

 ISO/IEC JTC1/SC22/WG5 N1185
 X3J3 / 96-119
 05 June 1996

 To: WG5, X3J3
 From: Michael Hennecke (personal submission)
 Subject: Discussion of MAP_TO and BIND interoperability
 References: ISO/IEC JTC1/SC22/WG5 N1184 (X3J3/96-118),
 ISO/IEC JTC1/SC22/WG5 N1178 (X3J3/96-069), X3J3/96-106R1,
 X3J3/95-295 (HPF Calling C Interoperability Proposal v1.3)

 Document X3J3/96-106R1 is the X3J3 Liaison Report on Interoperability of
 Fortran and C, based on the draft Technical Report WG5/N1178. This report
 favours a MAP_TO approach to interoperability, as outlined in the HPFF
 proposal X3J3/95-295. This is the most important conflict between the
 current opinion of X3J3 and the current WG5 draft TR, N1178.

 Being the project editor of this TR, I will, of course, try to produce a
 document following whatever direction WG5 specifies to be followed to
 address interoperability with ISO C.
 But personally, I would strongly recommend to stay with the lines of N1178
 and _not_ to implement a MAP_TO mechanism. This document is an attempt to
 explain my arguments for this position. It is _not_ a statement of the
 development body for this TR.

 In the discussion I tracked, there were mainly two arguments in favour
 of the MAP_TO approach:

 (i) A vendor does not need to support intrinsic KINDs for all C types.
 For example, a vendor does not support an INTEGER kind for 8-bit
 integers, but a C signed char must be mapped to a Fortran INTEGER.
 With MAP_TO, this can be done by converting to default integer, e.g.
 by writing "INTEGER, MAP_TO(signed_char) :: VARIABLE".
 With the BIND approach, the vendor would be required to provide an
 INTEGER(C_SCHAR_KI) type, and possibly also the whole set of intrinsic
 procedures and operations for this type. (Returning C_SCHAR_KI==-1
 is also possible, but clearly not desirable :-)

 (ii) The MAP_TO approach does not require the user to deal with type
 kind parameters, since mappings can always be specified to Fortran
 types of default kind.

 Obviously, (i) makes it harder to implement the BIND approach for those
 Fortran compilers that do not support all C basic types. Disregarding all
 other differences of the two approaches, this would favor MAP_TO because
 it is the aim of a TR to keep the impact on overall compiler maintenance
 small. There is, however, no technical reason that a Fortran compiler
 should not support all basic types that the C compiler for the same
 hardware supports, and users will definitely benefit from extending the
 number of intrinsic kinds of the Fortran compiler to those types.

 Concerning (ii), it is clearly a relief if users need not carry KIND
 type parameters through their programs. But this is not a problem of
 interoperability of Fortran and C, it is caused by the Fortran rule
 that actual and dummy argument must match identically - see topic (V).

 In contrast to these two advantages of MAP_TO, I would like to point
 out some problems with the MAP_TO approach, which to my understanding
 are of a more fundamental nature than the advantages above:

 (I) MAP_TO cannot handle C structs very well.

 A "recursive MAP_TO" (I’d prefer to call it a "nested" MAP_TO) has
 been proposed by Jerry Wagener to extend MAP_TO to C structs, see
 http://www.uni-karlsruhe.de/~SC22WG5/TR-C/Email/may06-01 and my
 replies in the same directory. I am not aware of a more detailed
 specification of such nested MAP_TO, and I have some concerns about
 that mechanism as a whole:

 (1) MAP_TO replicates a struct mapping at each reference.

 Suppose we have the following C specifications:

 struct foo_type { int i; float f; };
 void foo1 (struct foo_type arg1) { ... }
 void foo2 (struct foo_type arg2) { ... }
 ...

