
ISO/IEC JTC1/SC22/WG5 N1211

X3J3 / 96-128

DATE: 1996-07-29

ISO/IEC JTC 1/SC 22/WG 5

Programming languages, their environments and system software interfaces.

Working group Fortran

DOC TYPE: WG5 working document

TITLE: A Fortran 90 interface to MPI version 1.1

SOURCE: Michael Hennecke

PROJECT: 1.22.02.01

STATUS: |

ACTION ID: FYI

DUE DATE: |

DISTRIBUTION: WG5 and X3J3

MEDIUM: Open

NO. OF PAGES: 16

i

ii

A Fortran 90 interface to MPI version 1.1

Michael Hennecke

Rechenzentrum, Universit�at Karlsruhe, D-76128 Karlsruhe, Germany

http://www.uni-karlsruhe.de/~Michael.Hennecke/

hennecke@rz.uni-karlsruhe.de

MPI is the de-facto standard for message passing programming. In MPI

version 1.1, the MPI Forum has established language bindings for ISO

C and (an extended) Fortran 77, but not for Fortran 90. This report

describes the design of a Fortran 90 MODULE implemented on top of

an existing MPI library with Fortran 77 bindings. By using this module,

Fortran 90 programmers have access not only to the contents of the MPI

header �le mpif.h, but also to a complete speci�cation of the interfaces of

all MPI procedures | including type and intent of procedure arguments

and generic interfaces to MPI procedures with choice arguments. MPI's

reliance on non-standard Fortran semantics is particularly troublesome

with Fortran 90, these problems and restrictions are also discussed.

1 Introduction

The Message Passing Interface Standard[4] speci�es an application program-
ming interface to a set of library routines for message passing programming.
It consists of 129 procedures speci�ed in a language-independent form, and
a number of de�ned constants to be used with these procedures. Language

bindings are provided for ISO C[1]; there is also a binding for Fortran 77[2]
augmented by a number of extensions and assumptions (most of which are

summarized in section 2.5 of the MPI standard), but not for Fortran 90[3].

In principle, it should be possible to use a Fortran 77 based MPI implemen-
tation from Fortran 90 because Fortran 90 is a superset of Fortran 77. Since

MPI documents the type and intent of procedure arguments, and Fortran 90
has the INTERFACE block mechanism to provide such explicit procedure in-

terfaces in a calling program unit, it should also be possible to specify the

(Fortran 77) interfaces of MPI procedures by Fortran 90 interface blocks in
a MODULE. This would allow for much more type-checking in application

programs calling MPI, thus considerably improving program development.

RZ Uni Karlsruhe, Internal Report 63/96 10 June 1996

It is the aim of this report to show how such a Fortran 90 interface to MPI

can be developed, and to point out the general limitations and problems with

Fortran bindings. It is not the intent to provide a true Fortran 90 binding

which may also bene�t from OPTIONAL arguments, assumed-shape arrays,

derived types, or other new features of Fortran 90. Fortran 90 binding to MPI

is also a subject of the MPI-2 initiative 1 of the MPI Forum, 2 many of the

problems discussed there are similar to those addressed in the current work.

The following section summarizes the problems caused by MPI syntax and

semantics that are not conforming to the Fortran standards[2,3]. Section 3

shows the design of the proposed MODULE, using a few typical MPI proce-

dures as examples. The complete source is available electronically. 3 Section 4

gives some guidelines for the installation and use of the proposed module, as

well as some of the restrictions on a Fortran 90 program using this interface.

Some possible extensions are sketched in section 5.

2 MPI and Fortran standard conformance

The Fortran 77 bindings de�ned in MPI deviate from the Fortran 77 stan-
dard in several points. This section discusses the mayor items, and outlines

consequences for migration to Fortran 90.

Some minor MPI extensions to Fortran 77 are standardized in Fortran 90:

� MPI requires identi�ers to be signi�cant to thirty characters, and also allows
underscores in identi�ers.

� MPI recommends to use an INCLUDE �le for MPI named constants.

