
N1207

International Standards Organisation

Parameterized Derived Types

in

Fortran

Technical Report defining extension to
ISO/IEC 1539-1 : 1996

{Produced 16/7/96 }

THIS PAGE TO BE REPLACED BY ISO CS

ISO/IEC TR Data - WD N1207 © ISO/IEC

ii

1 : GENERAL 5

1.1 Scope 5

1.2 Normative References 5

2 : RATIONALE 2

3 : REQUIREMENTS 3

3.1 Description of parameterized derived type enhancements 3
3.1.1 The Type Definition 4
3.1.2 The Type Definition 5
3.1.3 Object declaration 6
3.1.4 The form of the Constructor 7
3.1.5 Type parameter value inquiry 9
3.1.6 Intrinsic assignment 10
3.1.7 Argument association and overload rules 10
3.1.8 Visibility and Scoping rules 10

4 REQUIRED EDITORIAL CHANGES TO ISO/IEC 1539-1 : 1996 12
4.1.1 Edits to implement parameterized derived types 13
4.1.2 Edits to implement parameter value inquiry 16
4.1.3 Edits to implement structure constructor 17
4.1.4 Additional edits to implement constructors as generic functions 17
4.1.5 Declaration of objects 19

N1207 ISO/IEC TR Data - WD

iii

Foreword

[This page to be provided by ISO CS]

ISO/IEC TR Data - WD N1207 © ISO/IEC

iv

Introduction

This technical report defines a proposed extension to the data-typing facilities of the programming
language Fortran. The current Fortran language is defined by the international standard ISO/IEC
1539-1 : 1996. This technical report has been prepared by ISO/IEC JTC1/SC22/WG5, the technical
working group for the Fortran language. The language extension defined by this technical report is
intended to be incorportated in the next revision of the Fortran language without change except
where experience in implementation and usage indicates that changes are essential. Such changes
will only be made where serious errors in the definition or difficulties in integration with other new
facilities are encountered.

This extension is being defined by means of a technical report in the first instance to allow early
publication of the proposed definition. This is to encourage early implementation of important
extended functionalities in a consistent manner and will allow extensive testing of the design of the
extended functionality prior to its incorporation into the language by way of the revision of the
international standard.

TECHNICAL REPORT © ISO/IEC N1207 ISO/IEC TR Data - WD

v

Information technology - Programming Languages -Fortran
Technical Report: Parameterized Derived Types

1 : General
1.1 Scope

This technical report defines a proposed extension to the data-typing facilities of the programming
language Fortran. The current Fortran language is defined by the international standard ISO/IEC
1539-1 : 1996. The enhancements defined in this technical report extends the capability of
parameterization defined for intrinsic types to derived types.

Section 2 of this technical report contains a general informal but precise description of the proposed
extended functionalities. This is followed by detailed editorial changes which if applied to the
current international standard would implement the revised language definitions.

1.2 Normative References

The following standards contain provisions which, through reference in this text, constitute
provisions of this technical report. At the time of publication, the editions indicated were valid. All
standards are subject to revision, and parties to agreements based on this technical report are
encouraged to investigate the possibility of applying the most recent editions of the standards
indicated below. Members of IEC and ISO maintain registers of currently valid International
Standards.

ISO/IEC 1539-1 : 1996 Information technology - Programming Languages - Fortran

TECHNICAL REPORT © ISO/IEC N1207 ISO/IEC TR Data - WD

2

2 : Rationale

Parameterized derived types are required for two main reasons. Firstly, there are many
circumstances where a derived type is required to work together with intrinsic types where the
ability to parameterize the kind of the latter and not the former causes very considerable problems.
In one case different versions of the program can be selected by the use of the parameter but to
enable the derived type to properly interwork a different type with a different name must be used.
This results in very clumsy and inflexible programs and a significant program maintenance
overhead, substantially defeating the object of the kind parameterization. Secondly, there are a large
number of types where there is a need to manipulate objects where the only difference between
various entities is in the size of some internal component. For example, there are entities like
vectors that may differ in the dimensionality of the space they span and therefore in the number of
reals that are involved in their representation, or in matrices that differ in their order. These are very
like the intrinsic character data type where data objects may differ in the number of characters in the
string and where this is specified by a length parameter on the type. This is clearly preferable to
having multiple separate types which differ only in such a size determining property. Both these
requirements are met by the addition of parameterized derived types to the language.

TECHNICAL REPORT © ISO/IEC N1207 ISO/IEC TR Data - WD

3

3 : Requirements

The following subsections contain a general description of the extensions required to the syntax and
semantics of the current Fortran language to provide for user defined parameterized derived types.

3.1 Description of parameterized derived type enhancements

There are seven main areas of language design where an extension such as this impacts the existing
language and where syntax and semantics must be defined. These are:

• the definition of the type,
• declaration of objects of such a type,
• constructing a value of such a type,
• inquiring as to the value of a type parameter for an existing object of such a type,
• intrinsic assignment for objects of such a type,
• argument association and overload resolution, and
• the visibility and scoping rules.

