
ISO/IEC JTC1/SC22/WG5 N1178

X3J3 / 96-069

International Standards Organization

Interoperability of Fortran and C

Technical Report de�ning extensions to
ISO/IEC 1539-1 : 1996

fDraft PDTR produced 24-Apr-96g

THIS PAGE TO BE REPLACED BY ISO CS

The most recent version of this working document may be obtained from

http://www.uni-karlsruhe.de/~SC22WG5/TR-C/

Comments may be sent to the Project Editor, hennecke@rz.uni-karlsruhe.de,

or to the email list sc22wg5-interop@ncsa.uiuc.edu.

24-Apr-96 Interoperability of Fortran and C i

Contents

Foreword iii

Introduction iv

1 General 1

1.1 Scope . 1

1.2 Organization of this Technical Report 1

1.3 Inclusions . 1

1.4 Exclusions . 2

1.5 Conformance . 2

1.6 Notation used in this Technical Report 2

1.7 Normative References . 3

2 Rationale 5

2.1 Justi�cation of the Technical Report 5

3 Technical Speci�cation 7

3.1 The BIND attribute . 7

3.2 Datatype mapping . 8

3.2.1 Matching C basic types with Fortran intrinsic types 9

3.2.2 Numerical limits of the C environment 11

3.2.3 Mapping C array types to Fortran 12

3.2.4 Mapping C structure types to Fortran 13

3.2.5 Mapping C union types to Fortran 14

3.2.6 Handling of C pointer declarators 14

3.2.7 Mapping C character strings to Fortran 15

3.2.8 Mapping of C typedef names 16

3.2.9 No support of <wchar.h> and <wctype.h> 17

3.3 Procedure calling conventions . 18

3.3.1 Procedure interface for BIND(C) binding 18

3.3.2 Procedure interface for BIND(C STDARG) binding 19

3.4 Access to global C data objects . 20

4 Editorial changes to ISO/IEC 1539-1 : 1996 21

ii Draft PDTR 24-Apr-96

24-Apr-96 Interoperability of Fortran and C iii

Foreword

[This page to be provided by ISO CS]

iv Draft PDTR 24-Apr-96

Introduction

This Technical Report de�nes extensions to the programming language Fortran

to permit Fortran programs to call C procedures and access C data objects with

external linkage. The current Fortran language is de�ned by the International

Standard ISO/IEC 1539-1:1996, and the current C language is de�ned by the

International Standard ISO/IEC 9899:1990.

This Technical Report has been prepared by ISO/IEC JTC1/SC22/WG5, the

technical Working Group for the Fortran language. It is the intention of ISO/IEC

JTC1/SC22/WG5 that the semantics and syntax described in this Technical Re-

port shall be incorporated in the next revision of IS 1539-1 (Fortran) exactly as

they are speci�ed here, unless experience in the implementation and use of this fea-

ture has identi�ed any errors which need to be corrected, or changes are required

in order to achieve proper integration, in which case every reasonable e�ort will be

made to minimise the impact of such integration changes on existing commercial

implementations.

These extensions are being de�ned by means of a Type 2 Technical Report in

the �rst instance to allow early publication of the proposed speci�cation. This

is to encourage early implementations of important extended functionalities in a

consistent manner, and will allow extensive testing of the design of the extended

functionality prior to its incorporation into the Fortran language by way of the

revision of IS 1539-1 (Fortran).

24-Apr-96 Interoperability of Fortran and C 1

Information Technology {

Programming Languages { Fortran

Technical Report:

Interoperability of Fortran and C

1 General

1.1 Scope

This Technical Report de�nes extensions to the programming language Fortran

to permit Fortran programs to call C procedures and access C data objects with

external linkage. The current Fortran language is de�ned by the International

Standard ISO/IEC 1539-1:1996, and the current C language is de�ned by the

International Standard ISO/IEC 9899:1990. The enhancements de�ned in this

Technical Report cover three main areas. The �rst area provides general mecha-

nisms to map data types of C to Fortran. The second area addresses the calling

conventions for a C procedure referenced in a Fortran program, and the third area

provides access to global C data objects from within Fortran.

1.2 Organization of this Technical Report

This document is organized in four sections, covering general issues and the main

areas mentioned above. Section 2 provides a rationale, which explains the need

to de�ne the features contained in this Technical Report in advance of the next

revision of IS 1539-1 (Fortran) and motivates the speci�c implementation of these

features. Section 3 contains a full description of the syntax and semantics of the

features de�ned in this Technical Report, and section 4 contains a complete set

of edits to ISO/IEC 1539-1:1996 that would be necessary to incorporate these

features in the Fortran standard.

1.3 Inclusions

This Technical Report speci�es:

1. The form that a Fortran interface to an external procedure de�ned by means

of C may take

2. The form that a Fortran speci�cation for a data object de�ned by means of

C may take

3. The rules for interpreting the meaning of a reference to an external procedure

or data object de�ned by means of C

2 Draft PDTR 24-Apr-96

1.4 Exclusions

This Technical Report does not specify:

1. Mixed-Language Input and Output

2. Methods to automatically convert C headers to Fortran

3. Methods to access Fortran program units from C

1.5 Conformance

The language extensions de�ned in this Technical Report are implemented by

de�ning a number of �rst-class language constructs, and some intrinsic modules

which make various entities accessible to the Fortran program.

A program is conforming to this Technical Report if it uses only those forms and

relationships described in IS 1539-1 or in this Technical Report, and if the program

has an interpretation according to these two documents.