 With the BIND approach, this can be mapped to

 MODULE FOO_HEADER
 USE ISO_C
 TYPE FOO_TYPE
 BIND(C)
 INTEGER(C_INT_KI) :: I ; REAL(C_FLOAT_KR) :: F
 END TYPE FOO_TYPE
 END MODULE FOO_HEADER

 INTERFACE
 BIND(C,"foo1") SUBROUTINE FOO1(ARG1)
 USE FOO_HEADER ; TYPE(FOO_TYPE) :: ARG1
 END SUBROUTINE FOO1
 BIND(C,"foo2") SUBROUTINE FOO2(ARG2)
 USE FOO_HEADER ; TYPE(FOO_TYPE) :: ARG2
 END SUBROUTINE FOO2
 ...
 END INTERFACE

 All interfaces with a "struct foo_type" argument only reference the
 TYPE(FOO_TYPE), which is consistently defined in one place.
 With a MAP_TO approach, each interface has to specify a Fortran TYPE,
 and additionally the full MAP_TO for that struct:

 MODULE FOO_MODULE
 TYPE FRT_TYPE
 INTEGER :: I ; REAL :: F
 END TYPE FRT_TYPE
 END MODULE FOO_MODULE

 INTERFACE
 BIND(C,"foo1") SUBROUTINE FOO2(ARG1)
 USE FOO_MODULE ; TYPE(FRT_TYPE), MAP_TO(int;float) :: ARG1
 END SUBROUTINE FOO1 ! ^^^^^^^^^^^^^^^^^
 BIND(C,"foo2") SUBROUTINE FOO2(ARG2)
 USE FOO_MODULE ; TYPE(FRT_TYPE), MAP_TO(int;float) :: ARG2
 END SUBROUTINE FOO2 ! ^^^^^^^^^^^^^^^^^
 ...
 END INTERFACE

 This is error-prone: changing the C struct requires changing at least
 one Fortran TYPE (the MAP_TOs might map to different Fortran TYPEs for
 ARG1 and ARG2), and one MAP_TO for each such "struct foo_type" dummy.

 (2) MAP_TO does not allow encapsulation of "struct" TYPEs in MODULEs

 Almost every API in C that Fortran may with to interface to comes
 with header files that contain, among others, struct definitions
 for derived types. The BIND approach uses a <bind-spec> within a
 Fortran TYPE definition to match the layout of struct and TYPE,
 that TYPE definition can be placed in a "header" module. As in the
 original C API, the TYPE name is all an application programmer needs
 to know to use the Fortran API.

 MAP_TO separates the definition of a Fortran TYPE (probably also
 in a "header" module) from the specification of its mapping (in
 the MAP_TO attribute for dummy arguments of that type). MAP_TO
 additionally requires the application programmer writing down the
 MAP_TO to know the layout of the struct/TYPE - not only its name.

 The important point is that this breaks the portability of the
 Fortran binding if variables of such type also appear as dummy

 arguments of _user_ procedures: with BIND everything is defined
 in a central MODULE (which hopefully is provided by the vendor
 of the package/API), whereas with MAP_TO the conversion rules
 for a TYPE in the API-header are specified in the user’s program!

 Suppose two vendors of a package use two different internal layouts of
 an opaque struct (with a documented name but "PRIVATE" components):

 MODULE api_header MODULE api_header
 ! Vendor ABC’s header ! Vendor XYZ’s header
 TYPE api_type TYPE api_type
 INTEGER i ; REAL r REAL r ; INTEGER i
 END TYPE api_type END TYPE api_type
 CONTAINS CONTAINS
 SUBROUTINE api_proc(s) SUBROUTINE api_proc(s)
 TYPE(api_type), & TYPE(api_type), &
 MAP_TO(int,float) :: s MAP_TO(float,int) :: s
 END SUBROUTINE api_proc END SUBROUTINE api_proc
 END MODULE api_header END MODULE api_header

 Of course, both vendors specify MAP_TOs matching their own layout of
 the TYPE(api_type) structure for all procedures the API specifies.
 So the following program is portable:

 PROGRAM my_p
 USE api_header
 TYPE(api_type) :: s
 CALL api_proc(s)
 END PROGRAM my_p

 However, if a user wants to pass an object of TYPE(api_type)
 through a procedure interface that is _not_ provided by the vendor,
 a portablility problem arises:

 SUBROUTINE my_sub (my_s)
 USE api_header
 TYPE(api_type), MAP_TO(int,float) :: my_s ! tied to vendor ABC
 CALL api_proc(my_s)
 END SUBROUTINE my_sub

 will not work with vendor XYZ’s implementation because the MAP_TO
 specified in MY_SUB is for vendor ABC’s layout of TYPE(api_type).
 Such a design of interoperability should be avoided, since copying
 details from the header files into the user’s code will result in
 unportable code, which will be difficult to write and debug since
 it requires knowledge of details in MODULE api_header that are not
 intended for the user of the API.

