
 8th Jan. 1997
Individual comments concerning the misc. requirements
===

These comments were returned together with the votes concerning the
priority of miscellaneous requirements for Fortran2000.

They are listed in the following (arbitrary) sequence:

1. C. Dedo
2. W. Clodius
3. C. Weber
4. M. Cohen
5. S. Whitlock
6. M. Hennecke
7. M. Zuern
8. D. Schmitt
9. P. Lignelet
10. S. Morgan
11. J. Reid
12. D. Muxworthy
13. French member body

=========================
1. Comments by Craig Dedo
=========================

 *** Omit/Low/Medium/High ***
 The notations "WG5 #" and "CW #" refer respectively to the numbers given
each item in the WG5 Repository and Christian Weber's categorization of 16
October 1996 (X3J3/96-168).

 I am not including comment on items which are already accepted as X3J3
Requirements or Minor Technical Enhancements (MTEs).

WG5 # CW # Requirement Title
----- ---- -----------
 7 2.1 Block comments
 NO - Users can get this functionality by using the proposed Conditional
Compilation facility.

92 2.3 Reserved Words
 NO - One of the strengths of Fortran is the lack of reserved words.

2.4 IMPLICIT NONE by Default
 Low - Most compilers already have a compiler switch that does this.

77 3.4 Special Character Designations (as in C)
 NO - Fortran should strenuously AVOID introducing C language constructs.
Programmers can already get such functionality by defining CHARACTER
constants for these control characters.

3.5 Definable evaluation sequence for Logical Operators
 NO

21 4.1 BIT Data Type
 HIGH - A wide variety of applications can benefit from this feature. We
MAY already have a champion for this effort.

37 4.3 Unsigned INTEGER
 HIGH - Not only is C Interoperability the issue, some types of data uses
naturally use unsigned rather than signed integers. This feature has been
in most other languages for years, so implementation should not be
difficult.
 I originally proposed this feature; If approved, I would volunteer to be
the champion, if I could get some assistance from other members of the Data
Subgroup.

5* 5.1 Exception Handling
 HIGH - this capability would be a MAJOR improvement for Fortran. If we
can find a champion, we should definitely pursue this feature. We may need
to revise the feature somewhat from its original concept in order to
accommodate the concerns of those who believe that it will slow down
execution even if exception handling is not used.
 I prefer a version of John Reid's work.

25 5.2 Extend EXIT
 Medium - This probably could be an MTE. It certainly provides a natural
extension of the existing language at very small cost.

33 6.1 Nesting Internal Procedures
 NO - I really do not see very much value, especially in light of the
effort which would be required.

42 6.2 Allow Internal Procedures as Actual Arguments

 HIGH - Malcolm Cohen's arguments convinced me that this would be a
valuable feature for Fortran 2000.

100 6.3 COPY_IN Intent Attribute
 NO - Would this be equivalent to pass-by-value? If so, will not the C
Interoperability TR already provide this functionality?

6.4 Interface to Internal & Module Procedures
 HIGH

6.5 Initialization of Programs in Modules
 Low

26 7.2 Non-rectangular sub-arrays
 NO - I really do not see very much value, especially in light of the
effort which would be required.

48 8.1 Variable Format Expressions (VFE)
 YES - This is a popular extension. Those compilers which have it
implement it in (almost) exactly the same fashion, so there already is a
well-established informal specification. This feature would offer
application programmers the opportunity to dynamically vary format
specifications in an easier, more straightforward, and less error-prone
fashion than is currently available with character run-time formats.

 If approved, I would volunteer to be the champion of this feature. I
have already written a paper (X3J3/96-071) on this feature. The paper
proposes to ratify existing practice. If people are willing to simply
ratify existing practice, the amount of work could be quite small (possibly
an MTE), rather than the medium amount of work suggested by Christian
Weber.

 I do not believe that an intrinsic procedure such as the TO_CHAR
procedure mentioned previously, would offer the functionality that users
expect.

63* 9.1 STREAM I/O
 HIGH - This is a very valuable addition to the Fortran I/O capabilities.
It offers the application programmer the ability to read large, unstructured
files and incoming data from a variety of physical devices.

65 9.2 Non-Advancing I/O with List-Directed I/O
 HIGH - Christian Weber's comments say it all. An obvious correction to
an unnecessary irregularity.

68 9.3 Any Kind of Integer for I/O Specifiers
 HIGH - This is an unnecessary irregularity. It is my idea and the
amount of work is quite small, so I would volunteer to be the champion. I
believe that the need among application programmers is already much greater
than what most others realize.

76 9.5 Default I/O Mode
 NO - I really do not see the need.

79 9.6 TAB character in Fortran source
 Medium - I originally proposed this item. It could be an MTE. I am
willing to be the champion.

93 9.7 READ_EOR, etc. in INQUIRE
94 9.8 IS_EOR & IS_EOF in INQUIRE, READ, & WRITE
 Low - Both of these could offer some useful functionality.

9.9 DEFAULT READ & DEFAULT WRITE
 NO

9.10 Asynchronous I/O
 HIGH - X3J3 has already approved a technical specification.

20 10.1 Command Line Arguments and Environmental Variables
 HIGH - This is a major weakness of Fortran right now. This is shown by
the numerous and wholly incompatible vendor extensions in order to provide
this capability.
 I wrote a proposal similar to the one which David Matoon submitted. I
would be willing to be the champion of this feature.

47 10.2 POSIX Interface to Fortran 90
 HIGH - POSIX provides some major capabilities, especially with respect
to operating system interfaces. Thus, a POSIX interface can be a major
benefit to the application programmer.

 In discussing this feature with others, I believe that it is possible to
develop this feature in a piecemeal fashion; a POSIX interface is not an
all-or-nothing proposition. It is my understanding that the POSIX interface
is defined as a series of functions and/or subroutines rather than a
wholistic, indivisible specification.

 I would be willing to be the champion of this feature and would attempt
a piecemeal approach.

86 10.3 Operating System Support (SYSTEM Command or Subroutine)
 HIGH - This is another feature which has been implemented by many
different vendors in very different fashions.
 I wrote a proposal on this feature. I would be willing to be the
champion.

99 10.4 Handling of Error Messages
 NO

102 10.5 Primitive Graphic Support
 NO - While I am sympathetic to the proposer's needs, I believe that it
is about 20 years too late for this to succeed. I do not believe that there
really is much of a market for this feature. This is due to the enormous
popularity of existing windowing APIs, which can provide not only the
functionality of this feature, but also much more. While the various
windowing API interfaces are incompatible with each other, it is possible
for a private developer to create cross-platform GUIs which have the same

API, e.g., Interacter.