Two main deviations from the Fortran 77 standard need more attention:

� A total of 35 MPI routines use choice arguments. These correspond to C's
void *, their contents is the address of the data object designated by the
actual argument. MPI Fortran 77 bindings specify this dummy argument as

<type> BUF(*). This design requires a program to be able to associate array
actual arguments of all MPI-supported datatypes with this same dummy

argument. This is a voilation of the Fortran standards.
Additionally, MPI assumes that the implementation passes the address of

the actual argument. This is not guaranteed by Fortran 77 (neither by For-

tran 90), but virtually every f77 compiler implements a call this way.

1 URL: http://parallel.nas.nasa.gov/MPI-2/mpi-bind/
2 URL: http://www.erc.msstate.edu/mpi/
3 URL: http://www.uni-karlsruhe.de/~Michael.Hennecke/Software/

2

� MPI has a non-blocking communication mode. In this mode, a bu�er ex-

isting in user space is passed as actual argument to a MPI procedure like

MPI IRECV. The procedure returns at some point in time, but the mem-

ory area designated by the actual argument still serves as a bu�er to the

\MPI system" | MPI will continue writing to that location, although

MPI IRECV has returned and there is no other MPI procedure executing

(at least none seen by the Fortran compiler).

The problem of associating actual arguments of di�erent type with one MPI

procedure can be circumvented by introducing Fortran 90 generic interfaces

for these calls. This is obvious for a complete Fortran 90 re-design of the

API. Section 3.2 shows that by clever use of Fortran scoping rules, it is also

possible to specify generic interfaces on top of an existing (non-conforming)

EXTERNAL procedure with choice arguments, hiding the non-standard calls

both from the user and the Fortran 90 compiler.

The assumption that assumed-size arrays are passed by their start address is

still needed in Fortran 90, but should pose no problems for current compiler
implementations.

Non-blocking communication is the most di�cult problem in the above list.
It is formally violating even the Fortran 77 standard, but severe problems

can be expected for Fortran 90: At least if the Fortran 90 interface keeps
the speci�cation of BUF arguments as assumed-size arrays, there are many
cases in which the Fortran 90 compiler needs to allocate a temporary, copy
parts of the actual argument into that temporary (if the dummy argument
has not INTENT(OUT)), pass the temporary to the MPI procedure, copy

back from the temporary to the actual argument after the call returned (if the
dummyargument has not INTENT(IN)), and �nally deallocate the temporary.
MPI then tries to access a memory region which no longer exists after the
RETURN. Passing array sections with non-unit stride is a popular example
of this behavior. There is no way to circumvent these problems in Fortran 90

with the current API of MPI. Section 4.3 contains some recommendations on
Fortran 90 features which should be avoided when calling MPI procedures.

3 The MODULE design

Much of the code to create explicit interfaces for MPI procedures could be

generated automatically: Since the MPI document is available as LATEX source
and contains an annex A with all Fortran 77 bindings, this annex can be

used to generate INTERFACE blocks for all MPI procedures. These can be

extended by adding suitable INTENT attributes, which are speci�ed in the
MPI main document.

3

What remains to be done is replacing the <type> BUF(*) type declarations

for choice arguments by a generic interface and a set of speci�c procedures for

each generic identi�er. This is described in sections 3.2 and 3.3.

Since the resulting MODULEs should be usable for a wide range of imple-

mentations, some care must be taken to organize the sources in a way that

is valid both for Fortran 90 free and �xed source form. This includes start-

ing comments with an exclamation mark, restricting statements to columns

7{72, 4 and organizing continuation lines in a way acceptable in both formats

(that is, a & character in column 73 or later of the continuing lines, and a &

character in column 6 of all continued lines).

3.1 The module MPI1 HEADER

A small module, MPI1 HEADER, is de�ned which does nothing else than

an INCLUDE of the MPI header �le mpif.h. It is shown in �gure 1. There
are mainly two reasons to USE such a module instead of separate INCLUDE
statements for mpif.h:

� A USE statement for a module guarantees consistent interpretation of the
header �le's contents, and also avoids the code replication inherent in the
INCLUDE mechanism.