 (3) Handling nested structs with MAP_TO is clumsy and error-prone.

 Consider the following C code, where a struct has struct components:

 struct foo_subtype { double i; double j; double k; };
 struct foo_type {
 float i; struct foo_subtype a;
 float j; struct foo_subtype b;
 struct foo_subtype c;
 };
 void foo (struct foo_type arg) { ... }

 This could be mapped transparently with the BIND approach:

 MODULE FOO_HEADER
 USE ISO_C
 TYPE FOO_SUBTYPE
 BIND(C)
 REAL(C_DBLE_KR) :: I, J, K
 END TYPE FOO_SUBTYPE
 TYPE FOO_TYPE
 BIND(C)
 REAL(C_FLT_KR) :: I ; TYPE(FOO_SUBTYPE) :: A

 REAL(C_FLT_KR) :: J ; TYPE(FOO_SUBTYPE) :: B
 TYPE(FOO_SUBTYPE) :: C
 END TYPE FOO_TYPE
 END MODULE FOO_HEADER

 INTERFACE
 BIND(C,"foo") SUBROUTINE FOO(ARG)
 USE FOO_HEADER
 TYPE(FOO_TYPE) :: ARG
 END SUBROUTINE FOO
 END INTERFACE

 However, using MAP_TO to do this mapping would blow up the interface:

 MODULE FOO_MODULE
 TYPE FRT_SUBTYPE
 DOUBLE PRECISION :: I, J, K
 END TYPE FRT_SUBTYPE
 TYPE FRT_TYPE
 REAL :: I ; TYPE(FRT_SUBTYPE) :: A
 REAL :: J ; TYPE(FRT_SUBTYPE) :: B
 TYPE(FRT_SUBTYPE) :: C
 END TYPE FRT_TYPE
 END MODULE FOO_MODULE

 INTERFACE
 BIND(C,"foo") SUBROUTINE FOO(ARG)
 USE FOO_MODULE
 TYPE(FRT_TYPE), MAP_TO(float, (double, double, double), &
 & float, (double, double, double), &
 & (double, double, double)) :: ARG
 END SUBROUTINE FOO
 END INTERFACE

 This example again shows that the mapping of a struct should be
 tied to the Fortran TYPE definition. Anything else creates very
 complicated code, and the separation of TYPE definition (most likely
 in a "header" module) and mapping (in _each_ MAP_TO for dummy
 arguments) is likely to cause bugs for complicated structs.
 Such structs _do_ exist in APIs that Fortran might want to access...

 (II) MAP_TO cannot handle typedef.

 The typedef mechanism of C is very important to ensure the portability
 of application programming interfaces. A Fortran binding to an API in
 C should be able to deal with typedef-ed names - resolving the typedef
 names to "intrinsic" types requires knowledge of implementation details
 that are normally not specified in the API, and thus is non-portable.
 The BIND facility for derived types together with the proposed
 <type-alias-stmt> can handle typedef in a transparent way.
 MAP_TO is unable to deal with typedef, since this would require the
 processor which parses the C types in the MAP_TO to be aware of all
 user- or API-defined type names.

 (III) MAP_TO does not handle C extern data objects.

 It has been requested both by X3J3 and by members of WG5 that
 access to global data objects defined in C is provided. The MAP_TO
 mechanism has only been proposed for procedure interfaces, and
 extending it to variables is not a good idea. Since its semantics
 is that of a type cast (conversion), it may introduce huge run-time
 costs when accessing global C variables - almost every reference to
 a C data object would start up the MAP_TO machinery.

 (IV) MAP_TO cannot deal with self-referential structures.