55 11.1 Regularize RANDOM_NUMBER Functionality
 Low

80 11.4 Size Intrinsic for Derived Types
 HIGH - C has this, why not Fortran?

81 11.5 Sort Intrinsic
 NO - There are many different sorting algorithms. This functionality is
much better provided by commercial or public libraries or by operating
system utilities.

82 11.6 FFT Intrinsic
 NO - This is a sophisticated numeric function. It is much better left
to the high powered commercial or public math and engineering libraries.

90 11.7 Rounding and Bit Handling Functions
91 11.8 PATTERN=
97 11.9 POSITION and LOCATION
98 11.10 SCRIPT and SCALAR
 No - I really do not see the need. Perhaps if all of these were very
small work items, I would favor them.

13.1 Subset Language
 NO - Creating various subsets would only complicate the standards making
process. A lot of time and effort would be spent on this rather than going
into the creation of needed new features.

13.2 Review of Implementation defined & undefined
 Medium

Sincerely,
Craig T. Dedo Internet: Craig.Dedo@mixcom.com
Elmbrook Computer Services Voice Phone: (414) 783-5869
17130 W. Burleigh Place
Brookfield, WI 53005 Disclaimer: These opinions are mine alone.
USA They do NOT represent any organization.

"They that can give up essential liberty to obtain a little temporary
 safety deserve neither liberty nor safety." -- Benjamin Franklin (1759)

=========================
2. Comments by W. Clodius
=========================

2.4 new IMPLICIT NONE by default small L

Large incompatibility with heritage code makes this a difficult sell,
although it is tempting. If this is to be done at all it should be done in
stages. Create an "IMPLICIT ALL" construct to indicate code where IMPLICIT is
should be used. Require compilers to have an option to turn off IMPLICIT
typing (don't most compilers provide this already?). In a subsequent standard
deprecate IMPLICIT typing.

3.5 new Definable evaluation sequence for logical small M
 operations

There are higher priorities for me, but most of the part time programmers of
my acquaintence appear to assume short circuiting, and at least untill last
year, a widely accepted authority on F90 (Michael Olagnon) was under the
mistaken belief that Fortran required short circuiting. The problem is not
that the language does not provide short-circuiting, but that a machine
dependent exception can be thrown due to the execution of code that need not
be evaluated to determine the result of a logical operation, and the
processor does not suppress the exception upon noting that it need not be
generated. This can occur for array out of bounds, divide by zero, integer
overflow, and many other intrinsic operations. I now believe that an operator

would imply the wrong semantics, and believe that something like

PROVIDED (...) THEN IF (...) ...

would be preferable.

4.1 21 Bit Data Type, String large M

I think this is a usefull capability for the language, but with all the other
tasks addressing this in full may be difficult. Instead I would encourage
someone to attempt to implement this as a module using the planned
capabilities of F2000, and identify any problems in using the language for
such an implementation so that these limitations can be removed.

4.2 34 Varying length character with declared large O
 maximum

There are too many other irons in the fire to require the inclusion of a
third character capability in the language.

5.2 25 Extend the semantics of the EXIT statement small O/L

The little I have seen of this proposal suggests that the additional

functionality it provides is small, and there is the devil to pay in the
details.

5.3 new Real arguments in CASE/FORALL/WHERE small O/L

I mostly put this on the table to challenge people's beliefs, it did that for
sure. I have other higher priorities that I do not want to be delayed by the
controversy this would engender. I would like to note that there is very
little research of any kind as to the relative safety/unsafety of any
constructs in any language, and most arguments on such topics must rely on
plausibility arguments, whose underlying assumptions are rarely examined.

There is no doubt that it is easy to use these constructs in erroneous ways
and that people would use these constructs in such ways. My point is that
there is no evidence that even if these constructs are not provided there is
no evidence that people will not implement the equivalent of these constructs
in order to commit the same errors. There is some anectodal evidence to the
contrary. I remember a European teacher and F90 advocate noting that when he

forbade his students from using REAL DO loop indices, they all implemented
the equivalent errors using DO WHILE codes. He blamed this on the existence
of DO WHILE. However, the conceptiual and implementation differences
between
DO WHILE(...) and DO ... IF (.NOT. ...) EXIT are so small, that I believe
that if he had forbidden DO WHILE, they would have made the same mistakes
using DO ... IF (.NOT. ...) EXIT

The problem is not that REAL DO indices make it easy to make a mistake, the
problem is that the REAL type has significantly more complexity and gotcha's
than other common types. It takes work and time to recognize those
subtleties. Too many students are unwilling to invest the effort to identify
in advance potential problems with this data type. This effort is enormous
relative to the effort of figuring out how to code the equivalent of a REAL
DO index by using DO WHILE(...) or DO ... IF (.NOT. ...) EXIT They
have already learned how to implement alternative data flow structures in
their previous work.

10. Access to Features of the Environment

These capabilities are almost all system dependent. There may come a time
when Mr. Gates makes system dependency unimportant, but that time has not
yet
arrived. There may be a few features that are so universal that Fortran
could justify including them, but they are at best a small subset of one or
two of these proposals.

11. New / better Intrinsic functions

I have a list of functions that would be usefull to include in F2000, but
none of these proposals intersect that list. I might suggest some of the
core procedures of the Numerical Recipes F90 text, and many of the HPF
procedures but not these.

13.1 new Creation of a subset language large L

Too controversial and too large. I might like to revisit it when F2000 is
almost completed, but there are far higher priorities at the moment.

13.2 new Review implementation-defined/undefined medium O
 constructs

My idea was too undefined. Some of my highest priority items, e.g., internal
procedures as arguments are already on the list.

Hope this is helpful

Bill Clodius

=========================
3. Comments by Chr. Weber
=========================

4.1 Bit Data Type: I am strictly opposed against a completely new data
type BIT, but some SELECT_LOGICAL_KIND function together with some
concatenation operation for arrays and some conversion intrinsics would
be a good idea.

4.4 Specifying Default Precisions: I think that the needs behind this
requirement can adequately handled by some compiler option where the
user is responsible himself that the option is used in all compilation
units of a full program (else there will be linkage problems)

5.1 Exception Handling: I believe that the lack of any exception
handling facility which allows to control a whole code area together
with all subroutine calls is the most important missing feature of
Fortran, reducing considerably its competitiveness against other
languages such as C or C++.

