International Standards Organisation

Parameterized Derived Types
in
Fortran

Technical Report defining extension to
ISO/IEC 1539-1 : 1996

{Produced 16/7/96 }

THIS PAGE TO BE REPLACED BY ISO CS

ISO/IEC TR Data - WD N1207

1: GENERAL

1.1 Scope

1.2 Normative References

2 : RATIONALE

3 : REQUIREMENTS

3.1 Description of parameterized derived type enhancements
3.1.1 The Type Definition
3.1.2 The Type Definition
3.1.3 Object declaration
3.1.4 The form of the Constructor
3.1.5 Type parameter value inquiry
3.1.6 Intrinsic assignment
3.1.7 Argument association and overload rules
3.1.8 Visibility and Scoping rules

4 REQUIRED EDITORIAL CHANGES TO ISO/IEC 1539-1 : 1996

4.1.1 Edits to implement parameterized derived types

4.1.2 Edits to implement parameter value inquiry

4.1.3 Edits to implement structure constructor

4.1.4 Additional edits to implement constructors as generic functions
4.1.5 Declaration of objects

© ISO/IEC

12

13

16
17

19

17

N1207 ISO/IEC TR Data - WD

Foreword

[This page to be provided by ISO CS]

ISO/IEC TR Data - WD N1207 © ISO/IEC

Introduction

This technical repordefines a proposed extension to tlata-typing facilities of the programming
languagefFortran. The current Fortratanguage is defined by thieternational standard 1SO/IEC
1539-1 : 1996. This technical report has been prepared by ISO/IEC JTC1/SC22/¢/&8hnical
working group forthe Fortran language. THanguage extension defined this technical report is
intended to bencorportated in the next revision of ti@rtranlanguage without change except
where experience in implementation amghge indicatethat changesare essential. Suathanges
will only be made wherserious errors ithe definition or difficulties in integration with other new
facilities are encountered.

This extension is being defined by means of a techmagabrt inthe first instance to allow early
publication of the proposed definitiofhis is to encourage earkynplementation of important
extended functionalities in a consistent mararat will allow extensive testing of the design of the
extended functionalityrior to its incorporatiorinto the language by way of the revision of the
international standard.

TECHNICAL REPORT © ISO/IEC N1207 ISO/IEC TR Data - WD

Information technology - Programming Languages -Fortran
Technical Report: Parameterized Derived Types

1 : General
1.1 Scope

This technical repordefines a proposed extension to tlata-typing facilities of the programming
languagefFortran. The current Fortratanguage is defined by theternational standard 1SO/IEC
1539-1 : 1996.The enhancementdefined in this technical reporextends the capability of
parameterization defined for intrinsic types to derived types.

Section 2 of this technical report containgemeral informabut precise description of the proposed
extended functionalitiesThis is followed by detailed editorial changes which if applied to the
current international standard would implement the revised language definitions.

1.2 Normative References

The following standards contain provisionshich, through reference in thigext, constitute
provisions of this technicakport. Atthe time ofpublication, the editions indicatedere valid. All
standards are subject tevision, and parties tagreements based on this techniegort are
encouraged to investigate the possibility of applying the most recent editions sfatitards
indicated below. Members dEC and ISOmaintain registers of currently valid International
Standards.

ISO/IEC 1539-1 : 199@nformation technology - Programming Languages - Fortran

TECHNICAL REPORT © ISO/IEC N1207 ISO/IEC TR Data - WD

2 : Rationale

Parameterized derived typeme required for two main reasons. Firstlythere are many
circumstances where a derived type is required to work together with intrinsic types where the
ability to parameterize theénd of thelatter and nothe former causes very considerable problems.

In onecase different versions of the program carsélected by the use of tiparameter but to
enable the derived type properly interwork a different type with a differamimemust be used.

This results in very clumsy anbhflexible programs and a significant programaintenance
overhead, substantially defeating the object of the kind parameterization. Secondly, there are a large
number of types where there isnaed tomanipulate objects where the only differermstween
various entities is in the size sbmeinternal component. For example, therare entities like

vectors thatay differ in the dimensionality of trepacethey span andherefore in the number of

reals that are involved in their representation, or in matrices that differ in their order. These are very
like the intrinsic character data type where data objects may differ in the nuntberacters in the

string andwherethis is specified by éengthparameter on the type. This is clearly preferable to
having multipleseparate typewhich differ only insuch a sizeleterminingproperty. Boththese
requirements are met by the addition of parameterized derived types to the language.

TECHNICAL REPORT © ISO/IEC N1207 ISO/IEC TR Data - WD

3 : Requirements

The following subsections contain a general description of the extensions required to the syntax and
semantics of the current Fortran language to provide for user defined parameterized derived types.

3.1 Description of parameterized derived type enhancements

There areseven mairareas ofanguage design where an extengaonh as this impacts tleisting
language and where syntax and semantics must be defined. These are:

. the definition of the type,

. declaration of objects of such a type,

. constructing a value of such a type,

. inquiring as to the value of a type parameter for an existing object of such a type,
. intrinsic assignment for objects of such a type,

. argument association and overload resolution, and

. the visibility and scoping rules.