Syntactic forms and semantic rules exist covering the use of parameterized intrinsic types in all but
the first of these areas; for obvious reasons there is no type definition for an intrinsic type.

In this section the technical nature of the proposal in each of the above areas is covered with
sufficient detail to indicate the essential nature of the proposed syntax and semantics. This is done
informally with the approach illustrated by example rather than with detailed syntactic and semantic
rules. The formal rules will be defined in subsequent sections in the form of proposed edits to the
current international standard for the programming language Fortran which would implement the
proposed extensions.

All parameters for intrinsic types are quantities of type default integer. This technical report
proposes that parameters for derived types be similarly restricted at this time. However, the detailed
form of the extension defined in this technical report is such that parameters of other types could be
added by further extension if that proves to be desirable.

The intrinsic types have parameters of two quite different natures. There are the static parameters
that determine the nature of the machine representation. These are all characterised for the intrinsic
types by the same parameter name, KIND . This is used both for the keyword in the type-spec and as
the generic name of the parameter-value inquiry function for such a parameter. KIND parameters can
be used to resolve overloads.

The other parameter variety, where the value is not necessarily static, only applies intrinsically for
the character type. Here the parameter, LEN , determines the length or the number of characters in
the datum. As for KIND , the name LEN is also both the parameter keyword name and the generic
name of the inquiry function used to find the value of the parameter for an appropriate data object.

TECHNICAL REPORT © ISO/IEC N1207 ISO/IEC TR Data - WD

4

This technical report extends parameterization to derived types in such a way as to allow for any
number of both sorts of type parameter. It also introduces more general static parameters for
derived types which can be used to resolve generic overloads but which are not necessarily KIND

type parameters. Type parameters that are not static are called nonstatic type parameters.

<<<<<<<<<<<<<<<<<<<< Start of Text option 1>>>>>>>>>>>>>>>>>>>>

Parameters are treated in a similar way to the components of a derived type. However this is not
necessarily meant to imply a similar implementation model. When viewed as components, the main
difference between parameters and components is that parameter ‘components’ are defined to be
‘read-only’ i.e. they cannot be accessed in such a way as to change their value.
<<<<<<<<<<<<<<<<<<<<End of Text option 1>>>>>>>>>>>>>>>>>>>>

<<<<<<<<<<<<<<<<<<<<Start of Text option 2 >>>>>>>>>>>>>>>>>>>>

This technical report extends parameterization to derived types in such a way as to allow for any
number of both sorts of type parameter. It also preserves the consistency rule that the keyword name
for a type parameter is also the generic name of an inquiry function that may be used for inquiring
as to the actual type parameter values for any given object of a parameterized type. This provides
for full regularity of treatment between intrinsic and derived types.
<<<<<<<<<<<<<<<<<<<<End of Text option 2>>>>>>>>>>>>>>>>>>>>

<<<<<<<<<<<<<<<<<<<<Start of Text option 1 >>>>>>>>>>>>>>>>>>>>

3.1.1 The Type Definition
The syntax optionally allows a list of dummy type parameter names to be added in parentheses
following the type-name in the type-definition statement. These dummy type parameters are
permitted as primaries in the expressions used to specify the attributes of the various components of
the type. The type parameters must be specified in the body of the type definition in the same way as
for components. Type parameters, however, can only be specified as default INTEGER.

For example, the extended syntax would allow a type definition such as,

TYPE MATRIX(wkp,dim)
INTEGER :: wkp,dim
REAL(wkp),DIMENSION(dim,dim) :: element
ENDTYPE MATRIX

Where wkp and dim are dummy type parameters. In this example the nature of the parameters is
determined implicitly. Thus since wkp is used to determine the KIND of element it is implicitly
static and default integer whilst since dim is not used to determine the KIND of a component it is
implicitly declared to be nonstatic and default integer.

The above example could also be written as :-

TYPE MATRIX(wkp,dim)
INTEGER, STATIC :: wkp
INTEGER :: dim
REAL(wkp),DIMENSION(dim,dim) :: element
ENDTYPE MATRIX

where wkp has now been declared explicitly to be static.

TECHNICAL REPORT © ISO/IEC N1207 ISO/IEC TR Data - WD

5

As indicated previously, the declaration of wkp as STATIC in the above example is not necessary
since wkp is used to determine the kind of a component and hence must be static. The ability to
declare static parameters explicitly is provided for cases where it is required to use a parameter
(which is not used to determine the kind of a component) to resolve generic function overloads.

For example in,

TYPE T(d)
 INTEGER, STATIC :: d
 REAL :: element(d)
ENDTYPE

d is declared explicitly to be static. Therefore even though it is not used to specify the kind of a
component it can still be used to resolve generic function overloads.

<<<<<<<<<<<<<<<<<<<<End of Text option 1 >>>>>>>>>>>>>>>>>>>>

<<<<<<<<<<<<<<<<<<<<Start of Text option 2 >>>>>>>>>>>>>>>>>>>>

3.1.2 The Type Definition
The syntax optionally allows a list of dummy type parameter names to be added in parentheses
following the type-name in the type-definition statement. These dummy type parameters are
permitted as primaries in the expressions used to specify the attributes of the various components of
the type.

