ISO/IEC Technical Report

ISO/IEC JTC1 PDTR 20.02.01.04
Enhanced Derived Type Facilities
in
Fortran
An extension to IS 1539-1 : 1996

{Produced 2-Jul-96}

THIS PAGE TO BE REPLACED BY ISO CS

ISO/IEC PDTR 20.02.01.04 © ISO/IEC

Contents

1. GENERAL 1
1.1 Scope 1
1.2 Normative References 1

2. RATIONALE 2

3. REQUIREMENTS 3
3.1 Allocatable Attribute Regularization 3
3.2 Allocatable Arrays as Dummy Arguments 3
3.3 Allocatable Array Function Results 4
3.4 Allocatable Array Components 5

4. REQUIRED EDITORIAL CHANGES TO ISO/IEC 1539-1 : 1996 8

ISO/IEC PDTR 20.02.01.04

Foreword

[This page to be provided by ISO CS]

ISO/IEC PDTR 20.02.01.04 © ISO/IEC

Introduction

This technical reportiefines a proposed extension to theta-typing facilities of the programming
languagd~ortran.The current Fortrafanguage is defined by tleternational standard ISO/IEC 1539-
1:1996. Thidechnical reporhasbeenprepared by ISO/IEC JTC1/SC22/WGbe technical working
group for the Fortran language. The language extension defined by this technical iefeortiésl to be
incorporated in the next revision of tR@rtranlanguage without change except where experience in
implementation andisage indicatethat changesare essential. Suahanges will only be madshere
serious errors in the definition or difficulties in integration with other new facilities are encountered.

This extension is being defined by means of a techmigpbrt inthe first instance to allow early
publication of the proposed definitiohhis is to encourage eatipplementation of importaréxtended
functionalities in a consistent manner and will allow extensive testing of the design efteheed
functionality prior to its incorporatiointo the language by way of the revision of the international
standard.

TECHNICAL REPORT © ISO/IEC ISO/IEC PDTR 20.02.01.04

Information technology - Programming Languages - Fortran
Technical Report: Data-type enhancements

1. General
1.1 Scope

This technical reportiefines a proposed extension to thea-typing facilities of the programming
languagd~ortran.The current Fortrafanguage is defined by tlieternational standard ISO/IEC 1539-
1:1996. The proposed extension allows components of derived types to be allocatable arrays.

Section 2 of this technical report containgeneral informabut precise description of the proposed
extended functionalitieS his isfollowed by detailed editorial changes which if applied todheent
international standard would implement the revised language definitions.

1.2 Normative References

The following standards contain provisiomgich, through reference in thisxt, constitutgrovisions
of this technicateport. Atthe time ofpublication, the editions indicatedere valid. Allstandards are
subject to revision, and parties tmreements based on this technioghort areencouraged to
investigate the possibility of applying the most recent editions ofsthiedardsindicated below.
Members of IEC and ISO maintain registers of currently valid International Standards.

ISO/IEC 1539-1 : 199@nformation technology - Programming Languages - Fortran

TECHNICAL REPORT © ISO/IEC ISO/IEC PDTR 22.02.01.04

2. Rationale

There are many situations when programming in Fortran where it is necessary to allocate and deallocate
arrays ofvariable sizebut the full power of pointearrays isunnecessary and undesirable. In such
situations the abilities of a pointarray to aliasotherarraysand to have non-unit (and variable at
execution time)strides are unnecessary, atgy are undesirable because this limits optimization,
increases the complexity of th@ogram, and increases thikelihood of memoryleakage. The
ALLOCATABLE attribute solves this problerbut cancurrentlyonly be usedor locally storedarrays,

a very significant limitation. The most pressimged isfor this to beextended taarray components;

without allocatablearray components it is overwhelminggifficult to create opaqudatatypes with a

size that varies at runtime without serious performance penalties and memory leaks.

A major reason foextending théALLOCATABLE attribute toinclude dummyarguments and function
results is to avoid introducing further irregularities into the language. Furthermore, allodatatig
arguments improve the ability tode inessentialletails during problem decomposition by allowing the
allocation and deallocation to occur in caltbprogramswhich is often the mostatural position.
Allocatable function results ease ttask of creatingarray functions whoseshape is notletermined
initially on function entry, without negatively impacting performance.

TECHNICAL REPORT © ISO/IEC ISO/IEC PDTR 22.02.01.04

3. Requirements

The following subsections contain a general description of the extensions required to the syntax and
semantics of the currenfortran language to provide facilitiesfor regularization of the
ALLOCATABLE attribute.

