, PARAMETER :: c_usort_ki = <c-kind-param>

INTEGER, PARAMETER :: c_int_ki = <c-kind-param>

INTEGER, PARAMETER :: c_uint_ki = <c-kind-param>

INTEGER, PARAMETER :: c_long_ki = <c-kind-param>

INTEGER, PARAMETER :: c_ulong_ki = <c-kind-param>

!

INTEGER, PARAMETER :: c_enum_ki = <c-kind-param>

! KIND values for REAL datatype (C <floating types>):

!

INTEGER, PARAMETER :: c_flt_kr = <c-kind-param>

INTEGER, PARAMETER :: c_dbl_kr = <c-kind-param>

INTEGER, PARAMETER :: c_ldbl_kr = <c-kind-param>

END MODULE iso_c_kinds

If the processor supports a C datatype, the corresponding c-kind-param shall
be a kind-param supported by the processor, otherwise it shall be a negative
default integer constant. The value returned by C CHAR KC shall be the value
of C SCHAR KC or the value of C UCHAR KC. Which of these two is returned
is processor-dependent.

Note 3.7

In C, the question if char is implemented as signed char or
unsigned char is implementation-de�ned. Only the so-quali�ed types are
also integer types, the type char is not.

Editor's Note 11

If enums are not implemented as integers, return a negative c-kind-param. If
unsigned integers are too complicated, return a negative c-kind-param. If
they are allowed to pe passed through procedure interfaces but not allowed
to be de�ned by Fortran, return the c-kind-param of the corresponding
signed type and impose that restriction. If Fortran operations on unsigned

can be well-de�ned, do not impose that restriction.

08-Jan-96 Interoperability between Fortran and C 13

3.2.2 Numerical limits of the C environment

The ISO C standard requires that a conforming C implementation shall document
all its numerical limits in the headers <limits.h> and <float.h>. This Technical
Report speci�es two intrinsic modules that make these limits available in Fortran
through constants having the same names as those de�ned in these headers. Ex-
cept for the unsigned integer types, the values returned by a Fortran processor
shall conform to the requirements of the C standard if that C type is supported
by the Fortran processor.

Note 3.8

Fortran probably cannot represent the unsigned integer values.

