
 ISO/IEC JTC1/SC22/WG5 N1246
 X3J3/97−101
 page 1 of 10

 To: X3J3/WG5
 From: Rich Bleikamp (/io)
 Subject: Functional Specification for Derived Type I/O
 Date: Jan. 17, 1997

 Revised version of X3J3/96−177. Look for "|"s in the left
 margin for significant changes.

 One possible activity for WG5/X3J3 at the Feb. ’97 meeting is to
 start on the edits to F95 for this proposal. Any volunteers?

 | Changes since 97−177:
 |
 | − added UNFORMATTED I/O support. Useful to avoid the
 | restrictions such as "no pointers", ... which limits
 | F90 functionality for unformatted derived type I/O.
 |
 | Since the so−called "user defined formatting routines" now
 | support unformatted I/O, I have renamed them
 | "user defined I/O routines".
 |
 | − Allow internal I/O in one of these user−defined I/O
 | routines. Or in any routine called therefrom.
 |
 | − Added a Rationale.
 |
 | − Added a Conceptual Model (how will this be implemented).
 |
 | − Added a small example routine.
 |
 |
 | Unresolved Issues
 |
 | − Should the "err", "eor", and "eof" dummy arguments
 | be a derived type? Or is logical type sufficient?
 |
 | − How can the writer of a user defined I/O routine
 | debug anything, without the ability to WRITE stuff out?
 |
 | − Should the I/O statements executed within a user
 | defined I/O routine be IMPLICITLY non−advancing?
 | This would only work for sequential formatted I/O.
 |
 | How do we describe UNFORMATTED and direct access I/O?
 | Non−advancing is only allowed for formatted sequential I/O,
 | so we need some other term to describe how we insert/extract
 | characters from the middle of a record in the user defined
 | I/O routine.
 |
 | Perhaps we need to describe these nested/recursive
 | I/O calls in other terms, to avoid confusion with normal
 | Fortran I/O.
 |
 | − Should we allow a "text error string" to be returned
 | when an ERR is to be reported, in case the original I/O
 | statement did not have an ERR= or IOSTAT= ?

 ISO/IEC JTC1/SC22/WG5 N1246
 X3J3/97−101
 page 2 of 10
 |
 | − Should we add an IOSTAT variable, so specific values
 | can be passed back to the user?
 |
 | − Having to handle internal and external units separately
 | is inconvenient. Should we only pass in a unit ?

 This document is the (proposed) functional specification for
 enhanced derived type I/O. The goals are to provide a powerful
 and portable way to encapsulate I/O support in a MODULE which
 defines a derived type. This I/O support is provided by
 simple, easy to use extensions to the traditional Fortran
 READ and WRITE statements.

 This specification, in a earlier form, was approved as the
 generally correct approach for supporting derived type I/O
 at X3J3 meeting 139.

 Management Synopsis:

 − The provider of a derived type may also provide two
 I/O routines, called "user defined I/O routines",
 which are called by the Fortran I/O library when
 certain conditions are met. These user supplied
 routines handle input and output of a list item of derived
 type. In essense, the effect is as if the user defined
 I/O routines were substituting list items into the
 original I/O list (where the derived type item was), and
 adding edit descriptors into the middle of the original
 format specification, under control of the provided
 routines.

 − The F90 way of doing formatted and unformatted I/O
 on derived types still works the same as before. Only
 the presence of an interface for the appropriate user
 defined I/O routine triggers this new functionality.

 − FORMATs have a new edit descriptor, "DT". When the
 I/O library encounters this, it must match up with a
 derived type list item. The I/O library will call a
 user supplied I/O routine, which will actually do the
 I/O. Typically, the provider of a derived type
 would provide these user defined I/O routines.

 − The user supplied procedures (one for READs, one for
 WRITEs), will be called with a unit number, the
 derived type variable/value, and other misc.
 information. The procedure will use normal I/O
 statements (READ/WRITE) on the supplied unit to
 read/write the derived type item.
 This use of "recursive" I/O will be restricted to
 | this particular feature of the language. Internal
 | I/O will be permitted in the user defined I/O
 | routines.