Note 1.1

Because this Technical Report de�nes extensions to the base Fortran lan-

guage, a program conforming to this Technical Report is, in general, not a

standard-conforming Fortran 95 program.

However, since it is the intention of WG5 to incorporate the semantics

and syntax described in this document into the next revision of IS 1539-1,

it is likely that a program conforming to this Technical Report will be a

standard-conforming Fortran 2000 program.

A processor is conforming to this Technical Report if it is a standard-conforming

processor as de�ned in section 1.5 of IS 1539-1, and makes all �rst-class language

constructs and all intrinsic modules de�ned in this Technical Report intrinsically

available. Additionally, a USE statement for an intrinsic module ISO C shall be

supported, that module shall be interpreted as containing one USE statement

(without rename or only clauses) for each of the intrinsic modules de�ned in this

Technical Report.

Note 1.2

See the edit for subclause 2.5.7 for accessibility of entities de�ned in intrinsic

modules.

1.6 Notation used in this Technical Report

The notation used in this Technical Report is the notation de�ned in section 1.6

of IS 1539-1 (Fortran). However, deviations from these conventions are possible

in descriptions of C language elements. In such cases, the syntactic conventions

of IS 9899 (C) [actually, of ANSI X3.159-1989] are followed.

24-Apr-96 Interoperability of Fortran and C 3

Editor's Note 1

During the drafting process, this Technical Report also contains non-

normative \Editor's Notes" to spot out places in the document that need

further processing.

1.7 Normative References

The following standards contain provisions which, through reference in this text,

constitute provisions of this Technical Report. At the time of publication, the

editions indicated were valid. All standards are subject to revision, and parties

to agreements based on this Technical Report are encouraged to investigate the

possibility of applying the most recent editions of the standards indicated be-

low. Members of ISO and IEC maintain registers of currently valid International

Standards.

ISO/IEC 646 : 1991 Information Technology { ISO 7-bit coded

character set for information interchange

ISO/IEC 1539-1 : 1996 Information Technology {

Programming Languages { Fortran

ISO/IEC 9899 : 1990 Information Technology {

Programming Languages { C

Editor's Note 2

Currently, ISO/IEC 1539-1:1996 means the proposed Fortran 95 DIS (WG5

document N1176), and references to ISO/IEC 9899:1990 are actually refer-

ences to ANSI X3.159-1989.

Non-normative reference is made to the draft C++ standard (WG21 doc-

ument N0687), the HPF Language Speci�cation v1.1, and the HPF calling

C Interoperability Proposal v1.3.

4 Draft PDTR 24-Apr-96

24-Apr-96 Interoperability of Fortran and C 5

2 Rationale

2.1 Justi�cation of the Technical Report

From WG5 document N1131 (Request for subdivision):

\A signi�cant fraction of the standard (de-facto or de-jure) computing

environment comes with a C API. Examples include X-windows li-

braries, Motif, TCP/IP socket calls and interfaces to system routines.

The Fortran programmer is currently unable to exploit this wealth of

software in a portable manner. This causes many problems for those

who, for example, wish to front-end a powerful scienti�c visualisation

package, written in Fortran, with a sophisticated graphical user inter-

face (GUI). Due to the di�culties of providing such an interface in a

standard fashion, many users are turning to alternative languages for

such applications, even if Fortran is ideally suited to the "computa-

tional" component of the task.

It is therefore very important that a standard mechanism by which

C procedures can be called from Fortran procedures is de�ned as soon

as possible."

Editor's Note 3

Rational material will be added when the technical speci�cation is com-

plete. Background material of features from Fortran and C can be

found in the \Notes" and \Rationale" sections of WG5 document N1147,

available from ftp://ftp.nag.co.uk/sc22wg5/. Email sc22wg5.920 con-

tains comments on N1131 (the request for subdivision), it is archived at

ftp://dkuug.dk/JTC1/SC22/WG5/920.

6 Draft PDTR 24-Apr-96

24-Apr-96 Interoperability of Fortran and C 7

3 Technical Speci�cation

This section describes the extensions to the base Fortran language that this Tech-

nical Report de�nes to facilitate interoperability with the ISO C language, more

precisely to allow a Fortran program to reference C procedures and data objects

that have external linkage.

3.1 The BIND attribute

The Fortran standard does not specify the mechanisms by which programs are

transformed for use on computing systems (1.4). Additionally, a reference in a

Fortran program to a procedure de�ned by means other than Fortran is normally

made as though it were de�ned by an external subprogram (12.5.3).

This Technical Report de�nes a BIND attribute, which may be employed to

adapt the behavior of the Fortran processor to the behavior of another processor,

possibly for another language, in a portable way. The corresponding bind-spec

speci�cation may be used in all places where it is necessary to inform the Fortran

processor that a change of processor dependent and language dependent conven-

tions is required for the interoperability of Fortran and C. This section speci�es

the general form of a bind-spec speci�cation.

Riop? bind-spec is BIND ([LANG=] lang-keyword 2

2 [, [NAME=] name-string])

Riop? lang-keyword is FORTRAN

or C

or C STDARG

Riop? name-string is scalar-default-char-init-expr

Constraint: If name-string is present and lang-keyword is FORTRAN, the value

of name-string shall be a valid Fortran name.

Constraint: If name-string is present and lang-keyword is C or C STDARG,

the value of name-string shall be a valid C external name.

The processor shall support at least those lang-keywords listed in Riop?, support

of other lang-keywords is processor dependent. The processor shall report the use

of unsupported lang-keywords.

BIND(FORTRAN) speci�es the default behavior of the Fortran processor. The

behavior for lang-keywords C and C STDARG is de�ned in this Technical Report.