� Access from the module can be restricted to speci�c entities by ONLY
clauses. An example is shown in the interface body of MPI WAITANY in
�gure 4, which needs only the constant MPI STATUS SIZE.

Fig. 1. The module MPI1 HEADER

MODULE MPI1_HEADER

IMPLICIT NONE

INCLUDE 'mpif.h'

END MODULE MPI1_HEADER

All modules de�ned in the following sections access MPI1 HEADER by USE,
rather than including the header mpif.h directly.

4 For automatic generation of modules from a template source �le as described in

sections 3.2 and 3.3, it must also be avoided to extend past column 72 when text

is substituted. This is the reason to start a continuation line immediately after the

subroutine name in Fig. 2 and 3.

4

3.2 The type-speci�c MPI1 type V modules

As discussed in section 2, one of MPI's violations of the Fortran standards is

the use of choice arguments: data objects of di�erent type must be associated

to the same dummy argument of a procedure like MPI SEND | typically as

MPI bu�ers. This design is supported by the existence of a generic void * in

C and the goal to keep the user interface simple: having di�erent SEND proce-

dures for all bu�er datatyes is clearly undesirable. In Fortran 90, the solution

to this problem is to overload a generic name MPI SEND with speci�c SEND

procedures for all bu�er types required. This keeps the user interface and doc-

umentation simple, 5 but is completely standard conforming and allows for

strong type checking.

For a native Fortran 90 binding, implementing this concept would be straight-

forward. Building an interface on top of an existing MPI library containing

only one EXTERNAL procedure MPI SEND is more complicated but possi-

ble: Speci�c procedures may be provided as MODULE PROCEDUREs with a
clean interface for each bu�er datatype, these may all reference the same EX-
TERNAL Fortran 77 procedure inside. Two important rules must be followed
to put this concept to work:

� To ensure proper resolving of the reference to MPI SEND inside the module
procedures (e.g. MPI SEND REAL), these must contain an EXTERNAL
MPI SEND statement. Otherwise the reference would be to the generic
identi�er MPI SEND, causing an in�nite recursive reference.

� Placing a generic interface and all speci�c procedures to MPI SEND into
one module will not work: A quality Fortran 90 compiler is likely to detect
that the speci�c module procedures all reference the same EXTERNAL,
and do so in a non-conforming way. So seperately compiled modules which
contain only one speci�c procedure must be de�ned, and afterwards USEd

in the base module to make all overloadings accessible. At these USE state-
ments, the compiler only checks the interface of the MODULE PROCE-
DUREs and thus cannot detect the EXTERNAL references.

Figure 2 shows the module template for overloading procedures which have

choice arguments: it contains generic interfaces with exactly one speci�c proce-
dure for type type in the speci�cation-part, and the module procedure (which

in turn calls the EXTERNAL procedure) in the module-subprogram-part. Re-
placing the string type by a valid datatype like real produces a module which

overloads all procedures with a speci�c version for that type. 6

5 The work to specify all the speci�c procedures must still be done, but this is

transparent to the user of the interface.
6 It should be noted that it is dangerous to replace type with DOU-

BLE PRECISION in identi�ers, because this might increase the length of some

5

Fig. 2. The module template MPI1 type V, showing only MPI SEND and

MPI RECV (the full module has 35 generic interfaces, each with one speci�c pro-

cedure).

MODULE MPI1_type_V

IMPLICIT NONE ; PRIVATE

PUBLIC :: MPI_SEND

INTERFACE MPI_SEND

MODULE PROCEDURE MPI_SEND_T

END INTERFACE ! MPI_SEND

PUBLIC :: MPI_RECV

INTERFACE MPI_RECV

MODULE PROCEDURE MPI_RECV_T

END INTERFACE ! MPI_RECV

CONTAINS

SUBROUTINE MPI_SEND_T(&

& BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)

type, INTENT(IN) :: BUF(*)

INTEGER, INTENT(IN) :: COUNT, DATATYPE, DEST, TAG, COMM

INTEGER, INTENT(OUT) :: IERROR

EXTERNAL MPI_SEND

CALL MPI_SEND(&

& BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)