For example, the extended syntax would allow a type definition such as,

TYPE MATRIX(wkp,dim)
REAL(wkp),DIMENSION(dim,dim) :: element
ENDTYPE MATRIX

Where wkp and dim are dummy type parameters. In this example the nature of the parameters is
determined implicitly since there is no declaration. Thus since wkp is used to determine the KIND of
element it is implicitly static and default integer whilst since dim is not used to determine the KIND

of a component it is implicitly declared to be nonstatic and default integer.

The above example could therefore also be written as :-

TYPE MATRIX(wkp,dim)
INTEGER, STATIC :: wkp
INTEGER :: dim
REAL(wkp),DIMENSION(dim,dim) :: element
ENDTYPE MATRIX

where wkp and dim have now been declared explicitly.

As mentioned previously, the declarations of wkp and dim in the above example are redundant since
wkp is used to determine the kind of a component and hence must be static and since dim is not used
to determine the kind of a component it must be nonstatic. The ability to declare parameters
explicitly is provided for cases where it is required to use a parameter (which is not used to

TECHNICAL REPORT © ISO/IEC N1207 ISO/IEC TR Data - WD

6

determine the kind of a component) to resolve generic function overloads. It is also provided to allow
for possible later extension to allow real parameters.

It follows from the above that a parameter which is to be used to resolve generic overloads, but
which is not subsequently used to determine the KIND of a component in the derived type definition,
must be declared explicitly with the STATIC attribute. For example in,

TYPE T(d)
 INTEGER, STATIC :: d
 REAL :: element(d)
ENDTYPE

d is declared explicitly to be static. Therefore even though it is not used to specify the kind of a
component it can still be used to resolve generic function overloads.
 <<<<<<<<<<<<<<<<<<<<End of Text option 2 >>>>>>>>>>>>>>>>>>>>

Parameterized derived types may be declared to have the SEQUENCE property. Two sequence types
are the same if and only if they have the same name, define the same type parameters of the same
kind in the same order and define the same components with the same names and the same
dependencies on the type parameters. Two objects of a parameterized sequence type can become
storage associated only when their sequence types are the same and they have the same parameters
with the same values. Even if all components of such a type are numeric sequence types, a
parameterized sequence type shall not be considered to be a numeric sequence type.

3.1.3 Object declaration
Objects of a parameterized type shall be declared in ways entirely analogous to those used for
intrinsic types. Where the type has parameters, actual values shall be provided for these parameters
when objects of such types are declared. For example, objects of the above matrix type could be
declared,

type(MATRIX(4,3)) :: rotate,trans
type(MATRIX(KIND(0.0),4)) :: metric
type(MATRIX(wkp=8,dim=35)) :: weight
type(MATRIX(wkp=8,dim=*)) :: hessian
type(MATRIX(dim=2*n+1,wkp=4)) :: distance

For purposes of illustration it could be considered that the last two declarations are in subprogram
units where the value, n , is possibly that of a dummy variable. In such a context the last statement
would be declaring an automatic or dummy object and the next to last would be declaring a dummy
argument that was to assume the value for the the dim type parameter from that of the associated
actual argument, c.f. similar usage with the length parameter for characters.

Where a type is defined with parameters, the type-spec in an object declaration shall specify actual
values to be used to supply values for the dummy type parameters that determine the attributes of
the components as defined in the type definition. These actual type parameter values shall be
specified as if they were an actual argument list following the type name. The association between
actual and dummy type parameters may be positional or keyword and the same rules as for
argument association shall apply.

TECHNICAL REPORT © ISO/IEC N1207 ISO/IEC TR Data - WD

7

Any value that becomes associated with a type parameter declared (implicitly or explicitly) to have
the STATIC attribute shall be specified by an integer scalar initialization expression. The rules for
type parameters without the STATIC attribute are the same as for the intrinsic LEN type parameter;
in particular the actual values for such parameters shall be specification expressions or assumed. If
such an object is to appear in a common or equivalence context the type must have the sequence
property and the actual type parameter values must be constant.

{{{ Note, at this time the possibility of derived types having parameters with the
OPTIONAL attribute is not being proposed. However, such a future extension is not
ruled out. It would be possible for a parameter to be declared as optional in the type
definition, and some suitable syntax for providing a default value to be used when an
actual value is omitted. This added capability is cosmetic and although possibly
desirable is considered to add unnecessary complexity at this stage. }}}

3.1.4 The form of the Constructor

<<<<<<<<<<<<<<<<<<<<Start of Text option 1 >>>>>>>>>>>>>>>>>>>>

The syntactic similarity of a type value-constructor and a generic function reference is recognised
and extended. The constructor reference is defined to be identical to a function reference. The
constructor is therefore defined to be an intrinsic procedure with generic name the same as the type
name. Where the type is parameterized the constructor reference shall include the parameters as an
extra set of arguments preceding the list of component expressions. This is consistent with the
intuitive ordering of the parameters in the component definitions.