Syntactic forms and semantic rules existering the use of parameterized intrinsic typeallibut
the first of these areas; for obvious reasons there is no type definition for an intrinsic type.

In this section the technical nature of the proposal in each of the abeas iscovered with
sufficient detail to indicate the essential nature of the proposed syntax and semanticsddrigs is
informally with the approach illustrated by examp¢her tharwith detailed syntactic and semantic
rules. The formal rulewiill be defined insubsequent sections in the form of proposed edits to the
current international standard fthve programming languadgeortranwhich would implement the
proposed extensions.

All parameters for intrinsic types are quantitiestygfe default integer. This technical report
proposes that parameters @arived types be similarlestricted at this time. However, tbetailed
form of the extension defined this technical report is suthat parameters afther types could be
added by further extension if that proves to be desirable.

The intrinsic types have parameters of two quite differeitires. There arhe static parameters
thatdetermine theature of thenachine representation. These all characterised faine intrinsic
types by the same paramebame KIND . This is used both fdhe keyword in théype-spe@nd as
the generic name of the parameter-value inquiry function for such a paragndbeparameters can
be used to resolve overloads.

The other parameter varietyhere the value is not necessastgtic,only applies intrinsically for
the character type. Herthe parameteLEN, determines the length or the numbecléracters in
the datum. As fokKIND , thenameLEN is also both the parameteeyword name and thgeneric
name of the inquiry function used to find the value of the parameter for an appropriate data object.

TECHNICAL REPORT © ISO/IEC N1207 ISO/IEC TR Data - WD

This technical reporéxtends parameterization derived types irsuch a way as to allofor any
number of bothsorts oftype parameter. It also introduce®ore generaktatic parameters for
derived types whicltan be used teesolve generic overloadsit which are not necessaril)KIND
type parameters. Type parameters that are not static arereaiigdtic type parameters.

<LK LLL<<< Start of Text option 1>>>>>>>>>>>>>>>>>>>>

Parameters are treated in a similar wayh® components of a derivéygpe. Howeverthis is not

necessarily meant to imply a similar implementatioodel. When viewed asomponents, the main
difference betweeparameters andomponents ighat parametetcomponents’are defined to be

‘read-only’ i.e. they cannot be accessed in such a way as to change their value.
<<<<<ggggggggg<<<<<<End of Text option 1>>>>>>>>>>>>>>>>>>>>

<<<<<L <K<K <<<<<Start of Text option 2 >>>>>>>>>>>>>>>>>>>>

This technical reporéxtends parameterization derived types irsuch a way as to allofor any
number of both sorts of type parameter. It also preserves the consistency rulekinatting name
for a type parameter is alfite generic name of an inquiry functitmat may be usedor inquiring

as to theactualtype parameter values for agiven object of gparameterized type. Thigovides

for full regularity of treatment between intrinsic and derived types.
<<<<<K<LKLLLLLK<<<<<<<ENd of Text option 2>>>>>>>>>>>>>>>>>>>>

<< gg<<<<<<<<Start of Text option 1 >>>>>>>>>>>>>>>>>>>>

3.1.1The Type Definition

The syntax optionally allows a list dummy type parameter names to hdded in parentheses
following the type-name in the type-definiticstatement. Theselummy type parameters are
permitted as primaries in the expressions used to specifitttifites othe variouscomponents of

the type. The type parameters must be specified in the body of the type definition in the same way as
for components. Type parameters, however, can only be specified asidefzG#HR

For example, the extended syntax would allow a type definition such as,

TYPE MATRIX(wkp,dim)

INTEGER :: wkp,dim
REAL(wkp),DIMENSION(dim,dim) :: element
ENDTYPE MATRIX

Wherewkp anddim aredummytype parameters. In thesxample thenature of the parameters is
determined implicitly.Thus sincewkp is used to determine th@ND of element it is implicitly
static and defaulinteger whilst sincelim is not used to determine tiReND of a component it is
implicitly declared to be nonstatic and default integer.

The above example could also be written as :-

TYPE MATRIX(wkp,dim)

INTEGER, STATIC :: wkp

INTEGER @ dim
REAL(wkp),DIMENSION(dim,dim) :: element
ENDTYPE MATRIX

wherewkp has now been declared explicitly to be static.

TECHNICAL REPORT © ISO/IEC N1207 ISO/IEC TR Data - WD

As indicated previously, the declarationvadp asSTATIC in the above example is not necessary
sincewkp is used to determine the kind of a comporard hencemust be static. The ability to
declarestatic parameterexplicitly is providedfor caseswhere it is required taise a parameter
(which is not used to determine the kind of a component) to resolve generic function overloads.

For example in,

TYPE T(d)
INTEGER, STATIC :: d
REAL :: element(d)
ENDTYPE

d is declared explicitly to bstatic. Thereforeeventhough it is not used to specify the kind of a
component it can still be used to resolve generic function overloads.