END SUBROUTINE MPI_SEND_T

SUBROUTINE MPI_RECV_T(&

& BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, STATUS, IERROR)

USE MPI1_HEADER, ONLY: MPI_STATUS_SIZE

type, INTENT(OUT) :: BUF(*)

INTEGER, INTENT(IN) :: COUNT, DATATYPE, SOURCE, TAG, COMM

INTEGER, INTENT(OUT) :: STATUS(MPI_STATUS_SIZE)

INTEGER, INTENT(OUT) :: IERROR

EXTERNAL MPI_RECV

CALL MPI_RECV(&

& BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, STATUS, IERROR)

END SUBROUTINE MPI_RECV_T

END MODULE MPI1_type_V

One MPI1 TYPE V module needs to be generated for each supported bu�er

datatype, these must be separately compiled to prevent a f90 compiler from

MPI identi�ers beyond 31 characters. Therefore, DBLE is used in identi�ers for the

DOUBLE PRECISION version.

6

detecting the non-standard EXTERNAL references in the module procedures

for di�erent type. Note that the names of all speci�c procedures are PRIVATE

to each module, so they can all be su�xed with _T (rather than the full _type

name) without name clashes. The resulting modules are USEd in the main

module MPI1. which is described in section 3.4.

3.3 Scalar MPI bu�er objects

MPI de�nes all bu�ers as assumed-size arrays, <type> BUF(*). The problem

of associating objects of di�erent type with such choice bu�ers was solved in

section 3.2 by introducing generic procedures with speci�c versions for each

<type>. However, there is another subtle point where the MPI speci�cation

of the Fortran binding does not conform to the Fortran standards: It is illegal

in Fortran to associate a scalar data object that is not an array element des-

ignator (like A(1) is) with an assumed-size array. Nevertheless, MPI uses the

Fortran 77 procedures this way, see Example 4.15 on page 116 of [4] for an
example. Most f77 compilers do not complain about such \common practice",

but f90 compilers are likely to
ag an error in this situation, especially when
an explicit interface is visible.

To allow the possibility to pass scalars as MPI bu�ers (which is an exten-
sion of the original MPI speci�cation), another set of speci�c procedures with
scalar BUF arguments must be provided. In principle, two implementations are

possible:

� The speci�c procedure takes a scalar BUF argument, copies the value of this
argument to a temporary TMP_BUF(1), and passes this array of size one to
the EXTERNAL procedure These speci�c procedures may be included in
the same MPI1 TYPE V module shown above, since the call to the EX-

TERNAL passes an array as the original speci�c procedure does.
� The speci�c procedure passes the scalar BUF directly to the EXTERNAL
procedure. This needs another set of seperately compiled modules (as de-

scribed in section 3.2), because the fact that a scalar (and not a rank{1
array as in Figure 2) is passed to the EXTERNAL must be hidden from the

compiler.

Although the �rst alternative seems to be easier, it cannot work with the

non-blocking calls: the temporary array TMP_BUF(1) is automatic, and thus
deallocated on return from the procedure. This leads to the problems described

in section 4.3. The module template MPI1 TYPE S for the second alternative

is shown in �gure 3. As in the preceding section, one version is needed for each

supported bu�er datatype.

These modules allow to pass scalars to BUF arguments. However, scalar bu�ers

7

Fig. 3. The module template MPI1 type S, showing only MPI ALLTOALL (the full

module has 32 generic interfaces, each with one speci�c procedure).