5.4 Parallelized SELECT CASE:
I think that parallelization issues should not be treated one at a time,
but there should be one full concept (message passing? Data

parallelization as in HPF?) before individual steps are done.

6.2 Allow internal procedures as actual arguments:
I think that this feature will cause unduly much implementation
complications.

6.5 Initialization programs in modules:
This feature would really add a new quality to the Fortran module
concept: implementors of a module would not have to take care any
more at each module function that the module might still have to be
initialized: statements like
IF (INIT .EQ. .FALSE.) CALL MODULE_INIT

would not be needed any more, gaining quite a bit of performance for
each module function.

8.1 Variable Repeat Specifiers in Formats:
I would be in favor of a simple conversion function TO_CHAR(int), but of
nothing more.

9.2 Non-advancing I/0 combined with free format:
This extremely strange irregularity (rather a mistake) should be
removed.

9.9 New keywords DEFAULT_READ and DEFAULT_WRITE in INQUIRE
statement:
This could create an incompatibilty on certain processors since the
default units need not necessarily be assigned to a number as well.

10.2 POSIX Binding to Fortran 90:
Already covered by the C interoperability.

11.4 Intrinsic 'size' function for derived types:
It should be decided by the C interoperability TR if this function is
needed; I would not like it separately from this TR.

Merry Christmas and a Happy New Year to everybody

Regards

Christian

==
Christian Weber
Siemens Nixdorf
BS2000 SA
Otto-Hahn-Ring 6
81739 Munich / Germany

e-mail: christian.weber@s31.mch1.x400scn.sni.de
Tel.: +49 89 636 49240
Fax: +49 89 636 41776
==

============================
4. Comments by Malcolm Cohen
============================

>2. General Syntax Enhancements
>2.1 Block Comments (Repository-entry 7)

Omit.
 - The proposal in the repository introduces a gratuitous incompatibility with
 Fortran 90/95.
 - The question of whether such block comments are nested is problematic; the
 proposal in the repository assumes not, which makes one of its proposed
 uses (commenting-out sections of code) highly error-prone.
 - Putting "!" at the beginning of each line in a section of code is very easy
 with most editors.

>2.2 Lower Case Syntax Elements (67)

J3/M7: Low priority.

There does not seem to be any problem with this (I am unaware of any recent
machine which does not provide lowercase) but nor does it seem to gain (I am
unaware of any Fortran 90 implementations which reject lowercase).

>2.3 Reserved words (92)

Omit.
 - this is a gratuitous incompatibility with Fortran 90/95.
 - I do not see this providing any use for programmers, it just decreases the
 size of the namespace.
 - I do not see how this helps the implementor

>3. Constants and Expressions
>3.1 Extend Initialization of COMPLEX Variables (66)

J3/M17: Low priority(allow CMPLX)/Omit(change complex literal constant defn).
 - this would be more useful if it were to extend initialisation by expanding
 the set of intrinsics like CMPLX that are allowed in initialisation
 expressions.
 - the current prohibition of CMPLX(a,b) in an initialisation expression does
 not lose any functionality: the user can write a+b*(0,1): it is just a

 niggling inconvenience.
 - currently complex literal constants are indeed literal constants. Allowing
 PARAMETER names or constant expressions in a "complex literal constant"
 means that it is not a literal constant any longer, just an implicit
 reference to the complex constructor function CMPLX!

>3.2 Permit BOZ constants in the TRANSFER function (69)

J3/M8: Low priority.
 - These should be allowed everywhere, not just in TRANSFER.

>3.3 Allow MERGE in constant expressions (71)

J3/M9: Medium priority.
 - This is genuinely useful and avoids having to do strange things with "DIM".
 - Must be allowed in initialisation expressions as well...

>3.4 New Special Character designations (77)

Omit.
 - these control characters are not necessarily present on all systems
 - there is potential for confusion with \n and Fortran end-of-record markers;
 if \n is defined to be a "proper character", we would then require it to be
 allowed within a Fortran record - ruining those systems which use \n as
 an end-of-record marker
 or if \n is defined to create a new record (in sequential output only?), so
 is forbidden to appear inside a record, we are imposing additional overhead
 onto non-Unix systems to make them look like Unix.

This proposal would fit better as part of some sort of Posix facility.

>4. Data Types
>4.1 Bit Data Type, String (21)

Medium priority.
 - we should do something about this long-standing requirement.
 - bit string data type seems to be what the users want, though many would
 accept messing about with LOGICAL arrays.

>4.2 Varying length character with declared maximum (34)

Omit.
 - parameterised derived types seem to provide the ability to write ones own
 version of this facility with fair efficiency.

>4.3 Unsigned INTEGER Data Type (37)

Low priority.

 - useful for interfacing to C and other system/library functions
 - occasionally (rarely?) useful by itself
 - seems to be a lot of work to add this, since it affects many parts of the
 standard (mixed-mode arithmetic makes things complicated). Is it worth it?

>4.4 Specifying Default Precisions (49)

J3/M12: Omit.

 - the proposal in the repository allows real and double precision to be the
 same; this has negative effects not only on storage association but also
 on mixed-mode arithmetic.
 - this seems to be a lot of work for the potential gain

>5. Control Flow Constructs
>5.1 Exception Handling (5,5a,5b,5c)

Omit.
 - this provides too little functionality for too great a cost

>5.2 Extend the semantics of the EXIT statement (25)

Omit.
 - if EXIT could exit from IF/SELECT, this would change the semantics of
 existing code (or we have an inconsistency in that to exit from an IF
 one would have to specify the construct name).

>6. Procedures
>6.1 Nesting of internal procedures (33)

Low priority.

>6.2 Allow internal procedures as actual arguments (42)

High priority.
 - allows function arguments to be thread-safe
 - removes the current need for global variables or other hacks when passing
 user functions to routines for integration/differentiation/interpolation
 etc.

>Since internal procedures have access to the variables in all
>the surrounding scoping units, it has to be defined how this
>access works (and has to be implemented) from an internal
>procedure which is called via an external procedure.

No, the standard does not have to explain how to implement this.

It does have to explain the semantics; fortunately these are obvious for
Fortran 95: an internal procedure invoked via the dummy argument mechanism

has access to the local variables of the instantiation of the host procedure
which passed it in the first place. Not much of a problem.

