
1

ISO/IEC JTC1/SC22/WG5 N1186

03 June 1996

High Performance Computing with Fortran 90

Quali�ers and Attributes

In context with optimizing Fortran 90 code it would be very helpful to have a selection of

quali�ers as attributes or statements which could be ignored by the compiler or could be

understood as semantic hints of the user. These quali�ers give information on relations

and nonrelations between data objects to enable optimizations and inlining. Compilers

have more possibilities to optimize if more information on the dependencies is given. Very

often the compiler cannot determine dependencies between data objects.

It is imaginable that all those quali�ers and attributes speci�ed below could have the same

beginning like QUALIFY or CH to distinguish them from other Fortran attributes.

In the following a list of quali�ers and attributes is suggested, including

� I. Injective Quali�er for (Index) Arrays

� II. Restrictions for scalar and array pointers and their relations

� III. Keyword to allow inlining for trivial user de�ned procedures

� IV. Keyword to simplify inlining of procedures with pointer arguments

� V. De�nition of independence of variables and arrays

� VI. Attribute to de�ne a variable to be local on one processor on parallel systems

� VII. User control of copying array arguments

� VIII. Quali�er 'noloop' for (recursive) data types

This list could always be completed by others by the time. It also could be completed by

companies de�ning their own quali�ers as e.g. CH SGI LOCAL or CH CRAY LOCAL,

which are only recognized by the speci�c compilers.



2

Advantages of quali�ers and attributes :

� The quali�ers �t easily in the attribute list used for declaration of variables. There-

fore it just �ts right in the Fortran 90 declaration syntax.

� The quali�ers can also be ignored if they are meaningless on several systems

� Performance improvement

I. Injective Quali�er for Arrays

This quali�er is a hint for the compiler that an index array is injective to give better

optimization possibilities. An index array is injective, if each of its values only turns up

once in the whole array.

This optimization quali�er may be speci�ed for each integer array

� as an attribute in the attribute list in the declaration

� as a simple statement right after the declaration part of a program or module.

Fortran is a programming language which is very strong in array handling. In many large

applications index arrays have to be used to access a certain array element via indirect

addressing. This is for example very important in FEM Codes. At compile time it cannot

be known wether this index array is injective or not. To know this in advance would give

the compiler the possibility to optimize, especially vectorize a loop.

Example I.1 :

do i=1,imax

a(index(i)) = a(index(i)) + b(i)

enddo

This loop is not vectorized automatically because at compile time it cannot be known

wether the index array index is injective or not.



3

Vectorization of loops is not only important for vector computers but also for super scalar

machines, as each single processor has an architecture which supports handling vector

code.

Helpful for optimization in context with vectorization of loops is a quali�er which gives

information wether an index array is injective or not. Therefore one could think of an

attribute e.g. injective which is simply added to the attribute list within the declaraion

of the index array like in the example below:

Example I.2 :

integer,dimension(:),pointer,injective :: index

In the case that the array index is not injective, special algorithms can be used for the

array handling.

If arrays have (rank > 1), and not every dimension is to be de�ned injective, it could be

thought of a statement called injective which takes as arguments the name of the array

and the dimensions in which this array is injective.

Example I.3 :

integer,dimension(:,:,:,:),pointer :: index

...

injective(index,1,3,4)

In the example above (I.3) index is declared to be an integer array pointer of rank 4. The

injective statement declares dimensions 1,3, and 4 of the array index to be injective.

II. Restrictions for Scalar and Array Pointers

This restriction in form of a quali�er gives the compiler a hint if two pointers are related

only to di�erent targets. Knowing this the compiler has better optimization possibilities.

This optimization quali�er may be speci�ed for each scalar and array pointer pair

� as an attribute in the attribute list in the declaration part

� as a simple statement right after the declaration part of a program or module.

For optimization of statements including pointer components it is very useful to have a

possibility to specify a pointer and a di�erent target to be not related. Therefore the

compiler knows that there cannot turn up any pointer dependencies between these two

objects.



4

Relation information between data objects is very important for vectorizing code. Vec-

torization is still (and will always be) a very important optimization possibility not only

on vector processors, due to the single processor behaviour in parallel and super scalar

systems.

Fortran 77 - Example II.1 :

subroutine add(a,b,c,nmax)

real a(*),b(*),c(*)

do 10 n=1,nmax

a(i) = b(i) + c(i)

10 continue

return

end

c======================================

program main

real x(1000)

do 20 i=1, ...

x(i) = ...