MODULE MPI1_type_S

IMPLICIT NONE ; PRIVATE

PUBLIC :: MPI_ALLTOALL

INTERFACE MPI_ALLTOALL

MODULE PROCEDURE MPI_ALLTOALL_T

END INTERFACE ! MPI_ALLTOALL

CONTAINS

SUBROUTINE MPI_ALLTOALL_T(&

& SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, &

& RECVTYPE, COMM, IERROR)

type, INTENT(IN) :: SENDBUF

INTEGER, INTENT(IN) :: SENDCOUNT

INTEGER, INTENT(IN) :: SENDTYPE

type, INTENT(OUT) :: RECVBUF

INTEGER, INTENT(IN) :: RECVCOUNT

INTEGER, INTENT(IN) :: RECVTYPE

INTEGER, INTENT(IN) :: COMM

INTEGER, INTENT(OUT) :: IERROR

EXTERNAL MPI_ALLTOALL

CALL MPI_ALLTOALL(&

& SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, &

& RECVTYPE, COMM, IERROR)

END SUBROUTINE MPI_ALLTOALL_T

END MODULE MPI1_type_S

for MPI BUFFER ATTACH and MPI BUFFER DETACH are not supported
because this would not be useful anyway. MPI ADDRESS is also not over-
loaded with a scalar BUF version to avoid problems with possible call-by-value

implementations for scalar dummy arguments with INTENT(IN). For proce-
dures with two BUF arguments like MPI ALLTOALL, it is also not possible to
associate a scalar with one bu�er and a vector with the second one. This would

require additional speci�c procedures, and will normally be unreasonable.

3.4 The main module MPI1

The user should be able to access the MPI header �le, all the generic inter-

faces described in the preceding sections, and all interface blocks for proce-
dures without choice arguments by a single USE statement. This is the aim

8

Fig. 4. The main module MPI1 (showing only two of 94 interface bodies).

MODULE MPI1

USE MPI1_HEADER

! ... generic overloadings for <choice> argument procedures ...

USE MPI1_integer_V ; USE MPI1_integer_S

USE MPI1_real_V ; USE MPI1_real_S

USE MPI1_dble_V ; USE MPI1_dble_S

USE MPI1_complex_V ; USE MPI1_complex_S

USE MPI1_logical_V ; USE MPI1_logical_S

USE MPI1_character_V ; USE MPI1_character_S

IMPLICIT NONE

! ... A.9 Fortran Bindings for Point-to-Point Communication ...

INTERFACE

SUBROUTINE MPI_WAITANY(&

& COUNT, ARRAY_OF_REQUESTS, INDEX, STATUS, IERROR)

USE MPI1_HEADER, ONLY: MPI_STATUS_SIZE

INTEGER, INTENT(IN) :: COUNT

INTEGER, INTENT(INOUT) :: ARRAY_OF_REQUESTS(*)

INTEGER, INTENT(OUT) :: INDEX

INTEGER, INTENT(OUT) :: STATUS(MPI_STATUS_SIZE)

INTEGER, INTENT(OUT) :: IERROR

END SUBROUTINE MPI_WAITANY

END INTERFACE

! ... A.10 Fortran Bindings for Collective Communication ...

! ... A.11 Fortran Bindings for Groups, Contexts, etc. ...

! ... A.12 Fortran Bindings for Process Topologies ...

! ... A.13 Fortran Bindings for Environmental Inquiry ...

INTERFACE

FUNCTION MPI_WTIME()

DOUBLE PRECISION :: MPI_WTIME

END FUNCTION MPI_WTIME

END INTERFACE

! ... A.14 Fortran Bindings for Profiling ...

END MODULE MPI1

of the MPI1 module, which makes the MODULEs de�ned above accessible by
suitable USE statements, and contains interface blocks for the remaining MPI

procedures. It is shown in �gure 4.

9

4 Installation and use

4.1 Installation

To install the set of modules described in section 3, they must be compiled

with the Fortran 77 header �le mpif.h visible. 7 This typically produces one

object �le and one module �le (�le.mod) for each MODULE source �le.

The module �les must be moved to a location which is in the search path for

module �les (often the INCLUDE path), they are required at compile-time.

On UNIX systems, all objects can be combined into one archive library, e.g.

libmpi_f90.a, which must be moved to a location in the library search path.

This library is required at link time, on UNIX systems the -lmpi_f90 option

must precede the -lmpi option needed for the original Fortran 77 implemen-

tation of MPI.