In Fortran 2000, assuming we have procedure pointers/variables, one has the
additional caveat that a procedure pointer/variable eventually associated with
an internal procedure becomes undefined once the host procedure exits.

>(Such problems are present in the PASCAL language currently and
>have been solved there, but it was complicated for users as
>well as implementors).

Such "problems" (or as some would have it, "features") have been present in
computer languages for more than 3 decades.

How can you say it was complicated for the users when it is impossible
otherwise?

Anyway, if one is starting from scratch, implementation is trivial - a dummy
procedure contains the code address and the host frame pointer. As it happens,
this was the case on the old Apollo Domain workstations - which supported
Pascal as well as C and Fortran.

Even when not starting from scratch - i.e. dummy procedures just have a code
address - thunking does it (i.e. you write several instructions onto the
stack which load the host frame pointer with the right value and then jump to
the "real" address of the internal procedure, and pass the address of this
code block as the dummy argument). With some CPUs you need to flush the
instruction cache as well, so it is not as fast as passing an external
procedure, but it does the job without slowing down existing mechanisms, plus
it retains backwards binary compatibility.

>Amount of work for X3J3:
>large.

It does not look so large to me. Medium at the most.

>6.3 New INTENT attribute: COPY_IN (100)

Omit.
 - the proposer claims we need this because a dummy argument might be
modified
 other than via the dummy argument while one is within a call to that
 routine. Since this is illegal, that piece of rationale is incorrect.
 - It is already possible for the calling routine to make a copy of the
 value of the dummy argument. For arrays, this is probably no less
 efficient that having the compiler do it.

 - INTENT(IN) already provides the guarantee that the dummy argument is not

 altered through the dummy argument name, and the standard already
prohibits
 changes to actual arguments associated with a dummy argument other than
 through the dummy argument name, so this facility is already present.
 - if the user wants his compiler to *detect* illegal Fortran he should ask
 his vendor (preferably with money).

>7. Executable Statements
>7.1 Controlling Pointer Bounds (2)

J3/M4. Low Priority.
 - I think this is almost done anyway.

>7.2 Selecting subarrays of non-rectangular form (26)

Omit.
 - unless it is limited to the case where the elements of each dimension of the
 target happen to be evenly spaced (by array element number), this would
 likely require all implementations to change how array pointers are
 implemented.

>8. FORMAT processing
>8.1 Variable Repeat Specifiers in Formats (48)

Omit.
 - Using internal writes to create a format-spec provides all this and more.

>9. I/O enhancements
>9.1 STREAM I/O, Binary stream I/O (63, 63a)

Low/medium priority.
(Cannot make up my mind; there are 2 different proposals here anyway)
 - "FILESIZE" seems unnecessary; if the user wants to count he can.
 - "CURRPOS" is confusing; if the user cannot BACKSPACE, how can the
position
 be other than at the end of the file? If the intent is to count the number
 of units read/written, let the user do it themselves. Don't require it for
 everyone.

>9.2 Non-advancing I/0 combined with free format, Extend non-
>advancing I/O to List-Directed I/O (63b, 65)

Medium priority.
 - this is a needless restriction
 - why is recursive i/o not a requirement? Enough users want it.

>9.3 Any Kind of Integer for I/O Specifiers (68)

Low priority.
 - I do not see anywhere this is useful other than in REC=.
 Just doing it for REC= would be better than doing it everywhere.

>9.4 Named Scratch Files (73)

J3/M10. Low priority.

>9.5 Default I/O mode (76)

Low/Medium priority.
 - Seems easy to implement both in the standard and in the compilers

>9.6 Recognition of TAB characters in Fortran input (79)

Low priority (one TAB=one blank)/Omit (one TAB = variable blanks).
 - the 'tr' filter on Unix (which is where the C program is likely running)
 can be used to change tabs to blanks.

>Treat TAB characters like the corresponding string of blanks in
 ̂ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ̂
Unfortunately this differs according to the output device on which one is
printing the file, and with many devices it depends on where the tab stops
have been set.

The best solution is to use 'tr' if you want one tab = one blank, use 'expand'
if you want one tab = 1-7 blanks to next tab stop (every 8th char), or change
the C program to output blanks!

>(formatted) Fortran input.

>9.7 New keywords READ_EOR, READ_EOF, WRITE_EOR (?), WRITE_EOF
>(?) in INQUIRE statements (93)

Medium priority.
 - Actually it would be better just to standardise the values returned in
 IOSTAT for END and EOR.

>9.8 New keywords IS_EOR and IS_EOF in INQUIRE, READ and WRITE
>statements (94)

Omit/low priority.
 - It would be better to do item 93 instead.

>9.9 New keywords DEFAULT_READ and DEFAULT_WRITE in INQUIRE
>statement (95)

Low priority.

 - it would not seem impossible for those implementations which provide
 "unnumbered" default i/o units to add a couple of new "magic unit numbers"
 to help provide this facility. Or if that is deemed too much of a burden,
 the enquiries could return -1 to indicate the lack of such unit numbers.

>10. Access to Features of the Environment

All of the 10.x features could probably be done nicely as an intrinsic module
(so we only hit the namespace once, even if we expand the number of facilities
 later).

>10.1 Command Line Arguments and Environmental Variables (20)

Low priority.
 - genuinely useful but very system-specific
 - perhaps environment variables should be part of some Posix package.

>10.2 POSIX Binding to Fortran 90 (47)

Medium priority.
 - it would be good to come up with a minimal set of Posix facilities
 - but full POSIX.1 binding is too much work for F2000

>10.3 Operation System Support (86)

Medium priority.
 - most implementations already provide this in some form, there seems to
 be a fair amount of user demand for this (as one of the vendors who does
 NOT provide a "system" function, I can testify to the user demand).

>The requirement may be covered by 10.2 (see above).

No it is not, though in my view it could be packaged together with anything
that comes out of 10.2 in an intrinsic module.

>10.4 Handling of error messages (99)

Low priority.
 - these messages usually have some context (sometimes embedded in the
message)
 such as filename, unit number, system error code, etc.
 - POSIX handles this by standardising the error codes (actually the names of
 the error codes, not the values). We could similarly standardise some set
 of error code names (perhaps as PARAMETERs in an intrinsic module...)

>10.5 Primitive graphic facilities in Fortran (102)

Omit.

 - Too system-specific. Too primitive. Too expensive.
 - This is better done by an auxiliary standard, or as a binding to an
 existing standard (even an existing de facto standard).