20 continue

i1 = 2

i2 = 1

i3 = 200

c not conforming to the standard

call add(x(i1),x(i2),x(i3), 100)

...

end

� The example above does not conform to the standard. In Fortran 77 dependencies

between the data objects in the external subroutine add are not expected. With

probably each compiler this example would produce wrong results. But this kind of

coding (Example II.1) is typical and very common e.g. in developing Finite Element

Code in Fortran 77. It also is the only possibility to ensure dynamical behaviour.

� In the C language, in a subroutine like the subroutine add dependencies between

left and right hand side of the assignment in the loop always have to be expected.

The compiler has the only chance to vectorize the loop by checking during runtime,

wether the address ranges of the objects are overlapping or not. This is an expensive

procedure.



5

� With Fortran 90 pointer any dependency has to be expected like in C. Therefore it

would be very helpful for the user to have a possibility to tell the compiler somehow,

that no dependencies are allowed to turn up between left and right hand side of the

assignment.

Therefore it could be thought of adding quali�ers in form of either attributes or simple

statements to the code. Using a quali�er named 'nonrelated', which means, that the spec-

i�ed data objects are not related and therefore the loop can be vectorized, the subroutine

'add' could look like one of the examples below.

Example II.2 :

subroutine add(a,b,c,nmax)

real,dimension(:),pointer,nonrelated :: a,b,c

integer :: nmax

do ii=1,nmax

a(ii) = b(ii) + c(ii)

enddo

end subroutine add

!* alternative

subroutine add(a,b,c,nmax)

real,dimension(:),pointer :: a,b,c

integer :: nmax

nonrelated :: a,b

nonrelated :: a,c

do ii=1,nmax

a(ii) = b(ii) + c(ii)

enddo

end subroutine add

Example II.3 : Finite Element Codes

� In Finite Element codes grids are managed by lists of elements (e.g. triangles).

Each triangle has three neighbour cells, related either through Fortran 90 pointers

or through indices by their identi�cation number. Each triangle consists of three

edges and three nodes. Each edge consists of two nodes.



6

There are a few ways to manage the whole set of triangles.

1. One possibility to organize the required elements are index lists. This is the

way the elements would have to be managed in Fortran 77.

Advantages :

{ index sets need less memory that pointers on several machines

{ implicit numbering of objects

Disadvantages :

{ not 
exible for self adaptive problems

{ not very elegant

2. Another possibility to organize the required elements are Fortran 90 pointer.

Advantages :

{ can easily be expanded or reduced

Disadvantages ::

{ poor e�ciency in memory and performance due to the sizes of Fortran 90

pointer which might be very large, because a Fortran 90 pointer on some

systems contains more information than just the address.

NAG scalar pointer 4 bytes, same as C pointers

array pointer 8 (12 for character arrays) bytes

+ 12 bytes * rank (Triplet)

Cray scalar pointer 6 words (1 word = 8 bytes on

CRAY)

array pointer 6 words + 3 extra words * rank

IBM scalar pointer (non character) 8 bytes

scalar pointer (character) 12 bytes

array pointer 20 bytes + 12 bytes * rank

Variable access via pointers is more expensive then accessing a non pointer

variable.

The example below shows a list of triangles organized in an array.

type status

real :: qq

end type status

type flux

real :: ff

end type flux

type koord

real,dimension(2) :: x

end type koord



7

type cell

type(status) :: integral

type(koord) :: sp

real,dimension(3) :: orient

integer,dimension(3) :: node

integer,dimension(3) :: side

integer,dimension(3) :: cell

endtype cell

type side

type(flux) :: flx

type(koord) :: df

integer,dimension(2) :: cell

integer,dimension(2) :: node

endtype side

type node

type(koord) :: xx

type(koord) :: vv

endtype node

From the logical side in the example above it is clear, that the three sides of the
triangle are not related in the sense that one side could turn up twice. The same
is valid for the nodes within one triangle. A triangle is built up by three di�erent
nodes. To give the compiler the possibility for better optimization, the derived type
for e.g. a cell could look like the following.

type cell

type(status) :: integral

type(koord) :: sp

real,dimension(3) :: orient

type(node),pointer,nonrelated :: node1,node2,node3

type(side),pointer,nonrelated :: side1,side2,side3

type(cell),pointer,nonrelated :: cell1,cell2,cell3

endtype cell

!* or

type cell

type(status) :: integral

type(koord) :: sp

real,dimension(3) :: orient

type(node),pointer :: node1,node2,node3

type(side),pointer :: side1,side2,side3

type(cell),pointer :: cell1,cell2,cell3

nonrelated :: node1,node2

nonrelated :: cell1,cell2,cell3

endtype cell



8

III. Keyword to allow Inlining for trivial user de�ned procedures

The keyword gives the compiler the hint that a function or subroutine is trivial and without

side e�ects and can be inlined without any di�culties.