<<<ggggggggg<<<<<<<<End of Text option 1 >>>>>>>>>>>>>>>>>>>>

<<k« <<Start of Text option 2 >>>>>>>>>>>>>>>>>>>>

3.1.2The Type Definition

The syntax optionally allows a list dummytype parameter names to hdded in parentheses
following the type-name in the type-definiticstatement. Theselummy type parameters are
permitted as primaries in the expressions used to specifitttitrites othe variouscomponents of
the type.

For example, the extended syntax would allow a type definition such as,

TYPE MATRIX(wkp,dim)
REAL (wkp),DIMENSION(dim,dim) :: element
ENDTYPE MATRIX

Wherewkp anddim aredummytype parameters. In thesxample thenature of the parameters is
determined implicitly since there is beclaration. Thusincewkp is used to determine theND of
element it is implicitly static and default integer whilst singien is not used to determine tkeND

of a component it is implicitly declared to be nonstatic and default integer.

The above example could therefore also be written as :-

TYPE MATRIX(wkp,dim)

INTEGER, STATIC :: wkp

INTEGER dim

REAL (wkp),DIMENSION(dim,dim) :: element
ENDTYPE MATRIX

wherewkp anddim have now been declared explicitly.

As mentionegreviously, the declarations ekp anddim in the above exampkere redundargince

wkp is used to determine the kind of a componentremtemust be static ansincedim is not used

to determine the kind of a componentniiust be nonstatic. The ability to declare parameters
explicitly is providedfor caseswhere it is required taise a parametgwhich is not used to

TECHNICAL REPORT © ISO/IEC N1207 ISO/IEC TR Data - WD

determine the kind of a component) to resolve generic function overloads. It is also provided to allow
for possible later extension to allow real parameters.

It follows from the abovehat a parametewrhich is to be used to resolve generic overloads, but
which is not subsequently used to determinekth® of a component in the derived type definition,
must be declared explicitly with tlsgATIC attribute. For example in,

TYPE T(d)
INTEGER, STATIC :: d
REAL :: element(d)
ENDTYPE

d is declared explicitly to bstatic. Thereforeeventhough it is not used to specify the kind of a

component it can still be used to resolve generic function overloads.
<<<<L<LKLLLKL<<<<<<<End of Text option 2 >>>>>>>>>>>>>>>>>>>>

Parameterized derived types may be declared to hawEhe=NCEproperty. Twosequence types
arethe same if andnly if they have the same name, define the spe parameters of treame
kind in the sameorder anddefine the same components with the same naandsthesame
dependencies on the typarameters. Two objects of a parameterigeguence typean become
storage associatauhly whentheir sequence typesethe same and they have the sgmaeameters
with the same valuestven if all components ofsuch a typeare numeric sequencgypes, a
parameterized sequence type shall not be considered to be a numeric sequence type.

3.1.30bject declaration

Objects of a parameterized type shall be declared in ways entirely analogous to those used for
intrinsic types. Where the types parameters, actual values shalptowidedfor these parameters
whenobjects of such typeare declared.For example, objects of the above matrix type could be
declared,

type(MATRIX(4,3)) :: rotate,trans
type(MATRIX(KIND(0.0),4)) :: metric
type(MATRIX(wkp=8,dim=35)) :: weight
type(MATRIX(wkp=8,dim=*)) :: hessian
type(MATRIX(dim=2*n+1,wkp=4)) :: distance

For purposes of illustration @dould be consideretthatthe lasttwo declarationgre in subprogram
unitswhere the valuey , is possiblythat of adummyvariable. In such a context thest statement
would be declaring an automatic dummyobject and the next tastwould be declaring dummy
argumenthat was to assuntbe valuefor the thedim type parameter frorthat ofthe associated
actual argument, c.f. similar usage with the length parameter for characters.

Where a type iglefined withparameters, thype-spedn an object declaration shall specifgtual
values to be used to supply valuestfer dummytype parameterthat determine thattributes of
the components as defined in ttype definition. Theseactual type parameter values shall be
specified as if they were attualargument lisfollowing the type namelhe associatiotetween
actual anddummy type parameters may be positional l@yword and the sammiles as for
argument association shall apply.

TECHNICAL REPORT © ISO/IEC N1207 ISO/IEC TR Data - WD

Any valuethatbecomesassociated with a type parameter declared (implicitly or explicitiate
the STATIC attribute shall bespecified by an integescalarinitialization expression. The rules for
type parameters without tlsgATIC attribute arehe same afor the intrinsicLEN type parameter;

in particulartheactual values for such parameters shalgcification expressions or assumed. If
such an object is tappear in a&common or equivalenceontext the type must have teequence
property and the actual type parameter values must be constant.

{{{ Note, at this time the possibility of derived types having parameters with the
OPTIONAL attribute is not being propose#lowever, such a future extension is not
ruled out. Itwould be possible for a parameter to be declared as optional ityplee
definition, and some suitable syntax for providing a default value to benlsadan
actual value is omitted. This added capability is cosmetic and although possibly
desirable is considered to add unnecessary complexity at this stage. R

3.1.4The form of the Constructor

<< ggggg<<<<<<<Start of Text option 1 >>>>>>>>>>>>>>>>>>>>

The syntactic similarity of a type value-constructor and a generic function refererecedsaised

and extended. Theonstructor reference idefined to be identical to a function reference. The
constructor is therefordefined to be aimtrinsic procedure with generic name the same as the type
name. Where the type is parameterized the constructor referencadhdé theparameters as an
extra set of argumentgreceding the list oEomponent expression$his is consistent with the
intuitive ordering of the parameters in the component definitions.