3.1 Allocatable Attribute Regularization

In order to avoid irregularities in the language, the ALLOCATABitEibuteneeds to be allowed for
all dataentitiesfor which it makes senseThus, this attributevhich was previouslhlimited to locally
stored array variables is now allowed on

« array components of structures,

e dummy arrays, and

» array function results.

Allocatable entities remain forbidden from occurring in all plaglkesre they may be storage-associated
(COMMON blocks and EQUIVALENCE statements). Allocatableay components magppear in
SEQUENCE types, butobjects of such typesare then prohibited from COMMON and
EQUIVALENCE.

The semantics for the allocation status of an allocatable entity remain unchanged:

« If it is in a main program ohasthe SAVE attribute, it has an initial allocatiostatus of not
currently allocated. Its allocation status changes only as aesult of ALLOCATE and
DEALLOCATE statements.

» If it is a modulevariable without the SAVEttribute,the initial allocationstatus isnot currently
allocated and the allocati®statusmay becomanot currently allocated (by automatic deallocation)
whenever execution of a RETURN or END statement results in no active procedure having access to
the module.

» Ifitis a local variable (not accessed by use association) and does not have thatBdte, the
allocation statusbecomes noturrently allocated on entry to the outermost proceenmeh has
access to it. Omxit from this procedure it is automatically deallocated and the allocstiidns
changes to not currently allocated.

Since an allocatable entity cannot be an alias for an array section (unlike pointers arrays), it may always
be stored contiguously.

3.2 Allocatable Arrays as Dummy Arguments

An allocatable dummy argument array shall have associated witladt@alargument which iglso an
allocatable array.

On procedure entry the allocatistatus of arallocatabledummyarray becomeshat ofthe associated
actual argument. the dummyargument is not INTENT(OUT) antthe actualargument is currently
allocated, the value of the dummy argument is that of the associated actual argument.

TECHNICAL REPORT © ISO/IEC ISO/IEC PDTR 22.02.01.04

While the procedure iactive, an allocatabldummyargumentarray thatdoes not havéNTENT(IN)
may be allocated, deallocated, definedbecome undefined. Oneey of these events have occurred
no reference to the associated actual argument via another alias is permitted .

On exit from the routine thactual argument haghe allocationstatus ofthe allocatabledummy
argument (there is no change, of course, if the allocathfteny argument has INTENT(IN)). The
usual rules apply for propagation of the value from the dummy argument to the actual argument.

No automatic deallocation of the allocatabiemmy argument occurs as a result efecution of a
RETURN or END statement in the procedure of which it is a dummy argument.

Notethat an INTENT(IN) allocatabldummyargumentarray cannot havéts allocationstatusaltered
within the called procedureThusthe main difference betweenich adummyargument and a normal
dummy array is that it might be unallocated on entry (and throughout execution of the procedure).

Example

SUBROUTINE LOAD(ARRAY, FILE)
REAL, ALLOCATABLE, INTENT(OUT) :: ARRAY(, 3, 2)
CHARACTER(LEN=*), INTENT(IN) :: FILE
INTEGER UNIT, N1, N2, N3
INTEGER, EXTERNAL :: GET_LUN
UNIT = GET_LUN()
OPEN(UNIT, FILE=FILE, FORM="UNFORMATTED")
READ(UNIT) N1, N2, N3
ALLOCATE(ARRAY (N1, N2, N3))
READ(UNIT) ARRAY
CLOSE(UNIT)
END SUBROUTINE LOAD

3.3 Allocatable Array Function Results
An allocatable array function shall have an explicit interface.

On entry to an allocatablarray function, the allocatiorstatus ofthe result variabldbecomes not
currently allocated.

The function result variable may be allocated and deallocated any nuntineetluring the execution
of the function; however, it shall be currently allocated and hadefiaed value on exit from the
function. Automatic deallocation of the result variabtees notoccurimmediately onexit from the
function, but after execution of the statement in which the function reference bccurs.

! This storage can thus be reclaimed at the same time as that of array temporaries and theergslidit of
shape-spetunctions referenced in the expression.