The behavior for lang-keywords other than those listed in Riop? is processor

dependent.

8 Draft PDTR 24-Apr-96

Note 3.1

Selecting the programming language C with the lang-keyword alone does

not specify the implementation-de�ned and implementation-dependent be-

havior of the C processor, and specifying such information would in fact

make the program unportable. The Fortran processor should be accompa-

nied with documentation that states which C processor's conventions are

followed.

If multiple C processors are supported, selection of a speci�c C processor

should occur outside the Fortran program (e.g. by command-line arguments)

rather than by introducing new lang-keywords for nondefault C processors.

Note 3.2

Note that although names of C entities are normally case-sensitive, a C

processor may ignore the distinction of alphabetic case of external names.

This limitation is implementation-de�ned.

A strictly conforming C program shall not rely on implementation-de�ned

behavior, and a Fortran processor that does not support lowercase letters

still conforms to this Technical Report because it will be able to generate

bindings to all external names that are allowed in a strictly conforming C

program.

Editor's Note 4

C++ has a linkage-speci�cation (7.5) which is very similar to the bind-

spec, and requires the processor to support "C" and "C++". However, C++

does not need a NAME= clause because C and C++ have the same (case-

sensitive) rules for names.

The bind-spec may appear in a derived-type-def, as a pre�x-spec or attr-spec within

an interface block for an external procedure, or as an attr-spec in the speci�cation

of a data object in the speci�cation-part of a module Since Fortran also provides

speci�cation statements for attributes, the bind-attr for external procedures and

data entities may alternatively be speci�ed by a BIND statement.

Riop? bind-stmt is bind-spec [::] extern-name

Constraint: A bind-stmt may only be speci�ed in an interface-body or in the

speci�cation-part of a module.

The following sections describe the speci�c applications of the BIND attribute.

3.2 Datatype mapping

When a Fortran program accesses C code there are three interoperability issues

caused by the fact that the two languages have di�erent datatypes:

1. the argument association of data objects de�ned in Fortran with a C proce-

dure's dummy arguments,

24-Apr-96 Interoperability of Fortran and C 9

2. the use of a result value of a C function in a Fortran expression, and

3. the access of global C data objects from within the Fortran program.

This section de�nes facilities to map C datatypes to Fortran datatypes, which is

a necessary prerequisite to address these issues in sections 3.3 and 3.4.

Note 3.3

To specify an inter-language procedure call, the last item is irrelevant (ex-

cept for the possibility of side-e�ects of the C procedure), but a complete

interoperability facility should include it.

Both languages de�ne types that are intrinsically available, these are called intrin-

sic types in Fortran and basic types in C. Di�erent sorts of derived types can be

constructed from them. Section 3.2.1 speci�es a complete mapping of C basic types

to Fortran types, access to the corresponding environmental limits is speci�ed in

section 3.2.2.

The remaining sections deal with some of C's derived types. The mechanisms de-

�ned in this Technical Report do not specify mappings for all possible C datatypes.

Derived type generation in C can be recursively applied, the resulting types do

not necessarily have a general approximation in Fortran types.

3.2.1 Matching C basic types with Fortran intrinsic types

The basic types of C are the character types, integer types and
oating types.

Note 3.4

The C enum type is not speci�ed to be a basic type in the C standard (it is

an integral type, but not an integer type), but neither is it speci�ed to be a

derived type. This Technical Report treats enum as a basic type.

This Technical Report utilizes the kind type parameters of Fortran's intrinsic

types to establish a one-to-one matching of C's basic types to Fortran character,

integer and real types: An intrinsic module ISO C KINDS de�nes Fortran kind

type parameters for all C basic types. The processor shall provide access to the

named constants used in the model implementation below for all scoping units

that contain a module reference to ISO C KINDS, subject to the rules of use

association.

10 Draft PDTR 24-Apr-96

MODULE iso_c_kinds ! F95 module for C89 <basic types>

IMPLICIT NONE

! KIND values for CHARACTER datatype (C <character types>):

!

INTEGER, PARAMETER :: c_char_kc = <c-kind-param>

INTEGER, PARAMETER :: c_schar_kc = <c-kind-param>

INTEGER, PARAMETER :: c_uchar_kc = <c-kind-param>

! KIND values for INTEGER datatype (C <integer types>, enum):

!

INTEGER, PARAMETER :: c_schar_ki = <c-kind-param>

INTEGER, PARAMETER :: c_uchar_ki = <c-kind-param>

INTEGER, PARAMETER :: c_shrt_ki = <c-kind-param>

INTEGER, PARAMETER :: c_ushrt_ki = <c-kind-param>

INTEGER, PARAMETER :: c_int_ki = <c-kind-param>

INTEGER, PARAMETER :: c_uint_ki = <c-kind-param>

INTEGER, PARAMETER :: c_long_ki = <c-kind-param>

INTEGER, PARAMETER :: c_ulong_ki = <c-kind-param>

!

INTEGER, PARAMETER :: c_enum_ki = <c-kind-param>

! KIND values for REAL datatype (C <floating types>):

!

INTEGER, PARAMETER :: c_flt_kr = <c-kind-param>

INTEGER, PARAMETER :: c_dbl_kr = <c-kind-param>

INTEGER, PARAMETER :: c_ldbl_kr = <c-kind-param>

END MODULE iso_c_kinds

If the processor supports a C datatype, the corresponding c-kind-param shall be

a kind-param supported by the processor, otherwise it shall be a negative default

integer constant. The value of C CHAR KC shall be the value of C SCHAR KC

or the value of C UCHAR KC, this is processor-dependent.