MODULE iso_c_float_h ! F95 module for C89 <float.h>

USE iso_c_kinds

IMPLICIT NONE

INTEGER, PARAMETER :: FLT_ROUNDS = -1 ! indeterminable

INTEGER, PARAMETER :: FLT_RADIX = 2

INTEGER, PARAMETER :: FLT_MANT_DIG = <scalar-int-init-expr>

INTEGER, PARAMETER :: DBL_MANT_DIG = <scalar-int-init-expr>

INTEGER, PARAMETER :: LDBL_MANT_DIG = <scalar-int-init-expr>

INTEGER, PARAMETER :: FLT_DIG = 6

INTEGER, PARAMETER :: DBL_DIG = 10

INTEGER, PARAMETER :: LDBL_DIG = 10

INTEGER, PARAMETER :: FLT_MIN_EXP = <scalar-int-init-expr>

INTEGER, PARAMETER :: DBL_MIN_EXP = <scalar-int-init-expr>

INTEGER, PARAMETER :: LDBL_MIN_EXP = <scalar-int-init-expr>

INTEGER, PARAMETER :: FLT_MIN_10_EXP = -37

INTEGER, PARAMETER :: DBL_MIN_10_EXP = -37

INTEGER, PARAMETER :: LDBL_MIN_10_EXP = -37

INTEGER, PARAMETER :: FLT_MAX_EXP = <scalar-int-init-expr>

INTEGER, PARAMETER :: DBL_MAX_EXP = <scalar-int-init-expr>

INTEGER, PARAMETER :: LDBL_MAX_EXP = <scalar-int-init-expr>

INTEGER, PARAMETER :: FLT_MAX_10_EXP = 37

INTEGER, PARAMETER :: DBL_MAX_10_EXP = 37

INTEGER, PARAMETER :: LDBL_MAX_10_EXP = 37

REAL(c_flt_kr), PARAMETER :: FLT_MAX = 1.0E37_c_flt_kr

REAL(c_dbl_kr), PARAMETER :: DBL_MAX = 1.0E37_c_dbl_kr

REAL(c_ldbl_kr), PARAMETER :: LDBL_MAX = 1.0E37_c_ldbl_kr

REAL(c_flt_kr), PARAMETER :: FLT_EPSILON = 1.0E-5_c_flt_kr

REAL(c_dbl_kr), PARAMETER :: DBL_EPSILON = 1.0E-9_c_dbl_kr

REAL(c_ldbl_kr), PARAMETER :: LDBL_EPSILON = 1.0E-9_c_ldbl_kr

REAL(c_flt_kr), PARAMETER :: FLT_MIN = 1.0E-37_c_flt_kr

REAL(c_dbl_kr), PARAMETER :: DBL_MIN = 1.0E-37_c_dbl_kr

REAL(c_ldbl_kr), PARAMETER :: LDBL_MIN = 1.0E-37_c_ldbl_kr

END MODULE iso_c_float_h

14 Draft PDTR 08-Jan-96

Editor's Note 12

A processor may choose to de�ne other values of FLT_ROUNDS. However,
this may interfere with the rounding mode used by the C processor, and
also with the Technical Report on Floating Point Exceptions.

MODULE iso_c_limits_h ! F95 module for C89 <limits.h>

USE iso_c_kinds

IMPLICIT NONE

INTEGER, PARAMETER :: CHAR_BIT = 8

INTEGER(c_schar_ki), PARAMETER :: SCHAR_MIN = -127_c_schar_ki

INTEGER(c_schar_ki), PARAMETER :: SCHAR_MAX = 127_c_schar_ki

INTEGER(c_uchar_ki), PARAMETER :: UCHAR_MAX = 0

INTEGER, PARAMETER :: CHAR_MIN = <scalar-int-init-expr>

INTEGER, PARAMETER :: CHAR_MAX = <scalar-int-init-expr>

INTEGER, PARAMETER :: MB_LEN_MAX = 1

INTEGER(c_shrt_ki), PARAMETER :: SHRT_MIN = -32767_c_shrt_ki

INTEGER(c_shrt_ki), PARAMETER :: SHRT_MAX = 32767_c_shrt_ki

INTEGER(c_ushrt_ki), PARAMETER : USHRT_MAX = 0

INTEGER(c_int_ki), PARAMETER :: INT_MIN = -32767_c_int_ki

INTEGER(c_int_ki), PARAMETER :: INT_MAX = 32767_c_int_ki

INTEGER(c_uint_ki), PARAMETER :: UINT_MAX = 0

INTEGER(c_long_ki), PARAMETER :: LONG_MIN = -2147483647_c_long_ki

INTEGER(c_long_ki), PARAMETER :: LONG_MAX = 2147483647_c_long_ki

INTEGER(c_ulong_ki), PARAMETER :: ULONG_MAX = 0

END MODULE iso_c_limits_h

If a processor returns a negative value for a c-kind-param de�ned in ISO C KINDS,
it need not provide constants de�ned in ISO C LIMITS H and ISO C FLOAT H
that use that c-kind-param as a kind-param. In this case, it is processor-dependent
if the names of these constants are de�ned (with another kind type parameter
supported by the processor) or not.

3.2.3 Mapping the C array type to Fortran

Editor's Note 13

To be provided. Di�erent array element orders should not be converted
automatically. C assumes a linear memory model, Fortran does not. Does
the TR need to address this problem, or should it be in the responsibility
of the user that the Fortran array is contiguous?

08-Jan-96 Interoperability between Fortran and C 15

3.2.4 Mapping the C structure type to Fortran

Editor's Note 14

To be provided. A CSTRUCT clause as proposed in the X3J3 Liaison
Report [X3J3/95-293] is probably the best solution. This could appear as
an access-spec in the derived-type-stmt, or as an extension to the private-

sequence-stmt within the type de�nition body.

3.2.5 Mapping the C union type to Fortran

This Technical Report does not provide features to map C union types to Fortran.