TECHNICAL REPORT © ISO/IEC ISO/IEC PDTR 22.02.01.04

Example

FUNCTION INQUIRE_FILES_OPEN()
LOGICAL,ALLOCATABLE :"INQUIRE_FILES_OPEN(;)
INTEGER 1,J
LOGICAL TEST
DO 1=1000,0,-1

INQUIRE(UNIT=I,0PENED=TEST,ERR=100)
IF (TEST) EXIT

100 CONTINUE
END DO
ALLOCATE(INQUIRE_FILES_OPEN(0:))

DO J=0,|
INQUIRE(UNIT=J,0PENED=INQUIRE_FILES_OPEN(J))

END DO

END

3.4 Allocatable Array Components

Allocatablearray componentsare defined to baultimate componentsjust as pointecomponentsare,

because the value (if any) is stored separately frometiteofthe structure and this storagies not
exist (because tharray is unallocated)when thestructure is created. Awith ultimate pointer
components, variables containing ultimate allocatallay componentsre forbidden from appearing
directly in input/output lists - the user shall list any allocatable array or pointer component for i/o.

As per allocatablearrays currently, they are forbidden from storage association contexts (so any
variable containing an ultimate allocatabégray component canno@ppear in COMMON or
EQUIVALENCE); this maintains the clarity and optimizability of allocatableays. However,
allocatablearray componentsare permitted in SEQUENCE typewshich can be used as globglpe
definitions without recourse to modules.

In a structure constructor for a derived type containing an allocatable array component, the expression

corresponding to the allocatable array component must be one of the following:

» an argumentless reference to the intrinsic fundtigiLL(); this signifies that the allocatable array
component is to have an allocation status of not currently allocated.

e avariable that is itself an allocatable array; the allocatable array component receives the allocation
status of the variable, and, if allocated, the shape and value of the variable.

» any other array expression; the allocatable array component has an allocation status of currently
allocated with the same shape and value as the expression.

For intrinsic assignment of objects of a derived type containing an allocatable array component, the
allocatable array component of the variable on the left-hand-side receives the allocation status and, if
allocated, the shape and value of the corresponding component of the expression. This occurs as if the
following sequence of steps is carried dut:

¢ This ensures that any pointers that point to the previous contents of the allocatable array component of the
variable become undefined. Implementations are thus free to skip the allocation-deallocation (or not) when the

ISO/IEC PDTR 22.02.01.04

TECHNICAL REPORT © ISO/IEC

If the component of the variable is currently allocated, it is deallocated..
If the corresponding component of the expression is currently allocated, the component of the

2.
variableis allocated with the same shape. The value of the component of the expression is then
assigned to the corresponding component of the variable using intrinsic assignment.

=

component of the variable happens to be allocated with the same shape as the corresponding component of the

expression, whichever is most efficient.

TECHNICAL REPORT © ISO/IEC ISO/IEC PDTR 22.02.01.04

Example

MODULE REAL_POLYNOMIAL_MODULE
TYPE REAL_POLYNOMIAL
REAL, ALLOCATABLE :: COEFF()
END TYPE
INTERFACE OPERATOR(#)
MODULE PROCEDURE RP_ADD_RP, RP_ADD_R
END INTERFACE
CONTAINS
FUNCTION RP_ADD_R(P1,R)
TYPE(REAL_POLYNOMIAL) RP_ADD_R, P1
REAL R
INTENT(IN) P1,R
RP_ADD_R%COEFF = P1%COEFF
RP_ADD_R%COEFF(1) = P1%COEFF(1) + R
END FUNCTION
FUNCTION RP_ADD_RP(P1,P2)
TYPE(REAL_POLYNOMIAL) RP_ADD_RP, P1, P2
INTENT(IN) P1, P2
INTEGER M
ALLOCATE(RP_ADD_RP(MAX(SIZE(P1%COEFF), SIZE(P2%COEFF))))
M = MIN(SIZE(P1%COEFF, P2%COEFF))
RP_ADD_RP(:M) = P1%COEFF(:M) + P2%COEFF(:M)
IF (SIZE(Pl%COEFF)>M) THEN
RP_ADD_RP(M+1:) = P1%COEFF(M+1:)
ELSE IF (SIZE(P2%COEFF)>M) THEN
RP_ADD_RP(M+1:) = P2%COEFF(M+1:)
END IF
END FUNCTION
END MODULE

PROGRAM EXAMPLE
USE REAL_POLYNOMIAL_MODULE
TYPE(REAL_POLYNOMIAL) P, Q, R

P = REAL_POLYNOMIAL((/4,2,1/)) I Set P to (X**2+2X+4)
Q = REAL_POLYNOMIAL((/-1,1/)) I Set Q to (X-1)
R=P+Q I Polynomial addition
PRINT *, 'Coefficients are: ', R%COEFF

END

TECHNICAL REPORT © ISO/IEC ISO/IEC PDTR 22.02.01.04

4. Required editorial changes to ISO/IEC 1539-1 : 1996

The following subsections contain the editorial changekSO/IEC 1539-1 : 199@equired to include
these extensions in a revised definition of the international standard for the Fortran language.