>11. New / better Intrinsic functions
>11.1 Regularize RANDOM_SEED functionality (55)
>
>Subject:
>Provide some means to reset the random number generator in a
>non-repeatable way (and furthermore create a more comfortable
>interface for the repeatable reset).

Low priority for first:
 - programs which require multiple independent pseudo-random number
streams
 should not use RANDOM_NUMBER. Commercial and public-domain
random-number
 generators are available for this purpose. (Note that this proposal does
 not provide acceptable multiple random number streams, it just gives it
 the appearance thereof).

Omit for second:
 - Programs which require multiple independent random-number streams
should not
 be encouraged to use RANDOM_NUMBER.

It is my view that provision of more sophisticated random-number generation
facilities in the Fortran language is inappropriate. Unless the language also
standardises the RNG involved, it will mislead users with special needs into
thinking they can trust the implementation to provide streams with special
characteristics.

>11.2 Generic COUNT_RATE Argument for SYSTEM_CLOCK (61)

J3/M3. Low priority.
 - Seems to be underway already, though I see no need for it.

>11.3 Extend MAX, MIN, etc. to CHARACTER Data Type (64)

J3/M5. Low priority.
 - Seems to be underway already. Though it has limited usefulness it does

 give the language the appearance of more regularity, I suppose.

>11.4 Intrinsic 'size' function for derived types (80)

Omit (as far as the "misc" group is concerned).
 - this belongs in the interoperability TR, if anywhere.

>11.5 Instrinsic 'sort' for arrays of intrinsic type (81)

Omit.
 - it is unrealistic to expect compiler writers to provide dozens of highly
 optimised sorting routines and to pick the correct one which matches the
 characteristics of the users data (indeed, often the program contains no
 information about key characteristics of the data, like whether it will
 fit in memory!).
 - Commercial and public domain sorting routines for particular kinds of data
 are already available. By chosing among them, the user will almost
 certainly do better than the implementor will by guessing.
 - too expensive for too little gain

>11.6 Intrinsic function 'fft' - Fast Fourier Transformation (82)

Omit.
 - too expensive for too little gain
 - this kind of function belongs in specialised libraries, not in the language

>11.7 Four new elemental intrinsic functions: TRUNCATE, ROUND,
>IBCHNG,ICOUNT (90)

Omit/Low Priority.
 - TRUNCATE,ROUND: Omit. Expensive to compute and encourage the
mistaken
 view of floating-point numbers as decimal floats instead of binary floats.
 - IBCHNG: Omit. Functionality already provided by Fortran 90:
 IBCHG(I,POS) = IEOR(I,IBSET(1,POS))
 - ICOUNT: Low Priority.
 We should probably call this "POPCNT" (it is in the HPF_LIBRARY module
of
 HPF; using the same name avoids confusion and does not cause a name clash
 with the HPF_LIBRARY since it does the same thing).

>11.8 PATTERN= in bit manipulation functions such as IBCLR,
>IBSET, IBCHNG (91)

Low priority.
 - this is unlikely to be more efficient as an intrinsic instead of the obvious
 DO loop, e.g.

 IBCLR(IVAL,PATTERN=A)
 vs.
 DO I=1,SIZE(A) ; IVAL = IBCLR(IVAL,A(I)) ; ENDDO
 - there is an improvement in clarity of the code, but I am surprised that
 people wanting this do not instead want bitwise reduction functions like
 HPF's IALL/IANY/IPARITY (array reduction of IAND/IOR/IEOR respectively).
 Since IBCLR(IVAL,PATTERN=A) = IALL(IBCLR(IVAL,A)), I would suggest that
 adding these reduction functions would satisfy the requirement.

>11.9 New transformational functions: POSITION and LOCATION (97)

Omit.
 - these seem very specialised. I cannot imagine many people using them.

>11.10 New functions to handle arrays: SCRIPT and SCALAR (98)

Omit.
 - SCRIPT functionality already provided (it is just syntactic sugar)
 - SCALAR encourages the view of multi-dimensional arrays as single-dim
arrays.
 This seems likely to cause slowdowns in code which might later be
 parallelised.

>12. Relaxation of Restrictions
>12.1 Remove the restriction on the maximum rank of arrays,
>Greater than 7 Array Dimensions (24, 24a)

J3/M14: Low Priority.
 - it is probably about time to increase the limit past 7, due to increasing
 memory sizes.
 - as long as it is not increased too much!

>12.2 Remove limitation on statement length (50)

Omit/Low priority.
 - the statement length limit is useful for implementors and users alike.
 It can be increased but should not be removed.

* * ***
*

Comments on Additional Suggestions:

0.
 - These have not been processed by the US member body so have no official
 standing; in particular there is no agreement that there is real user
 demand for these features
 - It behooves us to consider that the features brought forward by the US and

 other member bodies at the San Diego and Dresden meetings are of higher
 priority than these.
 - We already have more proposals to consider, and more of them have good
 ideas, than we can possibly implement in F2000. To accept one of the
 unofficial proposals we must be clear that not only is it worthwhile, but
 that it is noticeably more worthwhile than the official proposal whose
 rejection it causes (due to time constraints).

1. Allow interfaces to internal and module procedures

Omit.
 - the "well known compiler writer" (whoever it is) complaining on
 comp.lang.fortran is complaining about a problem already solved by
 all Fortran 90 vendors.

2. Review implementation defined and undefined constructs

Since this is not a concrete proposal there is nothing to agree/disagree to.

3. Include a parallelised SELECT CASE

Omit.
 - functionality already present in Fortran 95 by using an ELEMENTAL procedure
 containing the SELECT CASE.

4. Allow programs in modules

Hmm, "Allow an automatic initialisation subprogram for a module" is what I
think is being suggested here. Something like

***Begin specification

MODULE module
 INITIALISED BY :: init
 ...
CONTAINS
 SUBROUTINE init ! Must be a subroutine with no arguments
 ...
 END SUBROUTINE
END

And "init" is automatically called at the beginning of the execution of the
first subprogram which USEs (directly or indirectly) the module. (Note that
BLOCK DATA USEs will not count.)

***End specification

Omit/Low priority
 - this is just the same as adding "LOGICAL :: module_inited = .FALSE." to the
 module, and putting "IF (.NOT.module_inited) CALL module_init" in every
 subprogram that USEs the module.

5. Floating-point CASE/FORALL/WHERE

Omit.
 - This proposal encourages bad code without making it any easier to write

 good code.