For the matrix type we would have, for example,

MATRIX(wkp,dim,element)

where the expression associated with the element component would need to be assignment
conformant with a rank 2 array of shape (/dim,dim/) and type real of KIND=wkp .
<<<<<<<<<<<<<<<<<<<<End of Text option 1 >>>>>>>>>>>>>>>>>>>>

<<<<<<<<<<<<<<<<<<<<Start of Text option 2 >>>>>>>>>>>>>>>>>>>>

The syntactic similarity of a type value-constructor and a generic function reference is recognised
and extended. The constructor reference is defined to be identical to a function reference. The model
of the REAL type conversion function is used and extended to all derived types. The constructor is
therefore defined to be an intrinsic procedure with generic name the same as the type name. Where
the type is parameterized the constructor reference shall include the parameters as an extra set of
arguments following the list of component expressions.

The analogy with

REAL(A,KIND)

for the matrix type would be

MATRIX(element,wkp,dim)

TECHNICAL REPORT © ISO/IEC N1207 ISO/IEC TR Data - WD

8

where the expression associated with the element component would need to be assignment
conformant with a rank 2 array of shape (/dim,dim/) and type real of KIND=wkp .

<<<<<<<<<<<<<<<<<<<<End of Text option 2 >>>>>>>>>>>>>>>>>>>>

The general form is therefore,
<<<<<<<<<<<<<<<<<<<<Start of Text option 1 >>>>>>>>>>>>>>>>>>>>

type-name(type-param-expr-list, component-expr-list)
<<<<<<<<<<<<<<<<<<<<End of Text option 1 >>>>>>>>>>>>>>>>>>>>

<<<<<<<<<<<<<<<<<<<<Start of Text option 2 >>>>>>>>>>>>>>>>>>>>

type-name(component-expr-list, type-param-expr-list)
<<<<<<<<<<<<<<<<<<<<End of Text option 2 >>>>>>>>>>>>>>>>>>>>

which is identical to the function reference syntax,

function-name(argument-expr-list)

provided the keyword names that correspond to the argument keywords for the component
expressions are the component names and for the parameter expressions the keyword names are
those of the type parameters. A constructor reference of the following form now becomes valid,
<<<<<<<<<<<<<<<<<<<<Start of Text option 1 >>>>>>>>>>>>>>>>>>>>

MATRIX(wkp=4,dim=10, element=0.0)
<<<<<<<<<<<<<<<<<<<<End of Text option 1 >>>>>>>>>>>>>>>>>>>>

<<<<<<<<<<<<<<<<<<<<Start of Text option2 >>>>>>>>>>>>>>>>>>>>

MATRIX(element=0.0, wkp=4,dim=10)
<<<<<<<<<<<<<<<<<<<<End of Text option2 >>>>>>>>>>>>>>>>>>>>

As a further example of the greater expressive utility provided consider the constructors produced
by the following. Given a type defined by,

TYPE STOCK_ITEM
 INTEGER :: id,holding,buy_level
 CHARACTER(LEN=20) :: desc
 REAL :: buy_price,sell_price
ENDTYPE STOCK_ITEM

the two constructor references below would mean the same thing.

STOCK_ITEM(12345,75,10,"Pencils HB",1.56,2.49)

STOCK_ITEM(desc="Pencils HB", id=12345, &
 holding=75, sell_price=2.49, &
 buy_level=10, buy_price=1.56)

By defining a constructor reference to be a function reference, the assignment semantics that apply
to the correspondence of component to expression, in effect means that the constructor name is
generic. The set of overloads are defined as all those which would produce valid assignments to each
of the components.

TECHNICAL REPORT © ISO/IEC N1207 ISO/IEC TR Data - WD

9

For pointer components the keyword is the component name and the semantics that apply to the
expression to component correspondence is that of pointer assignment; the expression in this case
shall deliver a result that has the target attribute. This provides for the constructor exactly the same
relationship between actual expression and corresponding components as between actual and
dummy arguments of the relevant characteristics.

As with function reference actual arguments, positional correspondence shall be permitted up to the
first use of the keyword form, all subsequent component-expr arguments would have to be of the
keyword form.

<<<<<<<<<<<<<<<<<<<<Start of Text option 1>>>>>>>>>>>>>>>>>>>>

3.1.5 Type parameter value inquiry
Inquiry for parameter values is via the component selection syntax. For example, the values of the
wkp and dim parameters for a matrix object M (defined using the definition above) could be
obtained via the expressions, M%wkp and M%dim.

The restriction on parameter components being read-only means that statements like,

M%wkp = 8
M%dim = 5
READ(*,*) M%wkp

are all illegal.

If the parameter inquired about is a static parameter the inquiry expression may appear in
initialization expressions. If the parameter is a non-static parameter, the inquiry expression may
appear in specification expressions.