 ISO/IEC JTC1/SC22/WG5 N1246
 X3J3/97−101
 page 3 of 10

 − Full support for complicated data structures is
 provided. These user defined I/O routines can invoke
 themselves indirectly thru formatted I/O (to traverse a
 linked list for example), and can invoke the user defined
 I/O routines for another derived type (indirectly, thru
 formatted I/O) to handle nested derived types.
 | Internal I/O may be used to easily construct character
 | string values.

 − The user supplied procedures will be able to inquire
 about, and in the most general (robust) case, have
 to worry about:
 | − Formatted and unformatted I/O
 − list directed and namelist I/O
 − sequential and direct access I/O
 − non−advancing and advancing I/O
 − the DELIM= and PAD= values for this file
 (accessible via INQUIRE)

 − List directed and NAMELIST I/O will also call these
 same user supplied routines under certain, F90
 | compatible circumstances. (when an appropriate interface
 | is visible)

 Detailed Specification:

 User defined I/O routines shall have the following
 interface:

 INTERFACE FORMAT (READ)
 RECURSIVE SUBROUTINE my_read_routine (unit,
 ifu,
 dtv,
 iotype, w, d, m,
 rec, eof, err, eor)
 INTEGER, OPTIONAL :: unit
 CHARACTER (LEN=*), OPTIONAL :: ifu
 TYPE (whateveritis) dtv ! the derived type value/variable
 CHARACTER (*) iotype ! the edit descriptor string
 INTEGER, OPTIONAL :: w,d,m
 INTEGER, OPTIONAL :: rec
 LOGICAL :: eof, err, eor
 END
 END INTERFACE

 ISO/IEC JTC1/SC22/WG5 N1246
 X3J3/97−101
 page 4 of 10
 INTERFACE FORMAT (WRITE)
 RECURSIVE SUBROUTINE my_write_routine (unit,
 ifu,
 dtv,
 iotype, w, d, m,
 rec, err)
 INTEGER, OPTIONAL :: unit
 CHARACTER (LEN=*), OPTIONAL :: ifu
 TYPE (whateveritis) dtv ! the derived type value/variable
 CHARACTER (*) iotype ! the edit descriptor string
 INTEGER, OPTIONAL :: w,d,m
 INTEGER, OPTIONAL :: rec
 LOGICAL :: err
 END
 END INTERFACE

 where the actual specific routine names (my_xxx_routine
 above) and the dummy argument names may be chosen by the
 user. These routines shall not be invoked directly by the
 users program.

 The user defined I/O routines are called when:

 | − for unformatted i/o, list directed, and namelist i/o,
 | an appropriate interface for the derived type of a
 | particular list item is visible

 | − for I/O statements with a <format−specification>,
 | there must be an appropriate interface AND the
 | list item must match up with a "DT" edit descriptor.

 What the user defined I/O routines are passed:

 If the original I/O statement specified list directed I/O,
 the "iotype" argument will have the value "LISTDIRECTED". If
 the original I/O statement specified NAMELIST I/O, the "iotype"
 | argument will have the value "NAMELIST". When the original
 | I/O statement specified UNFORMATTED I/O, the "iotype" argument
 | will have the value "UNFORMATTED".

 When the original I/O statement included a
 format−specification, then the user defined I/O
 routines are accessible via the new "DT" edit descriptor.

 A new edit descriptor, "DT", with the usual (optional)
 "[w[.d[.m]]]" widths is provided for use with format
 specifications. It must match up with a variable/value
 of a derived type.

 The DT characters may be followed by an arbitrary (up to
 253?) number of alphabetic characters (interspersed
 blanks allowed) (ex. "DTLNKLST"). The entire string of
 alphabetic characters, including the initial "DT", will
 be passed into the user defined I/O routine (the "iotype"
 argument).

 ISO/IEC JTC1/SC22/WG5 N1246
 X3J3/97−101
 page 5 of 10

 This argument will be converted to UPPERCASE and have all
 blanks removed. The user can support different types of
 formatting for one derived type via this extended edit
 descriptor.

 For example, the consecutive characters after the "DT"
 could be used to request different formatting rules for
 consecutive components in the derived type, or different
 formatting rules for nested derived types, etc.