This can result in performance improvement by avoiding function and subroutine calls if

the procedures are inlined by the compiler. It is users choice to de�ne a procedure to be

trivial and give it the inline keyword which allows the compiler to inline the procedure

without restrictions.

Object oriented (similar to component oriented) programming style takes the fortune out

of small encapsulated objects consisting on a data structure, methods, and interfaces which

guarantee the accessibility to objects from outside. As those objects are typically small,

many function and / or subroutine calls have to be made to access the root components of

an object of a complex system. Many functions and subroutines have to be implemented

simply to read the values of a component on a certain abstraction level. An example

therefore is the component describing the dimension in row index direction of a matrix.

Example III.1 :

module matrix_info_module

type matrix_info_type

type(strng) :: name

integer :: row_index_dim, col_index_dim

end type matrix_info_type

...

interface get_row_dim

module procedure get_row_dim_matrix_info

end interface

...

function get_row_dim_matrix_info(info) result(dim)

type(matrix_info_module) :: info

integer :: dim

dim = info%row_index_dim

end function get_row_dim_matrix_info

...

end module matrix_info_module

!*-------------------------------------------------

module square_matrix_mdoule

use matrix_info_module



9

type square_matrix_type

type(matrix_info_type) :: info

real,dimension(:,:),pointer :: values

end type square_matrix_type

interface get_row_dim

module procedure get_row_dim_square_mat

end interface

...

function get_row_dim_square_mat(mat) result(dim)

type(square_matrix_type) :: mat

integer :: dim

dim = get_row_dim(mat%info)

end function get_row_dim_square_mat

...

end module square_matrix_mdoule

In the example above (III.1) two functions have to be called just to determine the dimen-

sion of a matrix of type(square matrix type) in row index direction. This is absolutly

in the sense of encapsulation, but of course this gives a hint that object oriented program-

ming might cause cascades of function calls which might be performance decreasing, even

more if inheritance is not supported by the programming language. In this case it should

be possible for a user to specify trivial functions to be inlined to improve performance.

This should be possible even if the function / subroutine is declared to be private. The

accessibility restrictions of the procedure are still valid, but the code is visible after the

inlining step. If the private statement is also used to hide the implementation of a certain

function or subroutine completely from the user, it should also be possible to declare this

function never to be inlined.

Therefore one could think of statements like inline or noinline which can be placed as

a �rst statement in the function or subroutine. On preprocessor level, these function /

subroutines could simply be inlined. Example III.2 shows a function which can easily be

inlined and therefore has the inline statement as a �rst statement. Example III.3 shows

the speci�cation of the function solve linear system which is not to be inlined, because

it might contain a rather complicated well optimized code to solve linear systems which

the developer does not want to be visible to users.



10

Example III.2 :

module matrix_info_module

...

function get_row_dim_matrix_info(info) result(dim)

inline

type(matrix_info_module) :: info

integer :: dim

dim = info%row_index_dim

end function get_row_dim_matrix_info

...

end module matrix_info_module

Example III.3 :

module linear_solvers

use ...

...

function solve_linear_system(mat,vec) result(res_vec)

noinline

type(square_matrix_type) :: mat

type(vector_type) :: vec, res_vec

...

end function solve_linear_system

end module linear_solvers

IV. Keyword to Simplify Inlining

Quali�er speci�ed by (II.) used in context with overloaded operators, to give the user the

possiblity to specify left and right hand side (operators and result value) to be not related.

This also gives the compiler a possibiliy to inline the code.

Overloaded operators in Fortran 90 might cause di�culties if inlined, because it cannot

be known if left and right hand side (operators and result value) are related somehow or



11

not. To simplify the inlining choice one could think of additional quali�ers like one forbid-

ding recursions between left and right side. These quali�ers of course mean restrictions

somehow, but enable a simpler way of inlining.

V. Separation of Variables and Arrays

De�ne arrays and variables to be independent from each other and to be used indepen-

dently to improve performance. This is important for cache coherent parallel systems

which can take a fortune out of this by storing data in di�erent cache lines, but is also

important helpful in context with all future hardware architectures.