The component selection form of inquiry is extended to the intrinsic types. Thus parameter values
may be obtained via object%KIND for INTEGER, REAL , or CHARACTER objects and object%LEN

for character objects.
<<<<<<<<<<<<<<<<<<<<End of Text option 1>>>>>>>>>>>>>>>>>>>>

<<<<<<<<<<<<<<<<<<<<Start of Text option 2>>>>>>>>>>>>>>>>>>>>

3.1.4 Type parameter value inquiry

For each type parameter declared as part of a type definition there is a generic function with the type
parameter name as its generic name. This function takes as its single non-optional argument any
entity of any rank of the relevant type and it delivers an integer valued result which is the value of
the named type parameter.

If the parameter inquired about is a static parameter the inquiry function may appear in initialization
expressions. If the parameter is nonstatic parameter, the inquiry function may appear in
specification expressions. In both these cases the same restrictions that apply to the KIND and LEN

functions also apply.

TECHNICAL REPORT © ISO/IEC N1207 ISO/IEC TR Data - WD

10

In general such type parameter inquiry functions have the same scope and accessibility as the type
to which they relate. However, if the type is defined in a module the visibility of the type name and
the type parameter names can be controlled separately, although it would be unusual for such
separate control to be exercised. The rule to be applied is that if a type parameter name is declared
to be private to a module, neither the inquiry function of that name nor the type parameter keyword
are visible in a using program. Similarly if access to a type parameter name is denied because of a
USE statement with an ONLY clause, neither the inquiry function nor the keyword are accessible. All
declarations of objects of the associated type would have to use the positional form of actual
parameter specification. Finally if such a name is renamed on a USE statement both the function
and the type parameter uses are locally renamed.

<<<<<<<<<<<<<<<<<<<<End of Text option 2>>>>>>>>>>>>>>>>>>>>

3.1.6 Intrinsic assignment
Intrinsic assignment for parameterized derived types shall be defined only when the variable and
expression have the same type and type parameter values.

3.1.7 Argument association and overload rules

The rules for argument association shall be that dummy argument and actual argument must match
in type and type parameters, as for objects of intrinsic types. This matching of parameters may be
achieved for non-static parameters by the dummy argument assuming its type parameter values
from the associated actual argument. The static type parameters cannot be assumed. They must
always be explicitly and statically specified. As with intrinsic kind parameters, static type
parameters may be used to resolve generic overloads.

3.1.8 Visibility and Scoping rules

<<<<<<<<<<<<<<<<<<<<Start of Text option 1>>>>>>>>>>>>>>>>>>>>

As far as type parameters are concerned the visibility and scoping rules are determined in the same
way as for ordinary components of derived types (DIS, Section 14.1.2.5, Page 280).

Thus parameters declared to be private cannot have their values inquired on and cannot be
referenced by keyword in declarations or in constructors.

A USE with a rename for a type parameter is deemed to rename both the keyword and the parameter
name.
<<<<<<<<<<<<<<<<<<<<End of Text option1>>>>>>>>>>>>>>>>>>>>

<<<<<<<<<<<<<<<<<<<<Start of Text option 2>>>>>>>>>>>>>>>>>>>>

As far as type parameters are concerned the visibility and scoping rules are determined in the same
way as for ordinary components of derived types (DIS, Section 14.1.2.5, Page 280).

Thus parameters declared to be private cannot have their values inquired on and cannot be
referenced by keyword in declarations or in constructors.

A USE with a rename for a type parameter is deemed to rename both the keyword and the generic
inquiry function name.

TECHNICAL REPORT © ISO/IEC N1207 ISO/IEC TR Data - WD

11

<<<<<<<<<<<<<<<<<<<<End of Text option 2>>>>>>>>>>>>>>>>>>>>

TECHNICAL REPORT © ISO/IEC N1207 ISO/IEC TR Data - WD

12

4 Required editorial changes to ISO/IEC 1539-1 : 1996

The following subsections contain the editorial changes to ISO/IEC 1539-1 : 1996 required to
include these extensions in a revised definition of the international standard for the Fortran language.
Note, where new syntax rules are inserted they are numbered with a decimal addition to the rule
number that precedes them. In the actual document these will have to be properly numbered in the
revised sequence.

Comments about each edit to the standard appear within braces {}.

N.B. In this draft the edits refer to X3J3/96-007R1, April 22, 1996, 8:35 a.m.

TECHNICAL REPORT © ISO/IEC N1207 ISO/IEC TR Data - WD

13

4.1.1 Edits to implement parameterized derived types

2.4.1.2 [15/24] before “The only” add sentence “Derived types may be parameterized, with user-
defined parameters, in a similar way to the intrinsic types.”

 [15/25]
before "agreement" add "and type parameter"

 4 [29/16]
replace "Intrinsic data-types are" by "Data types may be"

 [29/25]
replace “type” by “type, its type parameters (if any),”

[29/26]
replace “components” by “components. Type parameters are defined implicitly or explicitly
(4.4.1).”

4.3.1.1 [31/17],
4.3.1.2 [32/39],
4.3.1.3 [34/26],
4.3.2.1 [35/18],
4.3.2.2 [37/22]

After "(13.14.52)" add "or by a type parameter value inquiry(4.5)"

4.4 [37/39]
Replace “type” by “, the name of its parameters, if any,”

4.4.1 [38/25]
Add line following

[param-def-stmt]...