Editor's Note 15

See annex A. The user may possibly specify such mappings \manually", if
a portable way to specify struct mappings is provided by the TR.

3.2.6 Handling of C pointer declarators

This Technical Report does not provide features to map general C pointers to For-
tran. For support of pointer declarators of procedure arguments, see section 3.3.

3.2.7 No support of typedef

The C standard allows a typedef-name, which must have been previously de�ned,
as a type-speci�er. This declaration looks similar to a TYPE(type-name) in a For-
tran type-spec, but the functionalities of these two speci�cations di�er markedly:

� A Fortran type-name is always the name of a Fortran derived type (corre-
sponding to a C struct), because it can only be de�ned in a derived-type-def.

� The de�nition of a C typedef-name by means of the storage-class-specifyer

typedef can be used to establish a new name for any C type, not only for
struct names.

Therefore, typedef cannot be supported without Fortran language extensions that
allow such aliasing of type names. Such extensions may have a large impact on
compilers, and are therfore not proposed in this Technical report.

Editor's Note 16

However, this feature is very important for the portability of calls to C
procedures because many system and application packages make use of
typedefs and do not document the ultimate types that are used. It should
become a Fortran 2000 requirement.

3.2.8 No support of <wchar.h> and <wctype.h>

This Technical Report does not specify mappings for the types de�ned in <wchar.h>
and <wctype.h>, which are standardized in Normative Addendum 1 to IS 9899.

16 Draft PDTR 08-Jan-96

3.3 Procedure calling conventions

Editor's Note 17

Still not developed.

Using something like the EXTRINSIC(C) mechanism of HPF seems
a good idea to deal with some of the calling conventions by a single
\switch". But instead of using LOC (or the operator form) on each call, it
should be tried to specify this in the interface (which is always explicit),
the compiler can then pass the address automatically. As a side e�ect, one
gets rid of the dangers of unrestricted pointer features on the Fortran side.
Some standard form of the \existing practice" %BYVAL and %BYREF
speci�cations may be established for this purpose, but restricted to within
interface blocks.

If the MAP TO speci�cation is not used (for datatype mapping, kind type
parameters seem to be more convenient, they also have the advantage
that they can be used for derived-type de�nitions that are needed for
structs), some similar method can be used to indicate that an argument
is a null-terminated C character string (in fact, actual implementations use
%BYREF this way for character strings).

Di�culties may arise because probably too many assumptions on
how a C procedure passes its arguments are made. Does the C standard
really specify that *a, a[], a[42], a[9][6], ... are all passed the same
way? Pointers to di�erent C types may all be di�erent, so passing a
pointer to a struct like the often-quoted Display is not guaranteed
to be the same as passing a pointer to void; although such a cast must
be possible, it need not be actually done in the course of the procedure call...

Restrictions on external procedures written in C can be quickly sum-
marized: they shall behave as if they were external subprograms. Every
violation of this principle is nonconforming.

Restrictions on the interface speci�cations allowed for external C
procedures depend on the details of proposed extensions, which are not
worked out yet. If the processor is aware of being in an interface for
a C procedure, the implementation of speci�cations like INTENT may
be automatically chosen to conform to the C conventions, still allowing
the Fortran processor to perform checks according to Fortran semantics.
Which kinds of array-specs are allowed is probably processor-dependent
(of both the Fortran and C processor), and mainly depends on how much
automatic conversion is put into the interface.

08-Jan-96 Interoperability between Fortran and C 17

4 Editorial changes to ISO/IEC 1539-1 : 1996

The following subsections contain the editorial changes to ISO/IEC 1539-1:1996
required to include the extensions de�ned in this Technical Report in a revised
version of the International Standard for the Fortran language.

Editor's Note 18

These are mostly edits for name binding, as in WG5 document N1147.

Page xiv

Line 23

Update the \Organization of this International Standard" subclause.

Page 1

Subclause 1.4

Lines 22 and 23: Exclusions (1) and (2) may be a�ected.

Page 2

Subclause 1.5

Conformance paragraph at line 37 may be a�ected.

