
1

Class inheritance and dynamic binding polymorphism in Fortran 2000

ISO/IEC JTC1/SC22/WG5 N1188

A. Fortran 2000 requirements submission

Number: 88

Submitted By: AFNOR

Status: For Consideration

References:

1. S. Barbey, M. Kempe and A. Strohmeier, Object-Oriented Programming with

Ada 9X, http://lglwww.epfl.ch/Ada/9X/OOP-Ada9X.html

Basic Functionality: We propose to supplementFortran with two object-oriented mech-
anisms: class inheritance and dynamic binding polymorphism. The proposed ex-
tensions are borrowed from Ada 95 with a syntax more compatible with the Fortran

culture.

Rationale: Object orientation is required to transfer information in a consistent way
between components of large software projects. Technological objets can be mapped

into Fortran-2000 objects and transferred from parts of a large software to others.
An object in Fortran-2000 is simply an extensible derived type with its information
hidden using a \PRIVATE" attribute. This information is reached through methods,
i.e. public procedures belonging to the same module.

Estimated Impact: The number of extensions is kept as small as possible in order
to speed-up the Fortran-2000 compiler development and to avoid complexifying the
language. Dynamic binding polymorphismwill be implemented using the dispaching

mechanism of Ada-95 and will solve many problems associated with the strong
typing character of Fortran-90. Inheritance and dispaching will be implemented
using only two new statements (INHERIT and CLASS) and with the introduction of

class transformation functions.

Detailed Speci�cations:

B. Type extension and inheritance

Type extension is the mechanism used to add components to a TYPE statement. Type

extension and inheritance are accomplished using only one statement: INHERIT. Only

derived types with the statement INHERIT can be extended. An extensible type always
extends the information contained in the existing type indicated after the INHERIT word.

If the statement INHERIT is not followed by a type, a pre-de�ned root type is assumed.

The root type is a pre-de�ned type with no information included. Any extensible type

ISO/IEC JTC1/SC22/WG5 N1188 2

inherit from the root type or from an existing user-de�ned extensible type. Multiple

inheritance is not allowed. The example found in section 4.2 of Ref.(1) is now written:

TYPE HUMAN

INHERIT

CHARACTER(LEN=4) :: FIRST_NAME

END TYPE HUMAN

TYPE MAN

INHERIT HUMAN

LOGICAL :: BEARDED=.FALSE.

END TYPE MAN

TYPE WOMAN

INHERIT HUMAN

END TYPE WOMAN

In this example, both types MAN and WOMAN are derived from HUMAN. MAN extends HUMAN

by adding a new data �eld, BEARDED.

There is no need to include SUPER and SELF indirections with this model because

the receiver is explicitely written in the method parameters. Depending on its type, the
corresponding method will be activated.

However, a type transformation function is requested: If OBJ2 is of type MAN (a super
type of HUMAN), then the function HUMAN(OBJ2) have the POINTER attribute and returns a
corresponding object of type HUMAN. The type transformation function own an important
behaviour: If the type transfor mation function is applied on a variable which is not a sub-
type or which is not a type corresponding to the name of the function, then the function

returns an empty type. If OBJ2 is of type MAN, then WOMAN(OBJ2) returns an empty type
(since MAN and WOMAN are distincts). Similarly, if OBJ3 is of type HUMAN, then MAN(OBJ3)

or WOMAN(OBJ3) returns an empty type (since OBJ3 is a super-type of MAN and WOMAN).
This feature will be used to test the the type or super-type membership of a variable.
Note that type transformation functions and also exists in Ada-95.

Each type belonging to an extensible hierarchy own a distinct kind number. The
empty type have its KIND equal to -1. A new intrinsic (and elemental) function named

CLASS KIND is available to obtain the KIND parameter (an integer value) correspond-

ing to a scalar variable. If OBJ2 is of type MAN, then CLASS KIND(MAN(OBJ2)) and

CLASS KIND(HUMAN(OBJ2)) are both functions returning positive kind numbers. Similarly,

CLASS KIND(WOMAN(OBJ2)) is a function returning -1 (since WOMAN(OBJ2) is empty).

In the following example, an extensible type is de�ned as a public de�ned type with a
private internal structure. Information within this structure is reached through standard

Fortran-90 generic procedures:

MODULE OBJ_PACK

PRIVATE

PUBLIC :: TABLE_OBJ,OBJOP,OBJACT,OBJDES,OBJCL,ASSIGNMENT(=)

TYPE TABLE_OBJ

ISO/IEC JTC1/SC22/WG5 N1188 3

INHERIT

PRIVATE

CHARACTER(LEN=12) :: HNAME

LOGICAL :: LHEAD

INTEGER :: MODE,NTABLE

TYPE(NODE),POINTER,DIMENSION(:) :: PNEXT

END TYPE TABLE_OBJ

TYPE NODE

...