 4.4.1 [38/29]
Add to end of R423 "[(dummy-type-param-list)]"

Add new rule
R424.1 dummy-type-param is type-param-name

<<<<<<<<<<<<<<<<<<<< Start of Text Option 1 >>>>>>>>>>>>>>>>>>>>

4.4.1 [38/39+]

Add

Constraint: There shall be a parameter definition corresponding to each parameter in the dummy-
type-param-list

Add following

TECHNICAL REPORT © ISO/IEC N1207 ISO/IEC TR Data - WD

14

R424.2 param-def-stmt is INTEGER [,STATIC ::] type-param-list

<<<<<<<<<<<<<<<<<<<< End of Text Option 1 >>>>>>>>>>>>>>>>>>>>

<<<<<<<<<<<<<<<<<<<< Start of Text Option 2 >>>>>>>>>>>>>>>>>>>>

4.4.1 [38/39+]

Add following

R424.2 param-def-stmt is INTEGER [,STATIC ::] type-param-list

{ N.B. The alternative of spelling “INTEGER, [STATIC] ” as just “STATIC” or any other spelling
is a trivial alteration}

<<<<<<<<<<<<<<<<<<<< End of Text Option 2 >>>>>>>>>>>>>>>>>>>>

Add following text:

<<<<<<<<<<<<<<<<<<<< Start of Text Option 1 >>>>>>>>>>>>>>>>>>>>

A dummy-type-param that is specified with a STATIC attribute is a static type parameter. A
dummy-type-param that is specified without the STATIC attribute is a nonstatic type parameter,
and must not be used to determine the values of actual kind type parameters of components.

Dummy type parameters that are specified in a param-def-stmt without the STATIC attribute are
static if they are subsequently used to determine the kind of a component directly or indirectly,
otherwise they are nonstatic.

<<<<<<<<<<<<<<<<<<<< End of Text Option 1 >>>>>>>>>>>>>>>>>>>>

<<<<<<<<<<<<<<<<<<<< Start of Text Option 2 >>>>>>>>>>>>>>>>>>>>

A dummy-type-param that is specified in a param-def-stmt with a STATIC attribute is a static type
parameter. A dummy-type-param that is specified in a param-def-stmt without the STATIC

attribute is a nonstatic type parameter, and must not be used to determine the values of actual
kind type parameters of components.

Dummy type parameters that are not specified in a param-def-stmt are implicitly default integer and
are static if they are subsequently used to determine the kind of a component directly or indirectly,
otherwise they are nonstatic.

<<<<<<<<<<<<<<<<<<<< End of Text Option 2 >>>>>>>>>>>>>>>>>>>>

Add the following text:

4.4.1 [39/16+]
Add constraints

Constraint: If the type-spec specifies a value for a static type parameter, this must be a scalar
integer initialization expression, possibly involving as primaries the names of one or
more dummy static type parameters specified on the derived-type-stmt.

TECHNICAL REPORT © ISO/IEC N1207 ISO/IEC TR Data - WD

15

Constraint: If the type-spec specifies a value for a nonstatic type parameter, this must be a scalar
integer constant expression, possibly involving as primaries dummy type parameter
names specified on the derived-type-stmt.

 4.4.1 [39/16 & 24]
After ")" add ", possibly involving as primaries dummy type parameter names specified on the

derived-type-stmt."

 4.4.1 [39/35+]
Add following paragraph

If the type has type parameters, actual values for these must be specified when an entity of this type
is declared or constructed. These values may be used via the associated dummy type parameter
names to specify array bounds and type parameter values for components of the type.

 4.4.1 [43/20]
Add following paragraph as a NOTE

Examples of type definitions with type parameters are:
<<<<<<<<<<<<<<<<<<<< Start of Text Option 1 >>>>>>>>>>>>>>>>>>>>

TYPE VECTOR(WP, ORDER)
 INTEGER :: WP, ORDER
 REAL(KIND=WP) :: comp(1:ORDER)
ENDTYPE VECTOR

Here WP is implicitly defined to be a static parameter since it is used to determine the kind of comp.
ORDER is implicitly nonstatic.
<<<<<<<<<<<<<<<<<<<< End of Text Option 1 >>>>>>>>>>>>>>>>>>>>

<<<<<<<<<<<<<<<<<<<< Start of Text Option 2 >>>>>>>>>>>>>>>>>>>>
TYPE VECTOR(WP, ORDER)
 REAL(KIND=WP) :: comp(1:ORDER)
ENDTYPE VECTOR

Here WP is implicitly defined to be a static parameter since it is used to determine the kind of comp.
ORDER is implicitly nonstatic.
<<<<<<<<<<<<<<<<<<<< End of Text Option 2 >>>>>>>>>>>>>>>>>>>>

Objects of type VECTOR could be declared:

TYPE(VECTOR(WP=KIND(0.0),ORDER=3)) :: rotation
TYPE(VECTOR(WP=KIND(0.0D0),ORDER=100)) :: steepest

The scalar variable rotation is a three-vector with each component represented by a default real.
The scalar vector steepest is a vector in a 100 dimension space and each component is
represented by a double precision real.