Note 3.5

In C, the question if char is implemented as signed char or

unsigned char is implementation-de�ned. Only the so-quali�ed types are

also integer types, the type char is not.

Editor's Note 5

If enums are not implemented as integers, return a negative c-kind-param. If

unsigned integers are too complicated, return a negative c-kind-param. If

they are allowed to be passed through procedure interfaces but not allowed

to be de�ned by Fortran, return the c-kind-param of the corresponding

signed type and impose that restriction. If Fortran operations on unsigned

can be well-de�ned, do not impose that restriction.

24-Apr-96 Interoperability of Fortran and C 11

3.2.2 Numerical limits of the C environment

The ISO C standard requires that a conforming C implementation shall document

all its numerical limits in the headers <limits.h> and <float.h>. This Technical

Report speci�es two intrinsic modules that make these limits available in Fortran

through constants having the same names as those de�ned in these headers. Ex-

cept for the unsigned integer types, the values returned by a Fortran processor

shall conform to the requirements of the C standard if that C type is supported

by the Fortran processor.

Note 3.6

Fortran probably cannot represent the unsigned integer values.

MODULE iso_c_float_h ! F95 module for C89 <float.h>

USE iso_c_kinds

IMPLICIT NONE

INTEGER, PARAMETER :: FLT_ROUNDS = -1 ! indeterminable

INTEGER, PARAMETER :: FLT_RADIX = RADIX (0.0_c_flt_kr)

INTEGER, PARAMETER :: FLT_MANT_DIG = DIGITS (0.0_c_flt_kr)

INTEGER, PARAMETER :: DBL_MANT_DIG = DIGITS (0.0_c_dbl_kr)

INTEGER, PARAMETER :: LDBL_MANT_DIG = DIGITS (0.0_c_ldbl_kr)

INTEGER, PARAMETER :: FLT_DIG = PRECISION (0.0_c_flt_kr)

INTEGER, PARAMETER :: DBL_DIG = PRECISION (0.0_c_dbl_kr)

INTEGER, PARAMETER :: LDBL_DIG = PRECISION (0.0_c_ldbl_kr)

INTEGER, PARAMETER :: FLT_MIN_EXP = MINEXPONENT(0.0_c_flt_kr)

INTEGER, PARAMETER :: DBL_MIN_EXP = MINEXPONENT(0.0_c_dbl_kr)

INTEGER, PARAMETER :: LDBL_MIN_EXP = MINEXPONENT(0.0_c_ldbl_kr)

INTEGER, PARAMETER :: FLT_MIN_10_EXP = -37

INTEGER, PARAMETER :: DBL_MIN_10_EXP = -37

INTEGER, PARAMETER :: LDBL_MIN_10_EXP = -37

INTEGER, PARAMETER :: FLT_MAX_EXP = MAXEXPONENT(0.0_c_flt_kr)

INTEGER, PARAMETER :: DBL_MAX_EXP = MAXEXPONENT(0.0_c_dbl_kr)

INTEGER, PARAMETER :: LDBL_MAX_EXP = MAXEXPONENT(0.0_c_ldbl_kr)

INTEGER, PARAMETER :: FLT_MAX_10_EXP = 37

INTEGER, PARAMETER :: DBL_MAX_10_EXP = 37

INTEGER, PARAMETER :: LDBL_MAX_10_EXP = 37

REAL(c_flt_kr), PARAMETER :: FLT_MAX = HUGE (0.0_c_flt_kr)

REAL(c_dbl_kr), PARAMETER :: DBL_MAX = HUGE (0.0_c_dbl_kr)

REAL(c_ldbl_kr), PARAMETER :: LDBL_MAX = HUGE (0.0_c_ldbl_kr)

REAL(c_flt_kr), PARAMETER :: FLT_EPSILON = EPSILON(0.0_c_flt_kr)

REAL(c_dbl_kr), PARAMETER :: DBL_EPSILON = EPSILON(0.0_c_dbl_kr)

REAL(c_ldbl_kr), PARAMETER :: LDBL_EPSILON = EPSILON(0.0_c_ldbl_kr)

REAL(c_flt_kr), PARAMETER :: FLT_MIN = TINY (0.0_c_flt_kr)

REAL(c_dbl_kr), PARAMETER :: DBL_MIN = TINY (0.0_c_dbl_kr)

REAL(c_ldbl_kr), PARAMETER :: LDBL_MIN = TINY (0.0_c_ldbl_kr)

END MODULE iso_c_float_h

12 Draft PDTR 24-Apr-96

Editor's Note 6

C's and Fortran's
oating point number models are identical. I have not yet

tracked down the relation of RANGE and *_MIN_10_EXP / *_MAX_10_EXP.