6. Conditional (i.e. non-commutative) AND/OR

Omit/Low priority.
 - the proposer admits that these are merely syntactic sugar for nested IF.
 - I do not accept the assertion that most experienced Fortran programmers
 think that .AND. et al are "short-circuit". (Anyway, "real" Fortran
 programmers run without subscript checks!).

7. Develop a subset

Omit.
 - No, No, a thousand times No.
 - I have never heard a user complain that we provided too many features.
 - "a representative of Meisner"??????
 - Still no.
 - Have we not yet learned after all this time that subsets are disasters?

--
...........................Malcolm Cohen, NAG Ltd., Oxford, U.K.
 (malcolm@nag.co.uk)

==========================
5. Comments by S. Whitlock
==========================

 o I strongly oppose opening up the repository for new items. I believe

this exercise was to review the existing items in the WG5 repository
and decide if any should be included. My votes to "Omit" reflect
that.

 o In table 1, I marked but did not rank the "minor technical enhancements"

that J3 has already accepted and is working on as well as the firm
requirments that WG5 has accepted and we're working on. Those items

cannot be removed from the F2000 requirements by this vote and I would
strongly oppose such. If WG5 wants to tell J3 to not work on a
minor technical enhancement, there should be a specific vote.

 o I believe that J3 already has too much work to do and want to urge

both WG5 and J3 to be conservative about F2000 requirements. We've
had plenty of chances and plenty of votes and yet, we keep voting on
the same items repeatedly. This wastes time and energy. Whatever
the Feb-1997 meeting decides, I am concerned that it will be "too much,
too late", as F90 was.

/Stan

===========================
6. Comments by M. Hennecke
===========================

A vote of "-" means no opinion (not read/understood/both).

> 3.2 69 Permit BOZ constants in the TRANSFER small L
> function

Although I would vote NO on the heading of this req., some way
to specify binary/octal/hex values outside of DATA is necessary.
Imagine setting UNIX mode bits :-)

> 4.1 21 Bit Data Type, String large M

> 6.3 100 New INTENT attribute: COPY_IN medium M

Although COPY_IN is not important to me, the NO_COPY or VOLATILE
variants ARE and should be dealt with in F2000. I don't like any
of the current spect, though.

> 6.4 new Interfaces to internal & module procedures small M

This is a vital cross-checking option between interface blocks
and procedure definitions, which e.g. C allows.

> 10.2 47 POSIX Binding to Fortran 90 large O

This is a BIG resource problem.
Also addressed by C Interoperability.

> 10.5 102 Primitive graphic facilities in Fortran large O

This is a BIG resource problem.
Partly addressed by C Interoperability.

> 11.1 55 Regularize RANDOM_SEED functionality small H

I have commented more than once. The reset option of
RANDOM_SEED is of no use as it stands (I do not speak of
quality, this is just a user interface specification).

> 11.4 80 Intrinsic 'size' function for derived small L
> types

NO to extending SIZE (what would happen for arrays of derived
type?). YES for a new function, e.g. BYTESIZE, also for
intrinsic types. Might be used for RECL specifications...

Christian, you've done a great job.

Thanks,
Michael

==
======
 Michael Hennecke http://www.uni-karlsruhe.de/~Michael.Hennecke/
 --
 University of Karlsruhe RFC822: hennecke@rz.uni-karlsruhe.de
 Computing Center (G20.21 R210) No longer on BITNET :-(
 Zirkel 2 * P.O. Box 69 80 Phone: +49 721 608-4862
 D-76128 Karlsruhe Fax: +49 721 32550

==
======

=======================

7. Comments by M. Zuern
=======================

4.1 Bit Data Type, String
 It is not quiet clear to me how this requirement will
 effect performance.

4.3 Unsigned INTEGER Data Type
 As interoperability is one of the most important things
 for future Fortran standards, I believe this requirement
 is quiet important.

6.3 New INTENT attribute: COPY_IN
 Also very important is a possibility to specify NO_COPY_IN
 for array arguments. At the moment with developing subroutines
 taking arrays as arguments it must always be assumed that array
 sections might be passed and therefore a copy of the argument
 is required. This e.g. is one of the major problems for the

 Fortran 90 interface for MPI !
 MPI works with references of objects and therefore provides
 a procedure to determine the address of an object. If an array
 'a' is passed to a subroutine 'sub1' and a copy of the argument
 is made, another process which wants to work on 'a' via its
 reference will not get the original reference of 'a' but of its
 copy within the subroutine 'sub1' if it is called in some
 nested context within 'sub1'.

6.5 Initialization programs in modules
 This one sounds very much like one of the constructor functionalities
 to me. This is going to be discussed in /data in context with
 destructors.

7.2 Selecting subarrays of non-rectangular form
 As F90 array sections already are already quiet performance
 decreasing I wonder where this feature would lead us to if
 implemented ...

9.2 Non-advancing I/0 combined with free format
 This requirement allows combination between non advancing I/O
 and free I/O format to be able to read ascii files in free
 I/O format. Output in software systems written to files is often
 orgaized as a number of data, one or multiple per line. The exact
 format cannot be known in advance, neither the data per line.
 Files produced in the above way (e.g. by C programs) very often
 have to be read by other programs.

9.6 Recognition of TAB characters in Fortran input

 As interoperability is one of the most important things
 for future Fortran standards, I believe this requirement
 is quiet important.
 TAB characters turn up very often in C output and UNIX
 tools like make, sort, paste. Not recognizing TABs means
 not being able to use those UNIX tools and output produced
 by C programs.

--
==
========
 Manuela Zuern e-mail: zuern@rus.uni-stuttgart.de

 Numerical Methods for Supercomputers
 Computing Center, University of Stuttgart
 Allmandring 30 Phone ++49-711-685-2511
 70550 Stuttgart FAX ++49-711-678-7626

 Germany

==
========

=========================
8. Comments by D. Schmitt
=========================

These are my totally PERSONAL votes.

I have put a '?' in the first list whenever I thought that I had too
few information.

I'd like to make a short explanation about my understanding of
low/med/hi priority:

 L: Not really necessary fo F2k, but if you have some spare time you
are free to do it. Also champions could 'take care' of those reqs.
since most of them are 'small'. The 'large' ones I think are not that
important to be handled immediately.

 M: Could be in F2k.

 H: Should definetly be in F2k because I think that they have a
strong impact on userfriendlyness while staying almost totally in the
'small'.