Note, where new syntax rules are inserted theyamgbered with a decimal addition to the rule number
that precedes them. In thectual document these will have to Ipeoperly numbered in theevised
sequence.

Comments about each edit to the standard appear within braces {}.

{Page and line number references in these edits are to the March 1996 version of X3J3/96-007.}

4.4, first paragraph, list item (2) [37:42]
Change “nonpointer component that is of derived type,”
To: “component that is of derived type and is not a pointer or allocatable array,”

{The direct component tree stops at allocatable arrays, just as with pointers.}

4.4, second paragraph [38:1]
Insert “, are allocatable arrays” after “of intrinsic type”.
{This makes allocatable array components iticmate components, just as pointer components.}

4.4.1, R42&omponent-attr-spec [38:42+]
add new production to ruleof ALLOCATABLE".
{Allow ALLOCATABLE attribute in component-def-strht

R427, sixth constraint [39:13]
change “the POINTER attribute is not”
to “neither the POINTER attribute nor the ALLOCATABLE attribute is”

{Do not require arexplicit-shape-spec-listhen ALLOCATABLE is specified.}

Two new constraints at end of list [39:16+]

Add:
“Constraint: If the ALLOCATABLE attribute is specified for a component, the component shall be a
deferred-shape array.
Constraint: POINTER and ALLOCATABLE shall not both appear in the samgonent-def-stmt
{Require ALLOCATABLE components to be deferred-shape arrays. Ensure POINTER and
ALLOCATABLE are exclusive.}

R428component-initialization [39:29+]
Add new constraint to end of list:
“Constraint: If the ALLOCATABLE attribute appears in th@omponent-attr-spec-list
component-initializatiorshall not appear.”
{Forbid default initialization - allocatable array components are already effectively default-initialized to “not
currently allocated”.}

TECHNICAL REPORT © ISO/IEC ISO/IEC PDTR 22.02.01.04

4.4.1, paragraph beginning “If ts&=QUENCE statements” [39:38-39]

add “or allocatable arrays”

after both occurrences of “are not pointers”.
{Allocatable array components, like pointer components, stop a SEQUENCE type from being a standard
(numeric or character) sequence type.}

4.4.1, after Note 4.25, [42:20+]
add new example:
“Note 4.25.1
A derived type may have a component that is an allocatable array. For example:
TYPE STACK

INTEGER :: INDEX
INTEGER, ALLOCATABLE :: CONTENTS(:)
END TYPE STACK

For each variable of tyf&TACK the shape of compondBONTENTS determined by execution of
an ALLOCATE statement or evaluation of a structure constructor (0SJBe&K that is associated with a
dummy argument.”
{Example needed.}

4.4.4, add new paragraphs to end of section: [45:19+]

“If a component of a derived type is an allocatable array, the corresponding constructor expression
shall either be a reference to the intrinsic fundtidiLL() with no arguments, an allocatable array, or shall
evaluate to an array. If the expression is a reference to the intrinsic fuMidtidrf), the corresponding
component of the constructor has a status of not currently allocated. If the expression is an allocatable array,
the corresponding component of the constructor has the same allocation status as that allocatable array and, if
it is allocated, the same shape and value. With any other expression that evaluates to an array the
corresponding component of the constructor has an allocation status of currently allocated with the same
shape and value as the expression.

Note 4.34.1:
When the constructor is an actual argument, the allocation status of the allocatable array component is
available through the associated dummy argument.

If a derived type contains an ultimate allocatable array component, its constructor shall not apgata-as a
stmt-constantn a DATA statement (5.2.9), as amitialization-expr in an entity-decl (5.1), or as an
initialization-exprin acomponent-initializatiori4.4.1).”