Page 7

Subclause 1.9

At the end of the references, add

ISO/IEC 9899:1990, Information technology { Programming languages
{ C (also ANSI X3.159-1989, American National Standard for Infor-
mation Systems { Programming Language { C)

Page 10

Subclause 2.1

In
R214 speci�cation-stmt is access-stmt

or allocatable-stmt

: : :

add after line 32:

or bind-stmt

18 Draft PDTR 08-Jan-96

Page 18

Subclause 2.5.7

In line 40, change \procedures" to \procedures, modules". After line 41, add

Entities de�ned in an intrinsic module may be used without further
de�nition or speci�cation in those scoping units that contain a module
reference for that intrinsic module, subject to the rules of use associa-
tion (11.3.2).

Page 47

Subclause 5.1

In
R503 attr-spec is PARAMETER

or access-spec

: : :

add after line 27:

or bind-spec

Page 48

Subclause 5.1

In the Constraints list, add after line 20:

Constraint: If a bind-spec is speci�ed, the entity-decl-list shall be a single entity-
decl, and that entity shall be an external function.

Editor's Note 19

The two valid occurences are in conjunction with the EXTERNAL attribute,
and inside an interface-body. Perhaps \shall be an external function" is not
restrictive enough: does it allow a bind-spec on external procedure de�ni-
tion?

Page 52

Subclause 5.1.2

After section 5.1.2.2, insert a new section after line 37:

5.1.2.2a Binding attribute

The binding attribute speci�es the name binding of an exter-
nal function name. Name binding and related interoperability issues
are described in section ?. This attribute may also be declared via the
BIND statement (?.?.?).

08-Jan-96 Interoperability between Fortran and C 19

Page 57

Subclause 5.2

At line 17, change

This also applies to EXTERNAL and INTRINSIC statements.

to

This also applies to BIND, EXTERNAL and INTRINSIC statements.

Page 191

Subclause 12.3.2.1

\Procedure interface block" may be a�ected.

Page 205

Subclause 12.5.2.2

In
R1219 pre�x-spec is type-spec

or RECURSIVE
or PURE
or ELEMENTAL

add after line 33:

or bind-spec

Page 205

Subclause 12.5.2.2

In the Constraints list following R1219, add after line 37:

Constraint: A bind-spec shall only be speci�ed within an interface-body.

Page 210

Subclause 12.5.3

\Procedures de�ned by means other than Fortran" may be a�ected.

Page 271

Subclause 14.1

\Scope of names" may be a�ected.

Page 288

New clause 16

Introduce a new section 16 (Interoperability with ISO C)

Editor's Note 20

This is a big edit. The �nal form of section 3 of this TR should be that this
edit reads \take section 3, replace section heading with `Interoperability
with ISO C', replace all `TR' by `IS', renumber sectioning, rules and notes,
and include the result as section 16 into IS 1539-1."

20 Draft PDTR 08-Jan-96

Page 289

Annex A

Update the Glossary:
After 289:37, add the term binding with a de�nition.
After 294:3, add a line 294:3a \name binding (?.?): See binding."

Page 305

Annex C

C.9.2 \Procedures de�ned by means other than Fortran (12.5.3) " and C.9.3 \Pro-
cedure interfaces (12.3)" on pages 329+ may be a�ected.

Page 343

Annex D

Update the Index :-)

08-Jan-96 Interoperability between Fortran and C 21

A Possible extensions

There are two areas in which extensions to the basic features de�ned in the nor-
mative part of this Technical Report may be desirable:

� Some extensions might be desirable, but their addition to compilers will pos-
sibly have a large impact on the overall compiler maintenance process. These
features do not satisfy the criteria established in WG5 document N1152.
However, where their implementation in the Technical Report is easy, this
annex contains the corresponding speci�cations.

� The second area is the revision process of the C standard. The next revision
of ISO C, informally known as C9X, is scheduled to register the CD in
December 1996, with CD and DIS ballots in December 1997 and 1998. This
means there is no time to include features from C9X in this Technical report.
However, where drafts of important extensions to ISO C are su�ciently well
developed, this annex establishes corresponding Fortran extensions.