TECHNICAL REPORT © ISO/IEC N1207 ISO/IEC TR Data - WD

16

The definition of vector could equally well be written as:

TYPE VECTOR(WP, ORDER)
 INTEGER, STATIC :: WP
 INTEGER :: ORDER
 REAL(KIND=WP) :: comp(1:ORDER)
ENDTYPE VECTOR

where the nature of the parameters has been declared explicitly.

It would also be valid to declare ORDER to be STATIC in which case vectors of different orders could
be used to resolve generic overloads.

4.1.2 Edits to implement parameter value inquiry

[45/23+]

Insert new section 4.5 and renumber subsequent sections:

<<<<<<<<<<<<<<<<<<<<Start of Text option 1>>>>>>>>>>>>>>>>>>>>

4.5 Type parameter value inquiry

Type parameter values may be obtained through a type parameter reference.

R431.1 type-param-ref is object-name%param-name

Constraint: A type-param-ref shall only be used if object-name is parameterized
Constraint: For objects of type INTEGER and REAL param-name shall be KIND

Constraint: For objects of type CHARACTER, param-name shall be LEN

A type-param-ref shall not appear in a context which assigns it a value.

<<<<<<<<<<<<<<<<<<<<End of Text option 1>>>>>>>>>>>>>>>>>>>>

<<<<<<<<<<<<<<<<<<<<Start of Text option 2>>>>>>>>>>>>>>>>>>>>

4.5 Type parameter value inquiry

For each type parameter specified in a derived type definition there is a generic inquiry
function that has the same name as the type parameter. This function takes as its single
nonoptional argument any object of the derived type, and it returns as its result the integer
value for this named type parameter that applies for its argument.

For example, for the objects, rotation and steepest of the VECTOR type defined previously
WP(rotation) would return 4 on a system where 4 was the default real kind and
ORDER(steepest) would return 100. Note, the argument of such a type parameter inquiry
function may be of any rank.

TECHNICAL REPORT © ISO/IEC N1207 ISO/IEC TR Data - WD

17

<<<<<<<<<<<<<<<<<<<<End of Text option 2>>>>>>>>>>>>>>>>>>>>

4.1.3 Edits to implement structure constructor

 4.4.4 [44/37]
Replace "value of" by "value of the"

<<<<<<<<<<<<<<<<<<<<Start of Text option 1>>>>>>>>>>>>>>>>>>>>

4.4.4 [44/39]
Replace "expr-list" by "[type-param-expr-list], expr-list "

<<<<<<<<<<<<<<<<<<<<End of Text option 1>>>>>>>>>>>>>>>>>>>>

<<<<<<<<<<<<<<<<<<<<Start of Text option 2>>>>>>>>>>>>>>>>>>>>

 4.4.4 [44/39]
Replace "expr-list" by " expr-list [,type-param-expr-list] "

<<<<<<<<<<<<<<<<<<<<End of Text option 2>>>>>>>>>>>>>>>>>>>>

Add constraint
Constraint: If the derived type has one or more type parameters, the type-param-expr-list must be

present with the same number of expressions as there are parameters. If the derived
type has no parameters, the type-param-expr-list must not be present.

Constraint: If the derived type has one or more static type parameters, each corresponding
type-param-expr must be an initialization expression.

 4.4.4 [44/44]
After “component." add

The type parameter expressions, if present, provide values for the type parameters of the type and
hence control the shapes and type parameters of the components.
4.4.4 [44/45]
Replace “component values” with “component values and type parameters”
 4.4.4 [45/6]

Add the following NOTE

An example of a constructor for a parameterized type is:
<<<<<<<<<<<<<<<<<<<<Start of Text option 1>>>>>>>>>>>>>>>>>>>>

VECTOR(KIND(0.0D0),3,0.0)

<<<<<<<<<<<<<<<<<<<<End of Text option 1>>>>>>>>>>>>>>>>>>>>

<<<<<<<<<<<<<<<<<<<<Start of Text option 2>>>>>>>>>>>>>>>>>>>>

VECTOR(0.0,KIND(0.0D0),3)
<<<<<<<<<<<<<<<<<<<<End of Text option 2>>>>>>>>>>>>>>>>>>>>

This would construct a three-vector whose components were all zero and of double precision.

4.1.4 Additional edits to implement constructors as generic functions

TECHNICAL REPORT © ISO/IEC N1207 ISO/IEC TR Data - WD

18

{ The following edits make constructors generic function references. These edits are separated
out from those in the previous section which just extend the current definition to include type
parameters }

4.4.4 [44/36]
After "corresponding" add "generic function reference that is a"

 4.4.4 [44/39]
Replace "expr-list" with "comp-expr-list"

Add
R431.1 comp-expr is [component-name=]expr
R431.2 type-param-expr is [type-param-name=]expr

Constraint: Each component-name must be the name of a component specified in the type
definition for the type-name.