For the matrix type we would have, for example,

MATRIX(wkp,dim,element)

where the expressioassociated with thelement component would need to be assignment
conformant with a rank 2 array of shafam,dim/) and type real oKIND=wkp .
<<<ggggggggg<<<<<<<<End of Text option 1 >>>>>>>>>>>>>>>>>>>>

<<<<<L LKL <<<<<Start of Text option 2 >>>>>>>>>>>>>>>>>>>>

The syntactic similarity of a type value-constructor and a generic function refererecedsised
and extended. The constructor referenaefed to be identical to a function referentiee model

of theREAL type conversion function is used aextended tall derivedtypes. The constructor is
therefore defined to be amtrinsic procedure with generic name the same as the type Wameee
the type is parameterized the constructor reference isblaitle theparameters as an extra set of
arguments following the list of component expressions.

The analogy with

REAL(A,KIND)

for the matrix type would be

MATRIX(element,wkp,dim)

TECHNICAL REPORT © ISO/IEC N1207 ISO/IEC TR Data - WD

where the expressioassociated with theslement component would need to be assignment
conformant with a rank 2 array of shafam,dim/) and type real oKIND=wkp .

<<<<LK<LKLLLLL<<<<<<<End of Text option 2 >>>>>>>>>>>>>>>>>>>>

The general form is therefore,
<< ggg<<<<<<<Start of Text option 1 >>>>>>>>>>>>>>>>>>>>

type-nam@ype-param-expr-list, component-expr-list)
<<<<L<LL<<<<<<<<<<<<End of Text option 1 >>>>>>>>>>>>>>>>>>>>

<<<<<<c<<eg<<c<<<<<<Start of Text option 2 >>>>>>>>>>>>>>>>>>>>

type-namé&omponent-expr-listype-param-expr-ligt
<<<<L<LLLLKL<<<<<<<End of Text option 2 >>>>>>>>>>>>>>>>>>>>

which is identical to the function reference syntax,
function-name(argument-expr-list)

provided the keyword namethat correspond to the argument keyworfts the component
expressions arthe component names afat the parameter expressions tkeyword names are

those of the type parameters. A constructor reference of the following form now becomes valid,
<< gg<<<<<<<Start of Text option 1 >>>>>>>>>>>>>>>>>>>>

MATRIX(wkp=4,dim=10, element=0.0)
<<<<L<LLLL<<<<<<<<<<End of Text option 1 >>>>>>>>>>>>>>>>>>>>

<<<<<<<<<c<<<<<<<<<<Start of Text option2 >>>>>>>>>>>>>>>>>>>>

MATRIX(element=0.0, wkp=4,dim=10)
<<<<LLLLLLLLLL<<<<<<ENd of Text option2 >>>>>>>>>>>>>>>>>>>>

As a furtherexample of the greater expressive utility provided considecdhstructorgproduced
by the following. Given a type defined by,

TYPE STOCK_ITEM
INTEGER :: id,holding,buy_level
CHARACTER(LEN=20) :: desc
REAL :: buy_price,sell_price
ENDTYPE STOCK_ITEM

the two constructor references below would mean the same thing.
STOCK_ITEM(12345,75,10,"Pencils HB",1.56,2.49)

STOCK_ITEM(desc="Pencils HB", id=12345, &
holding=75, sell_price=2.49, &
buy_level=10, buy_price=1.56)

By defining aconstructor reference to be a function reference, the assignment sethantgsply

to the correspondence of component to expression, in effect riedirtee constructomame is

generic. The set of overloads are defined as all those which would produce valid assignments to each
of the components.

TECHNICAL REPORT © ISO/IEC N1207 ISO/IEC TR Data - WD

For pointer components the keyword is the component name and the serfeattiapply to the
expression to component correspondendbas of pointer assignment; the expression in this case
shall deliver aesult that hathetarget attribute. Thiprovides forthe constructor exactly threame
relationship betweeractual expression and corresponding componentsbetsveenactual and
dummy arguments of the relevant characteristics.

As with function referencactual argumentgositional correspondence shall be permitted up to the
first use ofthe keywordform, all subsequerdomponent-exparguments would have to be of the
keyword form.

<< gg<<<<<<Start of Text option 1>>>>>>>>>>>>>>>>>>>>

3.1.5Type parameter value inquiry

Inquiry for parameter values is viee component selecti@yntax. Forexample, the values of the
wkp and dim parameters for a matrix object Kdlefined using the definition above) could be
obtained via the expressiongpwkpandmosdim

The restriction on parameter components being read-only means that statements like,

M%wkp = 8
M%dim =5
READ(*,*) M%wkp

are all illegal.

If the parameter inquireébout is a static parameténe inquiry expression magppear in
initialization expressions. If the parameter is a non-static parameter, the inquiry expression may
appear in specification expressions.