MODULE iso_c_limits_h ! F95 module for C89 <limits.h>

USE iso_c_kinds

IMPLICIT NONE

INTEGER, PARAMETER :: CHAR_BIT = 8

INTEGER(c_schar_ki), PARAMETER :: SCHAR_MIN = -127_c_schar_ki

INTEGER(c_schar_ki), PARAMETER :: SCHAR_MAX = 127_c_schar_ki

INTEGER(c_uchar_ki), PARAMETER :: UCHAR_MAX = 0

INTEGER, PARAMETER :: CHAR_MIN = <scalar-int-init-expr>

INTEGER, PARAMETER :: CHAR_MAX = <scalar-int-init-expr>

INTEGER, PARAMETER :: MB_LEN_MAX = 1

INTEGER(c_shrt_ki), PARAMETER :: SHRT_MIN = -32767_c_shrt_ki

INTEGER(c_shrt_ki), PARAMETER :: SHRT_MAX = 32767_c_shrt_ki

INTEGER(c_ushrt_ki), PARAMETER : USHRT_MAX = 0

INTEGER(c_int_ki), PARAMETER :: INT_MIN = -32767_c_int_ki

INTEGER(c_int_ki), PARAMETER :: INT_MAX = 32767_c_int_ki

INTEGER(c_uint_ki), PARAMETER :: UINT_MAX = 0

INTEGER(c_long_ki), PARAMETER :: LONG_MIN = -2147483647_c_long_ki

INTEGER(c_long_ki), PARAMETER :: LONG_MAX = 2147483647_c_long_ki

INTEGER(c_ulong_ki), PARAMETER :: ULONG_MAX = 0

END MODULE iso_c_limits_h

If a c-kind-param de�ned in ISO C KINDS has a negative value, the processor need

not provide constants de�ned in ISO C LIMITS H and ISO C FLOAT H which

use that c-kind-param as a kind-param. In this case, it is processor-dependent

whether the names of such constants are accessible (with another kind type pa-

rameter supported by the processor) or not.

3.2.3 Mapping C array types to Fortran

An array type in C with an element type for which this Technical Report estab-

lishes a corresponding Fortran type can be mapped to Fortran by specifying the

DIMENSION attribute for that type. If the entity concerned is a dummy argu-

ment, the array-spec shall be an explicit-shape-spec-list or an assumed-size-spec.

Otherwise, it shall be an explicit-shape-spec-list.

24-Apr-96 Interoperability of Fortran and C 13

Note 3.7

This rule includes the common case of a C array of unknown size which is

initialized: the declaration

int x[] = f 1, 3, 5 g;

de�nes x as a one-dimensional array of initially incomplete type, but

at the end of the initializer-list it has no longer incomplete type but a size

of three elements.

Note 3.8

C guarantees a minimum of 12 array (or pointer or function) declarators,

whereas Fortran only supports 7 array dimensions. However, this limit will

be seldom reached for actual C code. For dummy arguments it can be

circumvented by the use of an assumed-size-spec.

Because the array element ordering (6.2.2.2) of Fortran arrays is reverse to the

array subscripting of C arrays, the extents entering the Fortran array-spec shall

be speci�ed in the reverse order of the corresponding C array declarators.

Note 3.9

For one-dimensional arrays there is no di�erence between Fortran and C. If

required, conversion of two-dimensional arrays can be performed by the in-

trinsic procedure TRANSPOSE (13.14.111). For higher-dimensional arrays

this transposition must be done by the user.

C and Fortran have di�erent concepts of character strings, so C character strings

shall not be mapped to a CHARACTER array using the DIMENSION attribute.

Section 3.2.7 de�nes the mapping of C character strings to Fortran.

3.2.4 Mapping C structure types to Fortran

A structure type in C with member objects which all have a type for which this

Technical Report establishes a corresponding Fortran type can be mapped to

Fortran by using a derived type de�nition. To ensure that the memory layout

of the Fortran derived type matches the layout of the C struct, the BIND(C)

attribute shall be speci�ed in the derived-type-def.

Note 3.10

The type-name need not correspond to the tag of the C struct because

both are local to their respective scoping units. Consequently, a NAME=

clause in a BIND(C) speci�cation within a derived type de�nition is not

allowed.

The order of the component-def-stmts shall be identical to the order of the corre-

sponding struct-declaration-list. A component-initialization shall not be speci�ed

for derived types that have the BIND(C) attribute.

14 Draft PDTR 24-Apr-96

Note 3.11

The POINTER component-attr-spec is not allowed because there is no C

type whose corresponding Fortran type has the POINTER attribute.

Similarly, C structs that include bit-�elds cannot be mapped to Fortran

because this Technical Report does not specify mappings for bit-�elds. The

behavior for a Fortran derived type in which bit-�eld member objects are

mapped to objects of integer type is processor dependent, because the mem-

ory layout (alignment, padding) of such derived types may di�er from the

layout of the original C struct.

3.2.5 Mapping C union types to Fortran

This Technical Report does not provide features to map C union types to Fortran.

Editor's Note 7

The user may specify such mappings \manually" by specifying separate de-

rived types for each member object (as if that member object were the only

member of a struct), declaring the data object with the largest of these

types, and using TRANSFER to convert between the member object types.

Another \hack" would be to declare di�erent data objects with these sepa-

rate types, but bind them all to the same C data object by using identical

NAME= clauses of their BIND(C) specs. This does not work for dummy

arguments.

3.2.6 Handling of C pointer declarators

This Technical Report does not provide features to map general C pointers to

Fortran. However, several special cases are supported: Within an explicit interface

that has the BIND(C) or BIND(C STDARG) attribute,

� a dummy argument with C type \array of T" is equivalent to type \pointer

to T". This case is supported by specifying the DIMENSION attribute for

the dummy argument.

� a dummy argument which has C type \pointer to T" because the proce-

dure modi�es the scalar argument of type T is supported by specifying the

BYREFERENCE attribute for the dummy argument.

� a dummy argument may be a dummy procedure that has an explicit inter-

face and the BIND(C) or BIND(C STDARG) attribute. This case shall be

mapped by the Fortran processor to a C type \pointer to function", with a C

return type and C arguments derived from the dummy procedure's interface

body speci�cations.

24-Apr-96 Interoperability of Fortran and C 15

Editor's Note 8

A BYREFERENCE attribute is not yet de�ned in this TR, but this func-

tionality is necessary to support \call by reference".