END TYPE NODE

INTERFACE OBJOP

MODULE PROCEDURE OBJOP

END INTERFACE

INTERFACE OBJACT

MODULE PROCEDURE OBJACT

END INTERFACE

INTERFACE OBJDES

MODULE PROCEDURE OBJDES

END INTERFACE

INTERFACE OBJCL

MODULE PROCEDURE OBJCL

END INTERFACE

INTERFACE ASSIGNMENT(=)

MODULE PROCEDURE OBJEQ

END INTERFACE

!

CONTAINS

!

SUBROUTINE OBJOP(PFIRST,IMODE)

TYPE(TABLE_OBJ) :: PFIRST

INTEGER,OPTIONAL :: IMODE

PFIRST%MODE=IMODE

...

END MODULE OBJ_PACK

Let us now assume that this object model is not su�cient for a speci�c project and

that a SIGNATURE �eld should be added in the object attributes. A new object can be
de�ned with an extended type TABLE OBJ 2 together with new OBJOP and ASSIGNMENT(=)

procedures to manage the SIGNATURE �eld:

MODULE OBJ_PACK_2

! use the module containing TABLE_OBJ

USE OBJ_PACK

PRIVATE

ISO/IEC JTC1/SC22/WG5 N1188 4

PUBLIC :: TABLE_OBJ_2,OBJOP,OBJACT,OBJDES,OBJCL,ASSIGNMENT(=)

TYPE TABLE_OBJ_2

INHERIT TABLE_OBJ

PRIVATE

CHARACTER(LEN=12) :: SIGNATURE

END TYPE TABLE_OBJ2

INTERFACE OBJOP

MODULE PROCEDURE OBJOP_2

END INTERFACE

INTERFACE ASSIGNMENT(=)

MODULE PROCEDURE OBJEQ1,OBJEQ2

END INTERFACE

!

CONTAINS

!

SUBROUTINE OBJOP_2(PFIRST,MODE,SIGNATURE)

TYPE(TABLE_OBJ_2) :: PFIRST

INTEGER,OPTIONAL :: MODE

CHARACTER(LEN=12),OPTIONAL :: SIGNATURE

IF(PRESENT(SIGNATURE)) THEN

PFIRST%SIGNATURE=SIGNATURE

ELSE

PFIRST%SIGNATURE=' '

ENDIF

CALL OBJOP(TABLE_OBJ(PFIRST),MODE) ! Use type transformation

! function

END SUBROUTINE OBJOP_2

!

SUBROUTINE OBJEQ1(PFIRST,PFIRST2)

TYPE(TABLE_OBJ_2),INTENT(INOUT) :: PFIRST

TYPE(TABLE_OBJ),INTENT(IN) :: PFIRST2

CALL OBJEQ(TABLE_OBJ(PFIRST),PFIRST2)

PFIRST%SIGNATURE=' '

END SUBROUTINE OBJEQ1

!

SUBROUTINE OBJEQ2(PFIRST,PFIRST2)

TYPE(TABLE_OBJ_2),INTENT(INOUT) :: PFIRST

TYPE(TABLE_OBJ_2),INTENT(IN) :: PFIRST2

CALL OBJEQ(TABLE_OBJ(PFIRST),TABLE_OBJ(PFIRST2))

PFIRST%SIGNATURE=PFIRST2%SIGNATURE

END SUBROUTINE OBJEQ2

END MODULE OBJ_PACK_2

This extended type is next used from within our project as

ISO/IEC JTC1/SC22/WG5 N1188 5

USE OBJ_PACK_2

TYPE(TABLE_OBJ_2) :: PTYP2,PTYP3

INTEGER,POINTER :: IP

CALL OBJOP(PTYP2,1,'SIGN_DATA') ! 'SIGN_DATA' is the SIGNATURE

CALL OBJACT(TABLE_OBJ(PTYP2),'ITEM-1',IP)

PTYP3=PTYP2

...

Note that a call of the form CALL OBJACT(PTYP2,'ITEM-1',IP) would be illegal be-

cause the procedure OBJACT is de�ned for TABLE OBJ derived types only (the strong typing

of Fortran-90 is preserved). This di�culty is solved by the polymorphism mechanism de-

scribed in the next section.

C. Dispatching

The di�culty presented at the end of the previous section is solved by replacing the

statement
TYPE(TABLE_OBJ_2) :: PTYP2

with

CLASS(TABLE_OBJ) :: PTYP2

and by setting PTYP2 to type TABLE OBJ 2 using an auto-specialization mechanism. Here,
we note the addition of the second statement: CLASS.