{Allow structure constructors for derived types with allocatable array components, and define their
semantics.}

5.1, eighth constraint, begins “The PARAMETER attribute shall not™: [48:12]

After “allocatable arrays,”

Add “derived-type objects with an ultimate component that is an allocatable array or pointer,”
{forbid such objects from having the PARAMETER attribute - unnecessary since it is impossible to construct
a value for them as an initialization expression. But that is pretty obscure so it is better to spell it out
explicitly.}

TECHNICAL REPORT © ISO/IEC ISO/IEC PDTR 22.02.01.04

5.1, third-last constraint, beginiitialization shall not appear”: [48:33]

after “an allocatable array,”

add “a derived-type object containing an ultimate allocatable array component,”
{forbid such types from havingiritialization. This is also unnecessary, but clearer than leaving it to an
obscure consequence.}

5.1.2.4.3, second paragraph [65:12]
After “An allocatable array is”, change “a named array” to “an array”.
{Do not insist on allocatable arrays being simple names, i.e. allow components.}

5.1.2.4.3, third paragraph, begins “The ALLOCATABLE attribute may be”: [65:15-19]

Replace paragraph with:

“The ALLOCATABLE attribute may be specified for an array in a type declaration statement, a
component definition statement, or an ALLOCATABLE statement (5.2.6). An array with the
ALLOCATABLE attribute shall be declared withdeferred-shape-spec-list a type declaration statement,
an ALLOCATABLE statement, a component definition statement, a DIMENSION statement (5.2.5), or a
TARGET statement (5.2.8). The type and type parameters may be specified in a type declaration statement
or a component definition statement.”

5.2.10, R533-R537 sead constraint [61:40]

Change “or an allocatable array”

To “an allocatable array, or a variable of a derived type that has an allocatable array as an ultimate
component”
{Forbid initialization of allocatable arrays via the DATA statement.}

5.4, R545 first constraint [66:2-3]
After: “, a pointer,”
Insert “an allocatable array, or”
After “is a pointer”

Delete “,".
{Do not allow derived types containing allocatable arrays in NAMELIST.}

5.5.1, R548 first constraint [66:40]

After “an allocatable array,”

Insert “an object of a derived type containing an allocatable array as an ultimate component,”
{Do not allow derived types containing allocatable arrays in EQUIVALENCE.}

5.5.2, R550 s@nd constraint [69:1]

After “allocatable array,”

Insert “an object of a derived type containing an allocatable array as an ultimate component,”
{Do not allow derived types containing allocatable arrays in COMMON.}

6.1.2, R612-R613, fourth constraint [75:14]
After “shall not have the POINTER attribute”
Insert “or the ALLOCATABLE attribute”
{We do not want to have arrays of allocatable array elements, one from each allocatable array component.}

10

TECHNICAL REPORT © ISO/IEC ISO/IEC PDTR 22.02.01.04

6.3.1.1, new paragraph at end of section [80:29+]

“If an object of derived type is created by an ALLOCATE statement, any ultimate allocatable
components have an allocation status of not currently allocated.”
{Specify allocation status of allocatable array components created by an ALLOCATE statement.}

6.3.1.2, new paragraph following the second paragraph [80:42+]

“An allocatable array that is a dummy argument of a procedure receives the allocation status of the
actual argument with which it is associated on entry to the procedure. An allocatable array that is an ultimate
component of a dummy argument of a procedure receives the allocation status of the corresponding
component of the actual argument on entry to the procedure.

{Specify initial status of allocatable dummy arrays. The second sentence is probably unnecessary.}

6.3.1.2, third paragraph [80:43]

After “that is a local variable of a procedure”

Insert “or an ultimate component thereof, that is not a dummy argument (or a subobject thereof)”
{Exclude allocatable dummy arrays from the initial “not currently allocated” status, and also from automatic
deallocation.}

6.3.1.2, third paragraph [81:1]
After “If the array”
Add “is not the result variable of the procedure (or a subaobject thereof) and”
{Exclude allocatable function results from automatic deallocation.}

6.3.3.1, second paragraph [83:10-13]
After “has the SAVE attribute,”
Add new list items and renumber rest of list:
(2) It is a dummy argument or an ultimate component thereof.
(3) It is a function result variable or an ultimate component thereof.
{Say that these cases retain their allocation status (and thus are excluded from automatic deallocation).}

6.3.3.1, before Note 6.18, [83:18+]

Add new paragraph:
“If a statement contains a reference to a function whose result is an allocatable array or a structure that
contains an ultimate allocatable array component, and the function reference is executed, an allocatable array
result and any allocated ultimate allocatable array components in the result returned by the function are
deallocated after execution of this statement.”
{Specify when a function result is deallocated. Perhaps this is not necessary.}