This may be implemented by rede�ning INTENT semantics within a

BIND(C) interface, so that no INTENT or INTENT(IN) implies call by

value, whereas INTENT(OUT) or INTENT(INOUT) implies call by refer-

ence. INTENT(IN) for arrays should not imply call by value but rather

mimic the const quali�er of a C array argument.

Additionally, a derived type with type-name C VOID PTR shall be supported,

this type shall have the BIND(C) attribute and PRIVATE components.This type

shall be mapped by the Fortran processor to the C type \pointer to void".

Pointers to void and all other C pointer types which have the same representation

can be mapped to this type, this applies to function results and dummy arguments

as well as to struct member objects. The behavior for cases where the C pointer

type has a representation di�erent from \pointer to void" is processor dependent.

3.2.7 Mapping C character strings to Fortran

The processor shall provide an intrinsic module ISO C STRINGS, which shall pro-

vide access to three derived type de�nitions with type-names C CHAR STRING,

C SCHAR STRING, and C UCHAR STRING. They shall have the BIND(C) at-

tribute and PRIVATE components.

These types shall be used to map C character strings which are dummy arguments

of a procedure with the BIND(C) or BIND(C STDARG) attribute to Fortran, as

speci�ed in section 3.3 of this Technical Report. They may also be used to access

C character strings which are data objects with external linkage de�ned in a C

translation unit, as speci�ed in section 3.4 of this Technical Report.

The module ISO C STRINGS shall also provide the following:

� ASSIGNMENT(=) for the following combinations of variable and expr :

Type of variable Type of expr

TYPE(c char string) TYPE(c char string)

TYPE(c char string) CHARACTER(KIND=c char kc)

CHARACTER(KIND=c char kc) TYPE(c char string

TYPE(c schar string) TYPE(c schar string)

TYPE(c schar string) CHARACTER(KIND=c schar kc)

CHARACTER(KIND=c schar kc) TYPE(c schar string

CHARACTER(KIND=c uchar kc) TYPE(c uchar string

TYPE(c uchar string) TYPE(c uchar string)

TYPE(c uchar string) CHARACTER(KIND=c uchar kc)

Assignments among objects of the same TYPE shall copy the contents of

expr to variable, up to and including the �rst ASCII NUL character.

Assignment of a CHARACTER expr to its corresponding TYPE shall copy

16 Draft PDTR 24-Apr-96

the value of expr and append an ASCII NUL character.

Assignment to a CHARACTER variable from its corresponding TYPE shall

copy the contents of expr to variable, up to and excluding the �rst ASCII

NUL character; if the lengths of expr and variable do not agree, the rules for

intrinsic character assignment apply.

� Extension of the generic interface for the LEN intrinsic function (13.14.54):

LEN shall accept a scalar argument of TYPE(c char string), TYPE(c schar string)

or TYPE(c uchar string); the result value for these arguments shall be the

number of characters in the internal representation of these types, up to and

excluding the �rst ASCII NUL character.

Editor's Note 9

The concatenation and comparison operators may also be extended, as well

as some intrinsic procedures for character processing (and perhaps type

conversion procedures from CHARACTER to these types).

3.2.8 Mapping of C typedef names

In C, a declaration whose storage-class specifyer is typedef can be used to de�ne

identi�ers that name types. These typedef-names do not introduce new types,

only synonyms for types that could be speci�ed in another way. They may be

used as type-speci�ers. This Technical Report introduces a type-alias-stmt, which

is a declaration-construct, to allow similar type name aliasing in Fortran.

Riop? type-alias-stmt is TYPE [[, access-spec] ::] 2

2 type-alias-name => type-spec

Constraint: An access-spec is only allowed if the type-alias-stmt is within the

speci�cation-part of a module.

Constraint: A type-name shall not be the same as the name of any intrinsic

type de�ned in IS 1539 nor the same as any accessible type-name

or type-alias-name.

The type-alias-name declared in a type-alias-stmt can be used interchangeable

with the corresponding type-spec: entities declared with TYPE(type-alias-name)

have the same type as if they were declared with the corresponding type-spec.

Note 3.12

For derived type type-names, this is similar to a rename of the name in a

USE statement. The type-alias-stmt is more general in that it also allows

aliasing intrinsic types, and is not limited to the USE statement.

24-Apr-96 Interoperability of Fortran and C 17

Note 3.13

Example:

The Xlib application programming interface includes a type Window. It is

de�ned in <X11/Xlib.h>, by the following typedefs:

typedef unsigned long XID;

typedef XID Window;

Rather than directly using an INTEGER(C ULONG KI) type-spec in

the application program, these details may be hidded by declaring type

aliases

TYPE XID => INTEGER(c ulong ki)

TYPE Window => TYPE(XID)

for the above typedefs and using TYPE(Window) as the type-spec.

3.2.9 No support of <wchar.h> and <wctype.h>

This Technical Report does not specify mappings for the types de�ned in <wchar.h>

and <wctype.h>, which are standardized in Normative Addendum 1 to IS 9899.

18 Draft PDTR 24-Apr-96

3.3 Procedure calling conventions

This section de�nes mechanisms to instruct the Fortran processor to follow the call-

ing conventions of the processor designated by the lang-keywords C and C STDARG

when an external procedure de�ned by means of C is referenced. An explicit

interface for that procedure shall be accessible in all scoping units containing a

procedure reference that should follow these modi�ed calling conventions. The cor-

responding interface-body shall contain a bind-spec speci�cation with lang-keyword

C or C STDARG.