4.2 Using the interface from Fortran 90 programs

Access to the Fortran 90 interface described in this report is provided by a

USE MPI1 statement in each scoping unit requiring such access, 8 possibly
including an ONLY clause to document which entities are actually needed.

A Fortran 90 program can then use all MPI calls and de�ned constants exactly
the same way as a Fortran 77 program. The main advantage is that the f90
compiler can now check MPI calls against the explicit interfaces speci�ed in
the module. As long as the program uses only Fortran 77 features, the only

di�erence to the original Fortran 77 binding should be the overhead caused
by calling through the additional layer of speci�c procedures for choice argu-
ments. This e�ect should be small compared to the expected communication
overhead.

It is also possible to use keyword arguments, with the argument names doc-

umented in the MPI standard. However, this is of limited use: OPTIONAL

arguments, which are the main application of keyword arguments, are not

7 The rules for source form given in the beginning of section 3 should also be

followed for mpif.h | not all MPI implementations on systems where the Fortran

compiler supports free source form include a mpif.h suitable for free source form...
8 Note that an interface body has its own scope, and consequently has no ac-

cess to the USEd modules in its surrounding scoping unit; a separate USE state-

ment in the interface body for MPI WAITANY in �gure 4 is needed to access

MPI STATUS SIZE.

10

supported by the current proposal. Entities of derived type cannot be used as

arguments, e.g. as MPI bu�ers. This will be checked by the compiler, which

knows the explicit interfaces. Specifying suitable components of derived type

objects is possible, of course.

4.3 Features to avoid in Fortran 90 programs

When other Fortran 90 features not present in Fortran 77 are used, severe

complications arise for all arguments which, by the MPI speci�cation, are in-

terpreted as the \address of a data object". This concept does not exisit in For-

tran, and although virtually all implementations of Fortran 77 are compatible

with this interpretation, Fortran 90 is not. Consider the following examples:

Example 4.1 Array sections:

USE MPI1, ONLY: MPI_REAL, MPI_SEND

REAL :: A(10)

! ...

CALL MPI_SEND(BUF=A(1:10:2),5,MPI_REAL,dest,tag,comm)

Because the BUF dummy argument to MPI SEND is an assumed-size array
and the callee might rely on sequence association, the caller must supply the

actual argument for BUF as a dense memory region. Passing an array section
with non-unit stride like A(1:10:2) invariably forces the compiler to allocate
a temporary, copy the array section to/from that temporary, and pass this
(dense) array to MPI SEND. 9

Example 4.2 POINTER arrays:

INTEGER :: i

REAL, POINTER :: A(:)

REAL, TARGET :: B(10)

! ...

A => B(2:9:i)

CALL MPI_SEND(A,SIZE(A),MPI_REAL,dest,tag,comm)

At the call to MPI SEND, the POINTER actual argument A will be auto-
matically de-referenced because the BUF dummy argument does not have the

POINTER attribute. However, since the target of the pointer may again be

an array section which is not dense in memory, the compiler may need to copy
to a temporary as above. Since run-time costs to check if this is necessary
may be large, some implementations may always do this copying | even if

the target is dense.

9 For contiguous array sections like A(:,i), it is compiler-dependent if a copy is

made or not.

11

Example 4.3 Array expressions:

REAL :: A(10), B(10)

! ...

CALL MPI_SEND(A+B,10,MPI_REAL,dest,tag,comm)

Fortran 90 allows general array expressions as actual arguments to a dummy

argument that is an array and is not modi�ed by the procedure. So sending

the sum of A and B as shown above seems natural. Obviously, the compiler

has to allocate temporary space to hold the result of the addition A+B, this

temporary is passed to the procedure and deallocated on return (possibly later

if the compiler can safely re-use the result A+B after the call).

Example 4.4 Assumed-shape actual arguments:

SUBROUTINE USER_SEND(A)

REAL, DIMENSION(:) :: A

! ...

CALL MPI_SEND(A,SIZE(A),MPI_REAL,dest,tag,comm)

END SUBROUTINE USER_SEND

REAL :: X(100)

! ...