 At present, both the HPFF approach and N1178 only define mappings
 for pointers of type void*. But N1178 can, should this be necessary,
 be extended to deal with more general C pointers, most importantly

 self-referential, dynamic data structures:

 TYPE LIST
 BIND(C)
 INTEGER(C_INT_KI) :: DATA
 TYPE(list), POINTER :: NEXT_NODE
 END TYPE LIST

 would be a natural mapping for

 struct list {
 int data;
 struct list *next_node;
 };

 This is impossible with a MAP_TO solution, which does not include
 a type name and thus cannot specify self-referencial structs
 (at least, not in finite time and code size :-). Extensions as the
 one above may be needed if a C compiler represents a "struct list *"
 differently from a "void *" ...

 (V) Comments on MAP_TO’s type/kind conversions at a procedure call

 In Fortran, actual argument type and type kind parameters must match
 exactly those of the corresponding dummy argument. This requires some
 typing for ALL applications that use non-default KINDs. Consider for
 example a library implemented like this:

 MODULE SOME_LIB
 INTEGER, PARAMETER :: WP = KIND(0.0D0) ! instead of DOUBLE PREC.
 CONTAINS
 SUBROUTINE LIB_PROC (A, B)
 REAL(WP), INTENT(IN) :: A
 REAL(WP), INTENT(OUT) :: B
 B = 42.0_WP * A
 END SUBROUTINE LIB_PROC
 END MODULE SOME_LIB

 If an application program accesses SOME_LIB, care must be taken that
 the KIND used in it and the KINDs of the application match: For example

 SUBROUTINE MY_PROC (X, Y)
 USE SOME_LIB
 REAL :: X, Y
 REAL(WP) :: YY
 CALL LIB_PROC(REAL(X,KIND=WP), YY)
 Y = YY
 END SUBROUTINE MY_PROC

 would result if WP is not the default real kind. Since the above use of
 a WP type kind is preferred over DOUBLE PRECISION, for example, similar
 applications with hand-coded conversions will probably become common
 practice as Fortran 90/95 code bases increase. A good solution to this
 problem would be to allow calls with non-matching arguments IF an
 explicit interface is visible. In this case, the compiler could do the
 conversion, and the above example could read

 SUBROUTINE MY_F2000_PROC (X, Y)
 USE SOME_LIB ! compiler sees that dummy args are REAL(WP)
 REAL :: X, Y
 CALL LIB_PROC(X, Y) ! compiler converts to/from REAL(WP)
 END SUBROUTINE MY_F2000_PROC

 (Exactly this has been allowed in C at the transition from K&R to ISO C.
 It may be more complicated in Fortran because of generic interfaces.)
 Linking the automatic conversion to the visibility of an explicit
 interface (function prototype in C) seem to be natural. The rules for
 conversion can be identical to those that are already in section 7.5
 of the standard: mapping X to A is similar to an A = X assignment.

 The HPFF proposal (mis-) uses MAP_TO to do such conversions at a

 procedure call, which I think is not the ideal way to solve this broad
 class of problems. Apart from the fact that the "dummy kind" may be
 non-existent in the current Fortran compiler (see (i) above), there is
 no difference between calling a Fortran or a C procedure. MAP_TO solves
 only a small part of the problem, and because there is nothing in the
 Fortran standard which describes the "dummy argument C types", the
 detailed rules for type conversions with MAP_TO must be explicitly
 specified by the interoperability proposal. I am not aware of any
 document which contains this specification for the MAP_TO approach,
 and I fear that it will be a rather big task to do so.

 The fact that C has more than one representation method for (signed)
 integers, for example, means that KIND parameters are the natural way
 to distinguish them in Fortran. Fortran’s inflexibility concerning
 non-matching kind type parameters should not be blamed on the BIND/KIND
 interoperability approach. Rather than specifying conversion/conformance
 rules both in section 7 of the standard and additionally/separately for
 each possible MAP_TO conversion, I would prefer to simply tell the
 programmer which kind type parameter designates C’s "long double" type,
 for example. If C has a basic type Fortran hasn’t, it seems more natural
 to simply _provide_ this type in Fortran that trying to say in a Fortran
 document how data objects of this unknown type should be converted to
 a Fortran type. Providing a _general_ mechanism in Fortran to allow
 procedure calls with non-matching arguments (if an explicit interface is
 visible) may be a good idea, but this is not a interoperability subject.