7.1.4.1, fifth paragraph [91:27]
After “returns a disassociated pointer”
Insert “or designates an unallocated allocatable array component of a structure constructor”
After “A disassociated pointer”
Insert “or unallocated allocatable array”
After “with the result” [91:30]
Insert “or by the corresponding component in a structure constructor”

11

TECHNICAL REPORT © ISO/IEC ISO/IEC PDTR 22.02.01.04

7.1.6.1. [94:6]
After “(3) A structure constructor where each component is an initialization expression”
Insert “and no component has the ALLOCATABLE attribute”

{Exclude structure constructors containing allocatable components from initialization expressions.}

7.5.1.5, paragraph after Note 7.43 [109:35-38]
After “nonpointer components” change “.” to
“that are not allocatable arrays. For allocatable array components the following sequence of operations is
applied:
1. If the component afariableis currently allocated, it is deallocated.
2. If the component afxpris currently allocated, the corresponding componevaridibleis
allocated with the same shape. The value of the comporestirdg then assigned to the
corresponding component\ariable using intrinsic assignment.”
{Specify semantics to be used for assignment of derived types containing allocatable array components. Note
that because pointers to deallocated objects become undefined, this definition does not rule out optimising
away the allocation-deallocation when the components are already allocatec with the same shape.}

7.5.1.5, After Note 7.44 [110:5+]
Add new note:
“Note 7.44.1:
If an allocatable array componentexforis not currently allocated, the corresponding componerdrible
has an allocation status of not currently allocated after execution of the assignment.”
{Note that assignments containing unallocated components are allowed and have the expected effect.}

9.4.2, paragraph after Note 9.26 [149:6]
After “If a derived type ultimately contains a pointer component”
Insert “or an allocatable array component”
{Exclude objects of derived type containing ultimate array components from appearing in i/o statements.}

12211 [192:14]
After “whether it is optional (5.1.2.6,5.2.2),”
Insert “whether it is an allocatable array (5.1.2.4.3),”

{ALLOCATABLE-ness of a dummy argument is a characteristic.}

12.2.2 [192:24-25]
After “whether it is a pointer”
Insert “or an allocatable array”
{ALLOCATABLE-ness of a function result is a characteristic.}
After “is not a pointer”
Insert “or an allocatable array”
{shape is not a characteristic for an allocatable array.}

12.3.1.1 item (2) [193:18]
After “assumed-shape array,”
Insert “an allocatable array,”

{Require explicit interface if there is an allocatable dummy array.}

12

TECHNICAL REPORT © ISO/IEC ISO/IEC PDTR 22.02.01.04

12.4.1.1 [201:21+]
Aiter the paragraph beginning “If a dummy argument is an assumed-shape array”
Add a new paragraph:

“If a dummy argument is an allocatable array the actual argument shall be an allocatable array and the types,
type parameters and ranks shall agree. It is permissible for the actual argument to have an allocation status of
not currently allocated.”

{Requirements for arguments associated with an allocatable dummy array.}

12.4.1.6, item (1) of first paragraph [203:28-29]

Replace “No action that affects the allocation status may be taken.”

With “Action that affects the allocation status of the entity or any part thereof shall be taken through
the dummy argument.”
{Allow ALLOCATE/DEALLOCATE via the dummy whilst prohibiting it via any other alias.}

12.4.1.6, item (2) of first paragraph [205:5]
After “If the pointer association status”
Insert “or the allocation status”
{After ALLOCATE/DEALLOCATE of the dummy, prohibit all other accesses to the actual argument.}

13.14.79,
After “a disassociated pointer” [259:26]
Insert “or unallocated allocatable array”
After “disassociated association status” [259:33]

Insert “or, when corresponding to an allocatable array component in a structure constructor, an
unallocated allocatable array”

Annex A, entry allocatable array” [293:12-13]

Change “A named array”

To “An array”

Add new sentence to end of entry “An allocatable array may be a named arrastroctare
component

Annex A, entry tirect component [295:38]
Change “nonpointer component that is of derived type”
To “component that is of derived type and is not a pointer or allocatable array,”

Annex A, entry titimate component [301:11-13]
After “is of intrinsic typé
Insert “, has the ALLOCATABLE attribute,”
After “does not have the POINTER attribute”
Insert “or the ALLOCATABLE attribute”

13