CALL USER_SEND(X(::3))

In this example, the array A is an assumed shape array. Some compilers
will copy the array section X(::3) to a temporary which is then passed to

USER SEND. Now A is a dense array, and no problems need to arise when A

is passed to MPI SEND. However, a quality Fortran 90 compiler may be able
to pass X(::3) without the need to copy to a dense temporary because an
assumed shape array may also be implemented by a descriptor mechanism.
In such cases, a temporary must be allocated for the call to MPI SEND since

BUF is not an assumed shape array.

The obvious drawback of the examples above (and similar situations like actual

arguments that are general array expressions) is the performance degradation
(and memory consumption) caused by allocating and deallocating the tempo-
rary array and copying data to and from that temporary. However, a more

serious problem shows up with MPI's non-blocking communication calls: these

will most likely cause not only slow but erroneous results in situations like
those above. The reason is that MPI calls like MPI ISEND and MPI IRECV

initiate asynchroneous read and write operations to memory locations given
by their BUF argument, which persist even after the call has returned. Since

the temporary arrays will be deallocated by the compiler immediately after
the return from the corresponding MPI call, strange behavior is to be expected

for non-blocking communications.

12

An actual argument used as a bu�er in non-blocking calls must be a whole

array data object, and shall not be an assumed shape dummy or have the

POINTER attribute. If array sections are needed, the user may copy them to

temporary arrays manually (again, POINTER should be avoided), and exer-

cise great care that these do not go out of scope before the non-blocking oper-

ation has completed. For whole array bu�ers, the MPI datatype construction

features can be used to specify the array sections to be actually transferred.

Since the rules to avoid copying to temporaries may be quite complicated, the

safest way to avoid erroneous behavior is not to use non-blocking communica-

tion from Fortran 90 at all. Obviuosly, abandoning these calls makes latency

hiding quite di�cult.

5 Possible extensions

Most extensions to the simple Fortran 90 interface described above will be

complicated { support for Fortran 90 derived types or assumed shape arrays
as MPI bu�ers are examples. However, some extensions are possible with only
modest impact on the MPI environment (and existing MPI codes). this section
outlines some of them.

5.1 OPTIONAL arguments

A number of arguments of MPI procedures might be declared as OPTIONAL,
because many applications do not need them. Examples include:

� the communicator COMM, which in many applications is always the global

communicator MPI COMM WORLD,
� the error indicator IERROR, because the default MPI behavior when errors
are detected is MPI ERRORS ARE FATAL,

� the STATUS �eld of receive calls, typically required only when wildcards like
MPI ANY TAG are used.

� the DATATYPE handle of communication calls, this can be derived from the

type of BUF (except for MPI BYTE and MPI PACKED).

Such features can be added without any portability problems for existing
Fortran 77 programs: �gure 5 shows how the COMM, STATUS and IER-

ROR arguments of MPI RECV can be made optional. If INTENT(IN) ar-
guments are not given, the module procedure uses suitably de�ned defaults,

INTENT(OUT) arguments which are provided by the EXTERNAL proce-
dure are simply not passed up if the corresponding argument of the module

procedure is not present.

13

Fig. 5. The speci�c MPI RECV T procedure with OPTIONAL arguments.

SUBROUTINE MPI_RECV_T(&

& BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, STATUS, IERROR)

USE MPI1_HEADER, ONLY: MPI_STATUS_SIZE, MPI_COMM_WORLD

type, INTENT(OUT) :: BUF(*)

INTEGER, INTENT(IN) :: COUNT, DATATYPE, SOURCE, TAG

INTEGER, INTENT(IN), OPTIONAL :: COMM

INTEGER, INTENT(OUT), OPTIONAL :: STATUS(MPI_STATUS_SIZE)

INTEGER, INTENT(OUT), OPTIONAL :: IERROR

EXTERNAL MPI_RECV

INTEGER :: COMM_O, STATUS_O(MPI_STATUS_SIZE), IERROR_O

IF (PRESENT(COMM)) THEN

COMM_O=COMM

ELSE

COMM_O=MPI_COMM_WORLD

END IF

CALL MPI_RECV(&

& BUF, COUNT, DATATYPE, SOURCE, TAG, &

& COMM_O, STATUS_O, IERROR_O)