The component selection form of inquiryestended to the intrinsitypes. Thus parametgalues
may be obtained viebject%KIND for INTEGER REAL, Of CHARACTER objects andobject%LEN
for character objects.

<<<<<gggggggg<<<<<<<End of Text option 1>>>>>>>>>>>>>>>>>>>>

<<<<<<c<<eg<<c<<<<<<Start of Text option 2>>>>>>>>>>>>>>>>>>>>

3.1.4 Type parameter value inquiry

For each type parameter declared as part of a type definition there is a generic function with the type
parametemame adts generic nameThis function takes as itsingle non-optional argument any

entity of anyrank ofthe relevant type and it delivers an integer valesdiltwhich is the value of

the named type parameter.

If the parameter inquired about is a static parameter the inquiry function may appgifization
expressions. If the parameter is nonstatic parameter, the inquiry functionappgar in
specification expressions. In both thesses the same restrictigdhsit apply to th&IND andLEN
functions also apply.

TECHNICAL REPORT © ISO/IEC N1207 ISO/IEC TR Data - WD

In general such type parameter inquiry functions have the same scope and accessibilitypas the
to which theyrelate. However, if the type efined in a module the visibility of tligpe name and
the type parameter names can be controlled separately, althowgiuldit be unusual for such
separate control to be exercised. The rule to be appltedtisf atype parametename is declared

to be private to anodule, neither the inquiry function tifatnamenor the type paramet&eyword
arevisible in a usingorogram. Similarly if access to a type parametane is deniebbecause of a
USE statement with aoONLY clause, neither the inquiry function nor #eywordare accessible. All
declarations of objects of the associated type would have to use the positional factuabf
parameter specification. Finally if suchname is renamed on BSE statement both the function
and the type parameter uses are locally renamed.

<<<<LK<LKLKLLLL<<<<<<<ENd of Text option 2>>>>>>>>>>>>>>>>>>>>

3.1.6Intrinsic assignment
Intrinsic assignment for parameterized derived types shall be defined only when the variable and
expression have the same type and type parameter values.

3.1.7Argument association and overload rules

The rules for argument association shall be that dummy argument and actual argument must match
in type and type parameters, as for objects of intrinsic types. This matching of parameters may be
achieved for non-static parameters by the dummy argument assuming its type parameter values
from the associated actual argument. The static type parameters cannot be assumed. They must
always be explicitly and statically specified. As with intrinsic kind parameters, static type
parameters may be used to resolve generic overloads.

3.1.8/isibility and Scoping rules

<< gg<<<<<<Start of Text option 1>>>>>>>>>>>>>>>>>>>>
As far as type parameters are concerned the visibility and scoping rules are determined in the same
way as for ordinary components of derived types (DIS, Section 14.1.2.5, Page 280).

Thus parameters declared to be private cannot have their values inquired on and cannot be
referenced by keyword in declarations or in constructors.

A USE with a rename for a type parameter is deemed to rename both the keyword and the parameter

name.
<< ggg<<<<<<<End of Text option1>>>>>>>>>>>>>>>>>>>>

<<<<<<<<<<<<<<<<<<<<Start of Text option 2>>>>>>>>>>>>>>>>>>>>
As far as type parameters are concerned the visibility and scoping rules are determined in the same
way as for ordinary components of derived types (DIS, Section 14.1.2.5, Page 280).

Thus parameters declared to be private cannot have their values inquired on and cannot be
referenced by keyword in declarations or in constructors.

A USE with a rename for a type parameter is deemed to rename both the keyword and the generic
inquiry function name.

10

TECHNICAL REPORT © ISO/IEC N1207

<<<<<<LLKLLLLL<<<<<<ENd of Text option 2>>>>>>>>>>>>>>>>>>>>

ISO/IEC TR Data - WD

11

TECHNICAL REPORT © ISO/IEC N1207 ISO/IEC TR Data - WD

4 Required editorial changes to ISO/IEC 1539-1 : 1996

The following subsections contain the editorial changedS@/IEC 1539-1 : 1996equired to

include these extensions in a revised definition of the international standard for the Fortran language.
Note, where newsyntax rules arénserted theyare numbered with a decimal addition to the rule
numberthat precedes them. In trectualdocument these will have to peoperly numbered in the
revised sequence.

Comments about each edit to the standard appear within braces {}.

N.B. In this draft the edits refer to X3J3/96-007R1, April 22, 1996, 8:35 a.m.

12

TECHNICAL REPORT © ISO/IEC N1207 ISO/IEC TR Data - WD

4.1.1Edits to implement parameterized derived types

2.4.1.2[15/24] before “The only” add sentence “Derived types may be parameterized, with user-
defined parameters, in a similar way to the intrinsic types.”
[15/25]
before "agreement" add "and type parameter"

4 [29/16]
replace "Intrinsic data-types are" by "Data types may be"
[29/25]
replace “type” by “type, its type parameters (if any),”
[29/26]
replace “components” by “components. Type parameters are defined implicitly or explicitly
(4.4.1)."