If a C function's return type is void, the Fortran interface for such a function shall

specify a subroutine. If a C function returns a type other than void for which this

Technical Report establishes a corresponding Fortran type, the Fortran interface

shall specify a function with that type. In all other cases, the Fortran interface

may specify a function but the behavior is processor dependent.

If the bind-spec does not specify a name-string, the function-name or subroutine-

name is used to generate an external entry for the procedure, using the Fortran

processor's conventions (this implies ignoring alphabetic case of the name). If a

name-string is speci�ed, the external entry is generated using the C processor's

conventions, as if the value of the name-string were a C identi�er with external

linkage.

3.3.1 Procedure interface for BIND(C) binding

The interface-body that speci�es a Fortran interface to a C procedure shall specify

dummy arguments that correspond by position with the arguments of the C pro-

cedure, and have a Fortran type that corresponds to the type of the C procedure

argument as speci�ed in section 3.2 of this Technical Report. If the argument of

a C procedure has type \function returning T" (or \pointer to function return-

ing T" ?), the Fortran interface shall specify a dummy procedure. There shall

be an explicit interface for the dummy procedure in the speci�cation-part of the

interface-body, that interface shall specify the BIND(C) attribute.

The following additional rules apply for the speci�cation of the procedure interface:

� The POINTER and TARGET attr-specs shall not appear

� INTENT other than IN shall not be speci�ed for dummy arguments which

are passed according to the C default conventions (call by value)

� If a dummy argument is of derived type, that type shall have the BIND(C)

attribute

� A dummy argument shall not have type COMPLEX or LOGICAL

� OPTIONAL shall not be speci�ed

� A dummy procedure shall have an explicit interface, and that interface shall

specify the BIND(C) attribute

24-Apr-96 Interoperability of Fortran and C 19

In a reference to a procedure with the BIND(C) attribute, all scalar dummy ar-

guments that do not have the BYREFERENCE attribute imply that the actual

argument is passed by value. All actual arguments that have the DIMENSION

or BYVALUE attribute are passed by reference. The processor shall generate a C

function type for actual arguments that are associated with dummy procedures,

using the speci�cations of the dummy procedure's explicit interface.

Editor's Note 10

See the Editor's note in section 3.2.6 concerning BYREFERENCE. Key-

word arguments should be allowed. PURE should be allowed, if the C

procedure is pure. ELEMENTAL reference may be allowed, this may need

some wording. RECURSIVE is allowed and has no e�ect.

Note 3.14

Examples of bindings to the C routine double MPI_Wtime(void):

INTERFACE

FUNCTION MPI_WTIME1 ()

USE iso_c, ONLY: c_dbl_kr

REAL(c_dbl_kr), BIND(C,"MPI_Wtime") :: MPI_WTIME1

END FUNCTION MPI_WTIME1

BIND(C,"MPI_Wtime") FUNCTION MPI_WTIME2 ()

USE iso_c, ONLY: c_dbl_kr

REAL(c_dbl_kr) MPI_WTIME2

END FUNCTION MPI_WTIME2

REAL(c_dbl_kr) FUNCTION MPI_WTIME3 ()

USE iso_c, ONLY: c_dbl_kr

BIND(C,"MPI_Wtime") :: MPI_WTIME3

END FUNCTION MPI_WTIME3

END INTERFACE

The kind value c_dbl_kr is de�ned in section 3.2. Note that in the

last interface-body, it is also accessible in the function-stmt.

3.3.2 Procedure interface for BIND(C STDARG) binding

The C STDARG language-keyword can be used to specify the binding to a C

procedure that utilizes C variable argument lists, as de�ned in the ISO C header

<stdarg.h>.

If C STDARG binding is speci�ed, the behavior is as if C binding were speci�ed,

except for the following rules for the speci�cation of the procedure interface:

� The interface shall specify at least one non-optional dummy argument

20 Draft PDTR 24-Apr-96

� The OPTIONAL attribute on dummy arguments that are not dummy pro-

cedures is allowed

� In the dummy-arg-name-list, all OPTIONAL dummy arguments shall be

speci�ed after all non-optional dummy arguments

If a procedure interface speci�es BIND(C STDARG) binding, the semantics of a

call to this procedure are changed so that all non-optional arguments are passed

according to the conventions of the C processor (like for BIND(C) binding speci�ed

above), all PRESENT optional paramenters are passed in a way the <stdarg.h>

macros can handle, and nothing is passed for those optional parameters that

are not PRESENT. The last non-optional parameter speci�es the o�set for the

va start macro.

3.4 Access to global C data objects

This section de�nes mechanisms to reference global data objects that are de�ned

in C translation units from within a Fortran program.

To access a C data object of type T with external linkage from within Fortran, a

Fortran variable with the Fortran type corresponding to T (as speci�ed in section

3.2 of this Technical Report) shall be declared in a module, and may then be

accessed within the module and all other scoping units that contain a module

reference for that module.

To specify that the storage for the Fortran variable is reserved by the C translation

unit, the BIND(C) attribute shall be speci�ed, with a name-string whose value is

the identi�er of the C data object. The following additonal restrictions apply:

� The BIND(C) attribute for a module variable implies the SAVE attribute

� No initialization shall appear in the entity-decl

� PARAMETER, POINTER or TARGET shall not be speci�ed

� Appearance of a data entity having the BIND(C) attribute as a common-

block-object is prohibited.

� For a given name-string, there shall be at most one Fortran variable with

the BIND(C,name-string) attribute in the program.

� The name-string is a global name. The rules of section 14.1 apply.

Editor's Note 11

This is a very preliminary speci�cation. Some more work is needed, espe-

cially to avoid unintended storage association.