To improve performance one could think of a quali�er for arrays and variables to declare

them to be independent. This could cause the arrays to be stored in di�erent cache lines

which will improve performance

Examples V.1 :

real,dimension(:),pointer,independent :: aa,bb

!* or ::

real,dimension(:),pointer :: cc

real,dimension(nmax) :: dd

independent(cc,dd)

VI. Attribute for Local Variables on Parallel Systems

Declaration of a variable or an array to be local on one process in parallel systems. This

means that no other process running on a di�erent CPU accesses this object.

In HPF any object which is not distributed is local to the process. It will also be necessary

to de�ne a kind of global objects which can be accessed by multiple processes. Having an

attribute gives compilers the possibility for better optimization if it can be distinguished

between global and local variables in this context.

Convex already has some kind of virtual memory classes to be able to distinguish be-

tween private (thread-private, node-private) and shared (near-shared, far-shared, and

block-shared) variables.



12

The quali�er may be speci�ed either as an attribute in the attribute list of a variable, or

as a simple statement.

It could be thought of an additional attribute nonshared or local which declares a variable

or an array to be local on one processor.

Example VI.1 :

real,dimension(:),pointer,nonshared :: aa

real,dimension(nmax) :: bb

nonshared(bb)

VII. User Control for Copying of Actual Arguments

The Fortran 90 Array Syntax allows a user to pass array sections to procedures. Passing

array sections results in copying the argument. As a compiler cannot know what kind of

array is passed to the procedure (array or array section), it might always result in copies.

This of course is very much performance decreasing, especially if large arrays are passed.

There should be a possibility for a user to control the way array arguments are passed to

procedures via both explicit and implicit interfaces. This results in performance improve-

ment by avoiding copies where not necessary.

Explicit Interfaces :

Using explicit interfaces, copying of arguments should be assessable by the user himself

via a quali�er, while the default value without quali�er is the usual behaviour as we have

it now. The quali�er could be added to the attribute list of the argument declaration part

of the procedure.

Example VII.1.

subroutine sub(a,b)

real,dimension(:),nocopy :: a,b

...

end subroutine sub



13

Implicit Interfaces :

Implicit interfaces do not cause any problems if already compiled Fortran 77 programs

(e.g. Libraries) (compiled with a Fortran 77 compiler) are used, because in Fortran 77,

array sections are not known.

External Fortran 90 procedures with arguments having the pointer attribute or with de-

rived type arguments require explicit interfaces anyway to be possible. Therefore the

argument passing again will be managed via the 'nocopy' attribute within the interface.

Fortran 90 subprograms having arrays as dummy arguments can be called via implicit

interfaces. But as Fortran 90 allows passing array sections, the compiler cannot know

wether the argument has to be copied or not.

Sometimes a user has got to use implicit interfaces in his program for some reason. This

causes copying of the array arguments, wether array sections are passed or not. And

copying of arguments is expensive.

Therefore even for implicit interfaces it has to be controllable by the user to specify a

procedure to be called by reference.

This can be done either by prohibiting passing array sections to procedures (If required,

the user has to make an explicit copy of the argument himself) or by a statement like

CALL BY REFERENCE which can be speci�ed for several Fortran 90 procedures and

will simply be ignored for others.

Example VII.2. :

A very important example for the problem is the Fortran 90 interface for MPI.

In the Fortran 90 interface for MPI the type of one argument very often is users choice. For

example if sending a message, this message does not have to be of an instrinsic type, but

can also be of user de�ned type. The message to be sent is passed to the sending routine

as an argument. These user de�ned types of course are not known at compile time of the

MPI Library. Therefore no explicit interfaces can be used for the MPI interface because

argument passing via explicit interfaces results in argument type checking of actual and

dummy arguments. The only restriction is a sequence of the object components in the

memory to make a call by reference possible and avoid copies. Implicit interfaces do not

bother on the types of the arguments. But as soon as arrays are passed, it is possible to

pass array sections, therefore passing arrays will probably always result in copies.

MPI works with references of objects and therefor provides a procedure to determine the

address of an object. If an array a is passed to a subroutine sub1 and a copy of the

argument is made, another process which wants to work on a via its reference will not get

the original reference of a but of its copy within the subroutine sub1 if it is called in some

nested context within sub1.

This shows another important reason for the need of a user de�nable call by reference,



14

apart from performance advantages.

VIII. Quali�er noloop for data types

The noloop quali�er gives the compiler the hint, that only linear lists without recursions

are built up with the data type containing the quali�er.

The quali�er can be used e.g. if recursive data types are de�ned which are to be used for

creating trees or linked lists without recursions.

Example VIII.1 :

type mytype

integer :: counter

type(mytype),pointer,noloop :: next

end type mytype