4311 [31/17],
43.1.2 [32/39],
4313 [34/26],
4321 [35/18],
4322 [37/22]

After "(13.14.52)" add "or by a type parameter value inquiry(4.5)"

4.4 [37/39]
Replace “type” by “, the name of its parameters, if any,”

4.4.1 [38/25]
Add line following
[param-def-stmt].

4.4.1 [38/29]
Add to end of R423 (Hummy-type-param-ligt)

Add new rule
R424.1 dummy-type-param is type-param-name

<< LKL L L << << Start of Text Option 1 >555555555555555555>

4.4.1 [38/39+]
Add

Constraint: There shall be a parametefinition corresponding to eagarameter in thelummy-
type-param-list

Add following

13

TECHNICAL REPORT © ISO/IEC N1207 ISO/IEC TR Data - WD

R424.2 param-def-stmt is INTEGER [,STATIC :] type-param-list

<<<ggggggkc<<<<<<< End of Text Option 1 >>>>>>>>>>>>>>>>>>>>

<<<<<<<<<<<<<<<<<<< Start of Text Option 2 >>>>>>>>>>>>>>>>>>>>

4.4.1 [38/39+]
Add following

R424.2 param-def-stmt is INTEGER [,STATIC ::] type-param-list

{ N.B. The alternative of spellingNTEGER, [STATIC] " as just “STATIC” or any other spelling
is a trivial alteratior}

<<<<LLLLLLLLLL<<<<< End of Text Option 2 >>>>>>>>>>>>>>>>>>>>

Add following text:

<< LKL L L << << Start of Text Option 1 >55555555555555555>>

A dummy-type-paranthat is specified with asTATIC attribute is astatic type parameter. A
dummy-type-pararthat isspecified without thesTATIC attribute is anonstatic type parameter,
and must not be used to determine the values of actual kind type parameters of components.

Dummy typeparameters that apecified in aparam-def-stmivithout the STATIC attribute are
static if they are subsequently used to determine the kind of a component directly or indirectly,
otherwise they are nonstatic.

<<<<<<LL<L<<<<<<<<<< End of Text Option 1 >>>>>>>>>>>>>>>>>>>>

<<<<<<<LL<<L<<<<<<<< Start of Text Option 2 >>>>>>>>>>>>>>>>>>>>

A dummy-type-pararthat isspecified in gparam-def-stmwith a STATIC attribute is astatic type
parameter. A dummy-type-paranthat is specified in aparam-def-stmtwithout the STATIC
attribute is anonstatic type parameter, and must not be used determine thevalues of actual
kind type parameters of components.

Dummy type parameters that are not specifiedparam-def-stmareimplicitly default integer and
are static ifthey are subsequently used to determine the kind of a component directly or indirectly,
otherwise they are nonstatic.

<<<<<K<LKLLKLLLLLLL<<<< End of Text Option 2 >>>>>>>>>>>>>>>>>>>>
Add the following text:

4.4.1 [39/16+]
Add constraints
Constraint: If thetype-specspecifies a value for atatic type parameter, this must bescalar
integer initialization expression, possibiyolving asprimaries the names ane or
more dummy static type parameters specified odéhieed-type-stmt

14

TECHNICAL REPORT © ISO/IEC N1207 ISO/IEC TR Data - WD

Constraint: If thetype-specspecifies a value for a nonstatic type parameter, this musstaa
integer constant expression, possilsiyolving as primariesdummy type parameter
names specified on thikerived-type-stmt

4.4.1 [39/16 & 24]
After ")" add ", possibly involving as primaries dummy type parameter names specified on the
derived-type-stmit

4.4.1 [39/35+]

Add following paragraph
If the type has type parameteastual values fothese must be specifiechen an entity ofhis type
is declared or constructed. These values may be used via the assthumteyitype parameter
names to specify array bounds and type parameter values for components of the type.

4.4.1 [43/20]
Add following paragraph as a NOTE

Examples of type definitions with type parameters are:
<L ggse<<<<< Start of Text Option 1 >>5>5>555555555555555>

TYPE VECTOR(WP, ORDER)

INTEGER :» WP, ORDER
REAL(KIND=WP) :: comp(1:ORDER)
ENDTYPE VECTOR

Herewpis implicitly defined to be static parametesince it is used to determine the kincdcehp.
ORDERS implicitly nonstatic.
<<<<LLLLLLLLLL<L<<<< End of Text Option 1 >>>>>>>>>>>>>>>>>>>>

<< LKL LKL LKL <L< Start of Text Option 2 >>>>>>>>>>>>>>>>>>>>
TYPE VECTOR(WP, ORDER)

REAL(KIND=WP) :: comp(1:ORDER)
ENDTYPE VECTOR

Herewpis implicitly defined to be atatic parametesince it is used to determine the kinccahp.

ORDERS implicitly nonstatic.
<<<<<K<LKLLKLLLLLLL<<<< End of Text Option 2 >>>>>>>>>>>>>>>>>>>>

Objects of typevecTORCouUld be declared:

TYPE(VECTOR(WP=KIND(0.0),ORDER=3)) :: rotation
TYPE(VECTOR(WP=KIND(0.0D0),ORDER=100)) :: steepest

The scalarvariablerotation is a three-vector with each component represented by a defalult

The scalar vector steepest is a vector in al00 dimensionspace and eachomponent is
represented by a double precision real.