To the different proposals:

4.2 (34) Varying length character with declared maximum (large) L
5.1 (5,5a,5b,5c) Exception Handling (large) L
10.3 (86) Operation System Support (small) L/M
10.4 (99) Handling of error messages (medium) L

 Proposals like these would be nice but I don't think they are worth
the effort to press them into the F2k standard.

5.4 (new) Parallelized SELECT CASE (medium) L/M

 Would be a good addition for multiprocessor systems (?) but is not
necessary on single-proc-machines ... I don't know if there are so
many multi-proc-comps out there.

10.5 102 Primitive graphic facilities in Fortran large L

 Definetly YES somehow in the future of Fortran and also definetly
NOT in F2k because there is so much that could go wrong.

12.1 ... Remove '7-dimension-restriction' (small) O/L

 If you allocate 4GB for a single 7-dimensional array each dimension
only may have 23 elements ... on the other hand I also could imagine
very 'thin' arrays ...

Cheeers,

 David Schmitt, AUSTRIA

PS: Feel free to redistribute any of my comments to the group.
 Feel also free to point out any logical errors or other
 'stupidities' I made.

 THX DS
--
eMail: david@edvzbb2.ben-fh.tuwien.ac.at <--- TRY THIS ONE FIRST!!
 dschmitt@verman.zserv.tuwien.ac.at
sMail: David Schmitt <-_____ This is purely coincidental,
 Schmidgasse 4/9 <-/ isn't it ??
 1080 Wien
 AUSTRIA
WWW : http://verman.zserv.tuwien.ac.at/~dschmitt/
--

==========================
9. Comments by P. Lignelet
==========================

3.3 (MERGE) THE reason why this is up to now prohibited is that it
ALWAYS include a LOGICAL arg, which is not CHAR or INT required
for init. expr....

4.1 For new types, Isuggest a MODULE is the best way to add it
to the language. It could even be then optional (good for
compiler writers...)

4.2 : idem

6.2 I insist upon its being non recursive in a non recursive
host, at least for F2000, te render its implementation
easier (and be sure to have this feature included...)

10.2 : through a MODULE... (optional...)

10.3: USE the preceeding MODULE...

Various addings / limitations relaxations: WHERE TO STOP?

Yours sincerely,

 * Patrice LIGNELET tel : 01 40 27 22 58 *
 * lignelet@vcnam.cnam.fr 23 83 *
 * *
 * Conservatoire National des Arts et Metiers *
 * Departement d'informatique fax : 01 40 27 23 77 *
 * 292, rue Saint Martin (\
 * 75141 PARIS CEDEX 03 (\
 ===)) />
 /) / //))/
 \ _/ /////
 \ /
 _ /
 | |
 | |

=========================
10. Comments by S. Morgan
=========================

4.1 BIT Data Type

I think this is an important issue for F2000 but would like to see it

solved by a module interface approach. As someone pointed out on
comp-fortran-90, the exercise of defining such an interface and implementing
a sample code would be a good test of the (hopefully enhanced) data
abstraction features of the language. Hence the H for this.

10.5 Primitive Graphics Facilities

I still haven't seen a convincing proposal for this. It is a very large
and controversial issue and could take up a lot of valuable committee
time with an almost certain negative outcome. So I've given it an O.

9.1 STREAM I/O, Binary Stream I/O

I have seen many local users, who want to process image data and data from
various experimental kits, struggle in Fortran and then move to C to do
this sort of thing. Definitely 3 points

9.10 Asynch I/O

Obviously important to HPC since HPF is 'doing it'.
--

Dr. J. S. Morgan Tel. 0151-794-3746 (3719 for messages)
Computing Services Department Fax. 0151-794-3759
The University of Liverpool email. J.S.Morgan @ liverpool.ac.uk
Chadwick Building
Peach Street
Liverpool L69 7ZF

=========================
11. Comments by John Reid
=========================

1. I have been pretty "hard-nosed" because I think the language must not
 be allowed to grow much bigger for several reasons:
 a. It is very hard to construct reliable software in a language that
 progammers do not fully understand.
 b. We do not have the resources to make a big revision to the standard
 itself.
 c. Vendors must have some time and energy left for optimization.

2. I have given all my points to item 42 because this is the only one
 that I really care about. It provides a beautiful solution to a
 long-standing problem faced by those of us constructing numerical
 libraries and all the users of those libraries. The library code
 needs to call user's code that defines the problem (e.g. a

 function to be minimized). If the user can provide an internal
 procedure for this purpose, that procedure (when called by the
 library code) has access to the whole data environment of the code
 at the point of call of the library code. See the repository for
 further explanation.

 I emphasize that it is not just for the convenience of library
 writers that this is needed. It is to allow us to write code that
 is easy for our users to call.

 There some disagreement over how hard this is for vendors when the
 host is recursive. Please could we at least have it for non-recursive
 hosts?

 I disagree about it being much work for X3J3. We just have to
 remove a restriction from the standard.

===============================
12. Comments by David Muxworthy

===============================

Congratulations on doing all that work! I am sorry I didn't submit a
vote in time. I would have voted in a very similar way to John Reid,
that is with a high number of 'O' votes.

I would certainly have put 'O' on bit data type, given the vast amount
of time X3J3 spent going round in circles on this topic during the
1980s, and on unsigned integers. I would also have voted 'O' on any
item where the functionality is already present in the language, like
variable repeat specifiers in format statements.

Still, we can discuss this further at WG5. Your group has made very
valuable input.
Happy new year,
David

======================================
13. Comments by the French member body
======================================

2. General Syntax Enhancements
2.1 Block Comments (Repository-entry 7)
Note:
This requirement might already been satisfied by the "condi

tional compilation facility" (which allows to blank out large
blocks of text - e.g. comments - from the compilation process). -- YES.
answered to by COCO.

2.2 Lower Case Syntax Elements (67) -- OF COURSE!

2.3 Reserved words (92)

Subject:
The use of reserved words should be forbidden for other than -- OF
COURSE...
their dedicated purposes (e.g. as variable names).

3. Constants and Expressions

3.2 Permit BOZ constants in the TRANSFER function (69)
Problems:
I doubt that the use of BOZ constants can reasonably be limited
to a particular function (as e.g. TRANSFER); it might be
extended in general, though.

-- NO. USE VARIABLES.

3.3 Allow MERGE in constant expressions (71) -- YES! 1 point...

I am not fully sure what exactly is missing in Fortran95 (MERGE
appears to be elemental and therefore is permitted already in
constant expressions - or not?).
-- IT CAN BE OF ANY type (not only Int or Char)...