IF (PRESENT(STATUS)) STATUS=STATUS_O

IF (PRESENT(IERROR)) IERROR=IERROR_O

END SUBROUTINE MPI_RECV_T

However, a MODULE PROCEDURE must be created also for the non-choice
procedures (which have only an interface block in �gure 4) because the code
to handle OPTIONAL arguments cannot appear in an interface block. Since
a module procedure cannot have the same name as the EXTERNAL proce-
dure it calls, such an implementation would require the same hierarchy as

�gure 2, e.g. a generic interface named MPI INIT containing a speci�c proce-
dure MPI INIT O with OPTIONAL argument IERROR, which in turn calls
the EXTERNAL procedure MPI INIT. This is not very elegant, and for this
reason was not included in the proposed Fortran 90 interface.

5.2 Derived types for MPI handles

It would be desirable to enable type-checking for MPI handles, too. In the
Fortran 77 binding to MPI, all handles are of type INTEGER. The safest way

to protect handles from being corrupted in Fortran 90 is to introduce a derived

datatype with a PRIVATE component for each MPI handle type, and making

only the type name (and the assignment and comparison operations required

by the MPI document) available to the application program.

14

Implementing this is also possible in a module on top of an existing For-

tran 77 implementation: the MODULE PROCEDUREs can pass the integer

component of a derived type handle object to the corresponding EXTERNAL

procedure. However, since application programs would need to be adapted

to declare handles with the new derived types, this implementation would

invalidate existing MPI programs. 10

Another problem with such an implementation is that all the MPI-de�ned

constants for a handle type must be re-declared to be of the corresponding

derived type. This can be done with some tricky renaming of the original in-

clude �le's constants, but this is clearly not the ideal solution. And for similar

reasons as with OPTIONAL arguments, each EXTERNAL procedure needs

to be called from a MODULE PROCEDURE, which is quite an e�ort to im-

plement. Therefore, derived type handles were deferred to a native Fortran 90

binding which could implement them much easier.

6 Summary

This report has shown that designing a Fortran 90 interface to the existing
MPI Fortran binding is possible without invalidating any existing Fortran
application using MPI. A set of module �les has been provided which can be
used on top of an existing Fortran 77 implementation of MPI.

Some of the problems which must be expected when more advanced features
of Fortran 90 are used have been discussed. Since MPI relies on some non-

standard implementation details of the Fortran compiler, these features can be
very dangerous to use. It must be noted that the probles exposed in section 4.3
are present even without the explicit interfaces provided by the Fortran 90
binding { without an explicit interface the Fortran 90 compiler assumes that
all arrays arguments are assumed-size arrays.

Extensions to the proposed (minimal) binding are possible and desirable, but

most of them are too di�cult to build them on top of an existing Fortran 77

implementation, would invalidate existing programs, or both. It is likely that
the MPI{2 initiative will standardize some of these more advanced features.

10A simple way to document di�erent types of handles in the interfaces (with-

out adding any extra functionality) would be to de�ne KIND type parameters like

MPI1 COMM in the MPI1 HEADER module, and declare handles like COMM of

type INTEGER(MPI1 COMM) instead of simply INTEGER. Of course, all such

KIND type parameters must specify the default INTEGER kind to be compatible

with the original version.

15

References

[1] International Organization for Standardization. Information technology {

Programming languages { C (ISO/IEC 9899:1990). Also ANSI X3.159-1989.

[2] International Organization for Standardization. Information technology {

Programming languages { FORTRAN (ISO 1539:1980). Also ANSI X3.9-1978.

[3] International Organization for Standardization. Information technology {

Programming languages { Fortran (ISO/IEC 1539:1991). Also ANSI X3.198-

1992.

[4] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard.

Version 1.1. June 12, 1995.

URL: ftp://ftp.mcs.anl.gov/pub/mpi/mpi-1.jun95/mpi-report.ps.

16