15

TECHNICAL REPORT © ISO/IEC N1207 ISO/IEC TR Data - WD

The definition of vector could equally well be written as:

TYPE VECTOR(WP, ORDER)
INTEGER, STATIC :: WP

INTEGER : ORDER
REAL(KIND=WP) :: comp(1:ORDER)
ENDTYPE VECTOR

where the nature of the parameters has been declared explicitly.

It would also be valid to declargsRDERO beSTATIC in whichcase vectors of different ordersuld
be used to resolve generic overloads.

4.1.2Edits to implement parameter value inquiry

[45/23+]

Insert new section 4.5 and renumber subsequent sections:

<<<<<<<<<<<<<<<<<<<<Start of Text option 1>>>>>>>>>>>>>>>>>>>>

4.5 Type parameter value inquiry

Type parameter values may be obtained through a type parameter reference.

R431.1 type-param-ref is object-name%param-name

Constraint: Atype-param-reshall only be used @ibject-names parameterized
Constraint: For objects of typeTEGERandREAL param-nameshall beKIND
Constraint: For objects of tygsHARACTERparam-nameshall beLEN

A type-param-reshall not appear in a context which assigns it a value.

<<<LLLLLLLL<<<<<<<<<End of Text option 1>>>>>>>>>>>>>>>>>>>>

<<<<<<c<<eg<<<<<<<<<Start of Text option 2>>>>>>>>>>>>>>>>>>>>

16

4.5 Type parameter value inquiry

For each type parameter specified indarived type definition there is a generic inquiry
function that hasthe same name as the typarameter. This function takes as siagle
nonoptional argument any object of the deritgoe, and it returns as its restiie integer
value for this named type parameter that applies for its argument.

For example, fothe objectsyotation andsteepest of theVECTORYype defined previously
WP(rotation) would return 4 on asystem where 4was the default realkind and
ORDER(steepest) would return 100.Note, the argument of such a type parametguiry
function may be of any rank.

TECHNICAL REPORT © ISO/IEC N1207 ISO/IEC TR Data - WD

<<<<<<LKLLLKL<<<<<<<End of Text option 2>>>>>>>>>>>>>>>>>>>>

4.1.Fdits to implement structure constructor

4.4.4 [44/37]

Replace "value of" by "value of the"
<< g<<<<<<<Start of Text option 1>>>>>>>>>>>>>>>>>>>>

4.4.4 [44/39]
Replace éxpr-list' by "[type-param-expr-li§t expr-list”

<<<LLLLLLLLL<L<<<<<<End of Text option 1>>>>>>>>>>>>>>>>>>>>

<<<<<<c<<eg<<c<<<<<<Start of Text option 2>>>>>>>>>>>>>>>>>>>>

4.4.4 [44/39]
Replace éxpr-list' by " expr-list[,type-param-expr-ligt"

<<<<<K<LK<LKLK<<<<<<<<End of Text option 2>>>>>>>>>>>>>>>>>>>>

Add constraint
Constraint: If thederived typehasone or mordype parameters, thtgpe-param-expr-lismust be
present with the same number of expressions as #nerparameters. the derived
type has no parameters, tigpe-param-expr-lisnust not be present.
Constraint: If thederived typehas one or morestatic type parametergach corresponding
type-param-expmust be an initialization expression.

4.4.4 [44]44]
After “component.” add
The type parameter expressions, if present, provide vidudise type parameters of the type and
hence control the shapes and type parameters of the components.
4.4.4 [44/45]
Replace “component values” with “component values and type parameters”
4.4.4 [45/6]
Add the following NOTE

An example of a constructor for a parameterized type is:
<< ggg<<<<<<<Start of Text option 1>>>>>>>>>>>>>>>>>>>>

VECTOR(KIND(0.0D0),3,0.0)
<<<<<<c<<eg<<<<<<<<<End of Text option 1>>>>>>>>>>>>>>>>>>>>

<<<<<<c<<eg<<c<<<<<<Start of Text option 2>>>>>>>>>>>>>>>>>>>>

VECTOR(0.0,KIND(0.0D0),3)
<<<<<<LK<LLKL<<<<<<<End of Text option 2>>>>>>>>>>>>>>>>>>>>

This would construct a three-vector whose components were all zero and of double precision.

4.1.4Additional edits to implement constructors as generic functions

17

TECHNICAL REPORT © ISO/IEC N1207 ISO/IEC TR Data - WD

{ The following edits make constructors generic function references. These edits are separated
out from those in the previous section which just extend the current definition to include type
parameterg

4.4.4 [44/36]
After "corresponding” add "generic function reference that is a"

4.4.4 [44/39]
Replace éxpr-list' with "comp-expr-list

Add
R431.1 comp-expr is [component-nanydexpr
R431.2 type-param-expr is [type-param-nameexpr

Constraint: Eachcomponent-namenust be thename of a component specified in the type
definition for the type-name.