WG5 may wish to include some or all of the features speci�ed in this annex in a
revision of either IS 1539-1 or this Technical Report.

A.1 Features not selected for the Technical Report

A.1.1 Access to global C data objects via COMMON

To access extern data objects of C, two things are needed: the name binding
facility must be extended to Fortran common blocks, and the layout of the common
blocks must match the C datatype of the extern data object.

Editor's Note 21

Additionally, the Fortran processor is assumed to allocate common storage
statically, and without any \header" information before the Fortran data
objects in the common block.

The edit to implement name binding for common blocks is:

22 Draft PDTR 08-Jan-96

Page 68

Subclause 5.5.2

Change lines 12 to 14

R549 common-stmt is COMMON [/ [common-block-name] /] 2
2 common-block-object-list 2

2 [[,] / [common-block-name] / common-block-object-list] ...

to
R549 common-stmt is COMMON [/ [bind-spec] [common-block-name] /] 2

2 common-block-object-list 2

2 [[,] / [bind-spec] [common-block-name] / 2
2 common-block-object-list]...

Global data objects of C having a type for which this Technical report de�nes a
mapping to a Fortran datatype can then be accessed from Fortran as follows: A
common block is declared with a bind-spec matching the C name of the C data
object, and this common block holds a single Fortran data object with arbitrary
local name and the suitable Fortran datatype. There shall be no de�nition for
that common block in the Fortran program.

Editor's Note 22

Examples of C and Fortran data layout to be added...

A.1.2 Name binding for Fortran global entities

To facilitate interoperability of other languages with Fortran, the proposed name
binding mechanism could be provided for all Fortran names that are global entities,
not only for the declarations of external procedures.

Name binding for common blocks is speci�ed above. Edits to implement name
binding for main program, module, and block data program unit names are given
below. They have no explicit use within a Fortran program, but may be used by
other language processors to access these program units.

Editor's Note 23

Edits to allow name binding for the declaration and de�nition of all external
procedures and external subprograms are to be provided.

Page 183

Subclause 11.1

Change line 14

R1102 program-stmt is PROGRAM program-name

to

R1102 program-stmt is [bind-spec] PROGRAM program-name

08-Jan-96 Interoperability between Fortran and C 23

Page 184

Subclause 11.3

Change line 21

R1105 module-stmt is MODULE module-name

to

R1105 module-stmt is [bind-spec] MODULE module-name

Page 187

Subclause 11.4

Change line 3

R1111 block-data-stmt is BLOCK DATA block-data-name

to

R1111 block-data-stmt is [bind-spec] BLOCK DATA block-data-name

A.1.3 Support of unrestricted C pointers

Editor's Note 24

There were strong objections in WG5 against fully supporting the C pointer
mechanisms. More work is needed to de�ne what will be done here.

A.1.4 Support of the C union datatype

Editor's Note 25

There is currently no support for C union objects. One possible workaround
would be to de�ne a mapping of each component of a union to its Fortran
equivalent, and then equivalencing these. I don't know if this will work.
X3J3 proposed a CUNION statement for derived types, but this seems to
have a too big impact on compilers.

A.2 Features planned for C9X

There are at least two mayor extensions planned for C9X which have an immediate
impact on interoperability of Fortran and C. These are the introduction of complex
numbers, and a new method to parametrize integer datatypes.

A.2.1 Complex C Extensions

Editor's Note 26

The \Complex C Extensions" are de�ned in an X3J11 Techni-
cal Report with that title, dated March 26, 1995. Document
WG14/N470 X3J11/95-071 gives the C9X edits. Document WG14/N471
X3J11/95-072 de�nes <complex.h>. These documents are available at
ftp://ftp.dmk.com/dmk/sc22wg14/c9x/complex/.

24 Draft PDTR 08-Jan-96

A.2.2 Big integers in C

Editor's Note 27

There are several documents on the subject in the directory
ftp://ftp.dmk.com/dmk/sc22wg14/c9x/extended-integers/.