Constraint: The component-name= may be omitted only if it has been omitted from each preceding
comp-expr in the comp-expr-list.

Constraint: Each type-param-name must be the name of a parameter specified in the type
definition for the type-name.

Constraint: The type-param-name= may be omitted only if it has been omitted from each preceding
type-param-expr in the type-param-expr-list.

<<<<<<<<<<<<<<<<<<<<Start of Text option 1>>>>>>>>>>>>>>>>>>>>

4.4.4 [44/40]

Replace “component” by “parameter and component”
4.4.4 [44/41]

Replace “components” by “parameters and components”

4.4.4 [44/41]
After "type." add sentence

The correspondence between expression and component may be indicated by the component name
appearing explicitly in the form of a keyword in a manner similar to procedure argument association
(12.4.1).
<<<<<<<<<<<<<<<<<<<<End of Text option 1>>>>>>>>>>>>>>>>>>>>

<<<<<<<<<<<<<<<<<<<<Start of Text option 2>>>>>>>>>>>>>>>>>>>>

4.4.4 [44/40]

Replace “component” by “component parameter and”
4.4.4 [44/41]

Replace “components” by “parameters and components”

4.4.4 [44/41]
After "type." add sentence

The correspondence between expression and component may be indicated by the component name
appearing explicitly in the form of a keyword in a manner similar to procedure argument association
(12.4.1).

TECHNICAL REPORT © ISO/IEC N1207 ISO/IEC TR Data - WD

19

<<<<<<<<<<<<<<<<<<<<End of Text option 2>>>>>>>>>>>>>>>>>>>>

4.1.5 Declaration of objects

 5.1 [47/25]
Replace "type-name" by "type-name[type-selector]"

 5.1 [47/41]
Add constraint

Constraint: The type-selector must appear if the type is parameterized and must not appear
otherwise.

[48/47]
Replace “(5.1.1.5)” by “(5.1.1.5), a nonstatic type-param-value (5.1.1.7), “

 5.1.1.7 [52/8]
Add rules and constraints

R510.1 type-selector is (type-param-selector-list)

R510.2 type-param-selector is [type-param-name=]type-param-expr

R510.3 type-param-expr is scalar-int-initialization-expr
 or type-param-value

Constraint: There must be one and only one type-param-selector corresponding to each type
parameter of the type.

Constraint: The type-param-expr must be a scalar-int-initialization-expr if the corresponding type
parameter is a static type parameter.

Constraint: The type-param-name= may be omitted if it was omitted from all previous type-
param-selector in the list.

The type selector, if present, specifies values for the type parameters of the type and hence the type
parameters and shapes of the components of the type.

5.1.1.7 [52/16+]

Add paragraph

An assumed type parameter value is a nonstatic type parameter value of a derived type dummy
argument that is specified with an asterisk type-param-value. Such a value may only be used to
declare a dummy argument of a procedure, in which case the type parameter of the dummy
argument assumes the value of the associated actual argument when the procedure is invoked.

 5.5.2.3 [70/16]

TECHNICAL REPORT © ISO/IEC N1207 ISO/IEC TR Data - WD

20

After "type" add "and type parameters"

 7.1.4.2 [92/17]
After the second "The type" add "and type parameters."

 7.1.6.1 [93/25+ &94/17+]
Add new list item and renumber the next list item as (f)

(e) a derived-type static type parameter inquiry expression, or

 7.1.6.2 [95/36]
Add new list item and renumber the next list item as (f)

(e) a derived-type type parameter inquiry expression"

7.1.7 [97/40]
Add paragraph

The appearance of a structure constructor requires the evaluation of the component expressions and
may require the evaluation of type parameter expressions. The type of an expression in which a
structure constructor appears does not affect, and is not effected by, the evaluation of such
expressions, except that evaluation of the static type parameters may affect the resolution of a
generic reference to a defined operation or function and hence may affect the expression type.

 7.5.1.2 [107/39]
Replace "type," by "type and the same type parameter values,"

 7.5.1.2 [108/8]
Replace "type as" by "type and the same type parameter values as"

 11.3.2 [187/31+]
Add sentence

If a derived type type parameter name is renamed, the local name is used for the type parameter
keyword name used when specifying actual type parameter values.

 12.2.1.1 [192/17]
Replace "or character length" by " character length, or nonstatic type parameter"

 12.3.1.1 [193/18]
Replace "that" by "that assumes the value for a nonstatic derived type parameter or that"

 12.3.1.1 [193/22]
Add additional item to list and renumber list
(d) A result with a nonconstant type parameter value (derived type functions only)

 12.4.1.1 [200/5]
Add sentence after “dummy argument.”

TECHNICAL REPORT © ISO/IEC N1207 ISO/IEC TR Data - WD

21

The value of a type parameter of an actual argument of derived type must agree with the
corresponding value for the dummy argument.

 14.1.2 [275/38]
Replace ", in" by " and type parameters, in"

 14.1.2.3 [277/19]
 [277/22]
 [277/23]
 [277/27]
 [277/31]
 Replace “kind” by “static”