A class in Fortran-2000 is similar to a class in Ada-95. It is an open-ended hierarchy of
types, collecting in a unique declaration an extensible type and all the sub-types derived
from this type. All types belonging or extended from a particular extensible type ETYPE
belong to a derivation class CLASS(ETYPE) of ETYPE. For example, a variable T1 can be
declared to be an element of the class HUMAN using the following declaration:

CLASS(HUMAN) :: T1

In this case, T1 can be whether a HUMAN, a MAN or a WOMAN. The correct type is selected

dynamically, at execution time, as a function of the software requirements.

Note that a declaration of the form

TYPE(HUMAN) :: T2

does not have the same meaning as the CLASS declaration, since T2 can only hold the

instance variables and the methods of an HUMAN. On the other hand, T1 can hold the

instance variables and the methods of a MAN or of a WOMAN. Finally, note that any extensible
type can be contained in a variable decla red as root class:

CLASS() :: T3

ISO/IEC JTC1/SC22/WG5 N1188 6

Polymorphismand dynamic binding capabilities are supported on Fortran-2000 through

two powerful mechanisms:

a) Auto-specialization: This is the capability of a extensible type declared with the

CLASS statement to become more and more specialized as data �elds belonging to

its sub-types are used or as methods belonging to its sub-types are called (however,

it cannot become less specialized).

b) Method dispatching: This is the capability of a extensible type declared with the

CLASS statement to be the receiver of methods belonging to this type or belonging

to its super-types. In the latter case, the type transformation function is called

automatically.

Consider the following example in which extended types T01 to T06 are de�ned with

corresponding methods:

(root) super-type

| ||

T01 with methods: get_info ||

| put_info \/

| method1 sub-type

| |

T02 with methods: get_info T03 with methods: put_info

put_info | method3

method2 |

|

| | |

T04 T05 T06 with methods: method4

If a variable OBJ is declared as

CLASS(T01) :: OBJ

then OBJ is initially of type T01. Its type can be subsequently changed to T02 or T03

depending on which extended data �elds are used or which methods are called. If its
type is set to T03, it can subsequently be changed to T04, T05 or T06 (but it cannot be

changed back to type T02 or T03). This is the auto-specialization mechanism. If OBJ is

declared with the DIMENSION attribute, each element of the OBJ array can have a di�erent
specialization.

At any time, the membership of OBJ can be checked using operations of the form:

IF(CLASS_KIND(T02(OBJ))/=-1) THEN

or

ISO/IEC JTC1/SC22/WG5 N1188 7

IF(CLASS_KIND(T03(OBJ))/=-1) THEN.

If the variable OBJ is set to type T03, then statements CLASS KIND(T01(OBJ)) and

CLASS KIND(T03(OBJ)) are elemental function returning positive kind values. Statements

CLASS KIND(T02(OBJ))and CLASS KIND(T06(OBJ))are elemental functions returning -1.

If the variable OBJ is �nally set to type T06 and a call of the form

CALL put_info(OBJ,PAR1,PAR2)

is performed, then a check is done to see if the method put info can operate on instances

of type T06. Since this is not the case, a check is done in the next super-type T03. Here,

the put info method is found and the previous call is automatically transformed into

CALL put_info(T03(OBJ),PAR1,PAR2)

Similarly, a call of the form

CALL get_info(OBJ,PAR1,PAR2)

is automatically transformed into

CALL get_info(T01(OBJ),PAR1,PAR2)

Finally, if OBJ is set to type T03 and if a call of the form

CALL method4(OBJ,PAR3)

is performed, then the type of OBJ is automatically specialized to type T06 before the call
is performed.

These are examples of the method dispatching mechanism.

Note 1: A procedure can have many parameters de�ned with the CLASS statement.

Multi-methods are therefore allowed in Fortran-2000.

Note 2: A CLASS declaration can be combined with the POINTER attribute.

Note 3: A \dispatching failure" message is issued in cases where the run-time system

is unable to resolve the request (e.g., if a method belonging simultaneously to two
sub-types is called; in this case, the run-time system is unable to chose the sub-type

into which to specialize).

ISO/IEC JTC1/SC22/WG5 N1188 8

D. Alternative syntax of the above proposal

Instead of using class transformation functions \�a la Ada", one could introduce a single

intrinsic prede�ned POINTER function

SUPER_(OBJECT[,KIND])

whose value is pointing on the direct super-type component of OBJECT if the parameter

KIND is absent, or on the component of the super-type component speci�ed by KIND if

present. If OBJECT is not in a valid sub-type of the speci�ed class, the \void" object is

returned (that is, CLASS KIND(SUPER (OBJECT[,KIND])) is -1).

The proposed name SUPER is ending with \ " in order to keep the simple name

\SUPER" familiar to Object-Oriented people, though avoiding conicts with existing iden-

ti�ers, as \ " was not a legal character in the FORTRAN-77 standard.