Constraint: Theomponent-nanyemay beomitted only if ithasbeen omitted from each preceding
comp-explin thecomp-expr-list

Constraint: Eachtype-param-namemust be thename of aparameter specified in thgpe
definition for the type-name.

Constraint: Thaype-param-namemay be omitted only if it has been omitted from each preceding

type-param-expin thetype-param-expr-list
<< ggg<<<<<<<Start of Text option 1>>>>>>>>>>>>>>>>>>>>

4.4.4 [44140]

Replace “component” by “parameter and component”
4.4.4 [44/41]
Replace “components” by “parameters and components”

4.4.4 [44]41]

After "type." add sentence
The correspondendeetween expressiceind component may be indicated by the componamte
appearing explicitly in the form of a keyword in a manner similar to procedure argument association
(12.4.1).

<<<<<<<<<<<<<<<<<<End of Text option 1>>>>>>>>>>>>>>>>>>>>

<<<<<<c<<eg<<c<<<<<<Start of Text option 2>>>>>>>>>>>>>>>>>>>>

4.4.4 [44140]

Replace “component” by “component parameter and”
4.4.4 [44/41]
Replace “components” by “parameters and components”

4.4.4 [44]41]

After "type." add sentence
The correspondendmetween expressioeind component may be indicated by the componamte
appearing explicitly in the form of a keyword in a manner similar to procedure argument association
(12.4.1).

18

TECHNICAL REPORT © ISO/IEC N1207 ISO/IEC TR Data - WD

<<<<<<LKLLKLKL<<<<<<<End of Text option 2>>>>>>>>>>>>>>>>>>>>
4.1.Declaration of objects

51 [47/25]
Replace type-naméby "type-namftype-selectdrt

51 [47/41]
Add constraint
Constraint: Thetype-selectormust appear ithe type is parameterized and must appear
otherwise.

[48/47]
Replace “(5.1.1.5)" by “(5.1.1.5), a nonstdipe-param-valug5.1.1.7), “

5.1.1.7 [52/8]
Add rules and constraints
R510.1 type-selector is (type-param-selector-liyt
R510.2 type-param-selector s [type-param-nametype-param-expr

R510.3 type-param-expr is scalar-int-initialization-expr
or type-param-value

Constraint: There must bene and only one type-param-selectorcorresponding to each type
parameter of the type.

Constraint: Thaype-param-expmust be acalar-int-initialization-exprif the corresponding type
parameter is a static type parameter.

Constraint: Thetype-param-nanme may be omitted if itwas omitted fromall previoustype-
param-selectoin the list.

The type selector, if present, specifies valuegHertype parameters of the type dmehce the type
parameters and shapes of the components of the type.

5.1.1.7 [52/16+]
Add paragraph
An assumed type parameter value is a nonstatic type parameter valuerofed typedummy
argumentthat is specified with an asteristype-param-valueSuch a value magnly be used to
declare adummy argument of a procedure, iwhich case the type parameter of tdammy

argument assumes the value of the associated actual argument when the procedure is invoked.

5.5.2.3[70/16]

19

TECHNICAL REPORT © ISO/IEC N1207 ISO/IEC TR Data - WD

After "type" add "and type parameters"

7.1.4.2[92/17]
After the second "The type" add "and type parameters.”

7.1.6.1[93/25+ &94/17+]
Add new list item and renumber the next list item as (f)

(e) a derived-type static type parameter inquiry expression, or

7.1.6.2[95/36]
Add new list item and renumber the next list item as (f)

(e) a derived-type type parameter inquiry expression"

7.1.7 [97/40]

Add paragraph
The appearance of a structure constructor reqthieesvaluation of the component expressions and
may require the evaluation of type parameter expressions. The type of an expresgiah ia
structure constructor appead®es notaffect, and is noteffected by, the evaluation of such
expressions, excefphat evaluation of thestatic type parametemmay affect the resolution of a
generic reference to a defined operation or function and hence may affect the expression type.

7.5.1.2[107/39]
Replace "type," by "type and the same type parameter values,"

7.5.1.2[108/8]
Replace "type as" by "type and the same type parameter values as"

11.3.2 [187/31+]

Add sentence
If a derived type typ@arametemname is renamed, the local name is usedhe type parameter
keyword name used when specifying actual type parameter values.

12.2.1.1 [192/17]
Replace "or character length" by " character length, or nonstatic type parameter"

12.3.1.1 [193/18]
Replace "that" by "that assumes the value for a nonstatic derived type parameter or that"

12.3.1.1 [193/22]
Add additional item to list and renumber list
(d) A result with a nonconstant type parameter value (derived type functions only)

12.4.1.1 [200/5]
Add sentence after “dummy argument.”

20

TECHNICAL REPORT © ISO/IEC N1207 ISO/IEC TR Data - WD

The value of a type parameter of awotual argument of derived typenust agree with the
corresponding value for the dummy argument.

14.1.2 [275/38]
Replace ", in" by " and type parameters, in"

14.1.2.3[277/19]
[277/22]
[277/23]
[277/27]
[277/31]
Replace “kind” by “static”

21