24-Apr-96 Interoperability of Fortran and C 21

4 Editorial changes to ISO/IEC 1539-1 : 1996

This section contains the editorial changes to ISO/IEC 1539-1:1996 required to

include the extensions de�ned in this Technical Report in a revised version of the

International Standard for the Fortran language.

Page xiv

Line 24

Update the \Organization of this International Standard" subclause.

Page 2

Subclause 1.5

Conformance paragraph at line 39 may be a�ected.

Page 7

Subclause 1.9

At the end of the references, add

ISO/IEC 9899:1990, Information technology { Programming languages

{ C (also ANSI X3.159-1989, American National Standard for Infor-

mation Systems { Programming Language { C)

Page 10

Subclause 2.1

In

R207 declaration-construct is derived-type-def

or interface-block

: : :

add after line 7:

or type-alias-stmt

Page 10

Subclause 2.1

In

R214 speci�cation-stmt is access-stmt

or allocatable-stmt

: : :

add after line 32:

or bind-stmt

22 Draft PDTR 24-Apr-96

Page 19

Subclause 2.5.7

In line 6, change \procedures" to \procedures, modules".

After line 8, add

Entities de�ned in an intrinsic module may be used without further

de�nition or speci�cation in those scoping units that contain a module

reference for that intrinsic module, subject to the rules of use associa-

tion (11.3.2).

Page 38

Subclause 4.4.1

In

R424 private-sequence-stmt is PRIVATE

or SEQUENCE

add after line 31:

or bind-spec

Editor's Note 12

Also do a global rename of private-sequence-stmt to derived-type-body-stmt.

Page 38

Subclause 4.4.1

In the Constraints list, add after line 37:

Constraint: If a bind-spec is present, it shall not contain a name-string and

lang-keyword shall not be C STADRG.

Constraint: If a bind-spec is present, all derived types speci�ed in component

de�nitions shall have that BIND attribute.

Page 39

Subclause 4.4.1

In the Constraints list, add after line 29:

Constraint: component-initialization shall not appear if a bind-spec is present

in the derived type de�nition.

Page 47

Subclause 5.1

In

R503 attr-spec is PARAMETER

or access-spec

: : :

add after line 27:

or bind-spec

24-Apr-96 Interoperability of Fortran and C 23

Page 48

Subclause 5.1

In the Constraints list, add after line 18:

Constraint: A bind-spec may only be speci�ed in an interface-body or in the

speci�cation-part of a module.

Page 48

Subclause 5.1

After the Constraints list, add after line 41:

If a bind-spec is present, the additional constraints of section 16.x ap-

ply.

Page 53

Subclause 5.1.2

After section 5.1.2.2, insert a new section after line 5:

5.1.2.2a BIND attribute

The BIND attribute speci�es that mechanisms for interoper-

ability with other languages are used. Binding to entities that are

de�ned by means of ISO C and have external linkage is described

in section 16. This attribute may also be declared via the BIND

statement (16.x.y).

Editor's Note 13

Maybe dd a note explaining that there is another usage of BIND: in derived-

type-def s.

Page 57

Subclause 5.2

At line 41, change

This also applies to EXTERNAL and INTRINSIC statements.

to

This also applies to BIND, EXTERNAL and INTRINSIC statements.

Editor's Note 14

Maybe something in 6.3 (dynamic association) for dealing with C dynamic

memory in BIND(C) structures, like the C string datatypes...

Editor's Note 15

Maybe something in section 7 for the C string operations...

24 Draft PDTR 24-Apr-96

Page 193

Subclause 12.3.1.1

After line 15, add a new clause to the list (1):

(f) That should follow other than the processor's default calling con-

ventions (16.x).

Page 207

Subclause 12.5.2.2

In

R1219 pre�x-spec is type-spec

or RECURSIVE

or PURE

or ELEMENTAL

add after line 1:

or bind-spec

Page 207

Subclause 12.5.2.2

In the Constraints list following R1219, add after line 5:

Constraint: A bind-spec may only be speci�ed in an interface-body.

Page 208

Subclause 12.5.2.2

Add after line 4:

If a bind-spec is present in the pre�x or speci�cation-part of the func-

tion, the additional constraints of section 16.x apply.

Page 208

Subclause 12.5.2.3

After R1123 at line 34, add:

Constraint: If a bind-spec is present in the speci�cation-part of the subroutine,

* shall not appear as dummy-arg.

Page 209

Subclause 12.5.2.3

Add after line 4:

If a bind-spec is present in the speci�cation-part of the subroutine, the

additional constraints of section 16.x apply.

Page 211

Subclause 12.5.3

After \external subprogram on line 14, add \, except when the binding mechanisms

described in section 16 are used".

24-Apr-96 Interoperability of Fortran and C 25

Page 275

Subclause 14.1

\Scope of names" may be a�ected.

Page 292

New clause 16

Introduce a new section 16 (Interoperability with ISO C).

Editor's Note 16

This is a big edit. The �nal form of section 3 of this TR should be that this

edit reads \take section 3, replace section heading with `Interoperability

with ISO C', replace all `TR' by `IS', renumber sectioning, rules and notes,

and include the result as section 16 into IS 1539-1."

Page 293

Annex A

Update the Glossary:

After 293:39, add the term binding with a de�nition.

After 294:6, add the term calling conventions with a de�nition.

Page 309

Annex C

C.9.2 \Procedures de�ned by means other than Fortran (12.5.3) " and C.9.3 \Pro-

cedure interfaces (12.3)" on pages 334+ may be a�ected.

Page 347

Annex D

Update the Index :-)

26 Draft PDTR 24-Apr-96