3.4 New Special Character designations (77)
--NO. Not upward compatible wiith Fortran 90/95.

4. Data Types
4.1 Bit Data Type, String (21)
Problems:
There are doubts within the DIN working group that the BIT type
is really needed (alternatives: better bit intrinsics which
operate on INTEGER arrays, or some LOGICAL kind which assigns
one bit of storage in combination with some general "stringing"
facility).
-- WE ARE IN FAVOUR OF A MODULE for this new type, if introduced.

4.2 Varying length character with declared maximum (34)
Problems:
This data type is a kind of competitor (within Fortran) to the
string module.

The fixed maximum length (necessary for a very efficient
implementation) limits its usefulness.
-- THE FRENCH GROUP is giving 1 point for it.

4.3 Unsigned INTEGER Data Type (37) --NO.
Problems:
If C-Interoperability is the main issue, then simpler means
(MAP_TO approach, some conversion intrinsic) may solve the
problems. -- GOOD REMARK.

4.4 Specifying Default Precisions (49)

-- There is another solution: promoting automatically the constsant
-- according to the KIND of the receiver.

5. Control Flow Constructs
5.1 Exception Handling (5,5a,5b,5c) -- 3 points...

5.2 Extend the semantics of the EXIT statement (25)
Subject:

Enhance EXIT such that any kind of executable block construct
can be left.
-- WE ARE VERY RESERVED ON THIS SUBJECT (rather against it).

6. Procedures
6.1 Nesting of internal procedures (33) -- YES.

6.2 Allow internal procedures as actual arguments (42)

-- YES (3 points).

-- For the first time, let's forbid any kind of recursivity
-- (for the host, as for the argument procedure).

6.3 New INTENT attribute: COPY_IN (100) -- OF COURSE...

7. Executable Statements
7.1 Controlling Pointer Bounds (2) -- (no idea on this...)

7.2 Selecting subarrays of non-rectangular form (26)
Subject:
Allow the use of implied-do control on the right hand side of a
pointer assignment to an array pointer.
-- SEEMS SOMEHOW COMPLICATED, for a doubtful result...

8. FORMAT processing
8.1 Variable Repeat Specifiers in Formats (48)
-- WHY NOT? (already exists in DEC VMS F77 compiler).

FMT='10X,'//TO_CHAR(M)//'(2X,''NO'',2X)' -- OH NO!...

9. I/O enhancements
9.1 STREAM I/O, Binary stream I/O (63, 63a)
-- IT DO SEEM USEFUL. Cf BUFFER IN/BUFFER OUT in french Fortran-IV C.I.I.

9.2 Non-advancing I/0 combined with free format, Extend non- -- YES.
advancing I/O to List-Directed I/O (63b, 65)

9.3 Any Kind of Integer for I/O Specifiers (68) -- NO!
-- PRAY RECALL that "default" int are stored in
-- one numerical word (as reals)...
-- We don't know of real being stored in 2 bytes...

9.4 Named Scratch Files (73) -- NO.

9.5 Default I/O mode (76)
Subject:
Allow the default I/O mode for READ/WRITE statements to be
ADVANCE="NO" (depending on some new OPEN parameter).

-- YES.

9.6 Recognition of TAB characters in Fortran input (79)

-- The french group is against (I am personnally in favour...)

9.7 New keywords READ_EOR, READ_EOF, WRITE_EOR (?), WRITE_EOF --
YES.
(?) in INQUIRE statements (93)

9.8 New keywords IS_EOR and IS_EOF in INQUIRE, READ and WRITE --
YES.
statements (94)

9.9 New keywords DEFAULT_READ and DEFAULT_WRITE in INQUIRE --
YES.
-- + OPEN ! -- statement (95)

10. Access to Features of the Environment
10.1 Command Line Arguments and Environmental Variables (20) -- YES.
Amount of work for X3J3:
small. -- IS IT SURE?... (strings are declared bounded

-- in Fortran; they are not "pointers to
-- array of char"...

10.2 POSIX Binding to Fortran 90 (47)
Problems:
The requirement might be covered by the standard C-interface of
POSIX in combination with the C interoperability.
-- IT IS WHERE A MODULE MUST be used!
-- (or, yes, through C...)

10.3 Operation System Support (86)
-- COULDN"T THERE BE a FORTRAN_SYSTEM Module,
-- containing a SYSTEM subroutine?

.4 Handling of error messages (99) -- YES.

10.5 Primitive graphic facilities in Fortran (102)
-- WE ARE NOT in favour of introducing that in the
-- language, as the effect shall depend on the
-- technical environment.
-- There are standardised PHIGS interfaces to Fortran...

11. New / better Intrinsic functions
11.1 Regularize RANDOM_SEED functionality (55)
-- TO FURTHER STUDY...

11.2 Generic COUNT_RATE Argument for SYSTEM_CLOCK (61)
-- WHY NOT?

11.3 Extend MAX, MIN, etc. to CHARACTER Data Type (64)
-- NO!

11.4 Intrinsic 'size' function for derived types (80)
-- PERHAPS "TYPE_SIZE", or "BIT_SIZE"?

11.5 Instrinsic 'sort' for arrays of intrinsic type (81)
-- NO, as there are no "general" sort subroutine;
-- the "best" one depends on the pre-ordering of data
-- to sort.

11.6 Intrinsic function 'fft' - Fast Fourier Transformation
-- NO! Where to stop?...

11.7 Four new elemental intrinsic functions: TRUNCATE, ROUND,
IBCHNG,ICOUNT (90) -- YES...

11.8 PATTERN= in bit manipulation functions such as IBCLR,
IBSET, IBCHNG (91) -- YES...

11.9 New transformational functions: POSITION and LOCATION (97)

-- YES...

11.10 New functions to handle arrays: SCRIPT and SCALAR (98)

-- YES...

12. Relaxation of Restrictions
12.1 Remove the restriction on the maximum rank of arrays,
Greater than 7 Array Dimensions (24, 24a)

-- NO! (Where to stop?...)

12.2 Remove limitation on statement length (50) -- NO!

Sincerely yours,

 * Patrice LIGNELET tel : 01 40 27 22 58 *
 * lignelet@vcnam.cnam.fr 23 83 *
 * *
 * Conservatoire National des Arts et Metiers *
 * Departement d'informatique fax : 01 40 27 23 77 *
 * 292, rue Saint Martin (\
 * 75141 PARIS CEDEX 03 (\
 ===)) />