 If a derived type variable/value is specified in an I/O
 list, and that variable/value will match up with a "DT"
 edit descriptor, the user must have also provided the
 matching read/write procedure for that derived type , with
 a visible interface thats matches the definition in this
 paper. These procedures are called the "user defined
 I/O routines". If such an interface is visible, the
 derived type item may either match a "DT" edit descriptor or
 use original F90 conventions.
 When the user defined I/O routines are called, either
 "unit" or "ifu" will be present, but not both.

 If "unit" is present, the original I/O statement specified
 an external unit (possibly *), and all I/O statements for
 | external units in the user defined I/O routine
 | (including INQUIRE) shall specify this dummy argument for the
 | UNIT= specifier. (we used to only require the same value)

 The "unit" dummy argument, if present, contains a processor
 dependent value, that may, or may not, be the same unit
 number specified by the user in the original I/O statement.

 Note that an INQUIRE statement cannot be executed when "unit"
 is absent.

 | If "ifu" is present, the original I/O statement specified an
 | internal unit, and all I/O statements in the user defined
 | I/O routine shall specify an internal unit specifier.
 | If the dummy argument "ifu" is used as the unit specifier,
 | the I/O statement processes the record(s) from the original
 | I/O statement which triggered this user defined I/O routine.
 | Other internal unit variables will behave as if no other I/O
 | were active.

 | Note that "ifu" may not have any obvious relationship with
 | the internal unit specified in the original I/O statement
 | (i.e. "ifu" may not point to the original internal unit
 | in any discernable manner).

 If the original I/O statement is a READ statement, the "dtv"
 dummy arg should be assigned a value by the user defined
 I/O "read" routine.

 ISO/IEC JTC1/SC22/WG5 N1246
 X3J3/97−101
 page 6 of 10

 If the original I/O statement is a WRITE or PRINT, the "dtv"
 dummy arg contains the value of the list item from the
 original I/O statement, to be output by the user defined
 I/O routine.

 The "w", "d", and "m" arguments contain the user specified
 values from the FORMAT (i.e. FORMAT(DT12.5.2)). If the
 user did not specify "w", "d", and/or "m", those dummy
 arguments will not be present. They will not be present if
 the original I/O statement specified unformatted, list
 directed, or namelist i/o.

 The "rec" dummy arg will be present if the original I/O
 statement contained a REC= sepcifier, and will not be
 present otherwise. Note that the READ or WRITE statements
 for "unit" or "ifu" contained in the user defined I/O routine
 shall contain a REC=rec specifier if dummy arg "rec" is present,
 and shall not contain a REC= specifier otherwise.

 The user defined I/O routines for reads shall assign
 a value of .FALSE. or .TRUE. to the "end", "err", "eof", and
 "eor" dummy args. The value assigned to these dummy
 arguments shall determine whether or not the corresponding
 condition will be triggered in the I/O library when the user
 defined I/O routine returns.

 In the absence of an appropriate visible interface in the
 | scope of the I/O statement, unformatted, list−directed, and
 namelist I/O will behave as it did in Fortran 90.

 When an appropriate interface is visible for a particular
 derived type, and either:
 | 1. The original I/O statement specified unformatted,
 list directed, or namelist I/O, OR

 2. the original I/O statement specified a FORMAT and
 the list item of derived type matches up with a "DT"
 edit descriptor, THEN

 the restrictions on derived type I/O, such as no private
 components, all components must be defined, no ultimate
 components with the pointer attribute, etc. do not apply to
 the list item of derived type, but
 the normal rules in F95 still apply, about not referencing
 undefined entities, not referencing/defining POINTERS which
 are not associated, etc.

 If NO appropriate interface is visible for a particular
 derived type, the processor will perform "F90" style I/O,
 and a "DT" edit descriptor which matches that derived type
 list item will cause an error (at runtime possibly).

 When F90 style I/O is selected, all the old F90 restrictions
 on derived type list items still apply.

 ISO/IEC JTC1/SC22/WG5 N1246
 X3J3/97−101
 page 7 of 10

 The users routine may chose to interpret the "w" argument as
 a field width, but this is NOT required. If it does so, it
 would be appropriate, but not required, to fill an output
 field with "***"s if the value does not fit.

 When the original I/O statement was a READ, the user defined
 I/O routine may only do READs. Similarly for WRITE.

 The user defined I/O routines ARE permitted to use a FORMAT with a
 DT edit descriptor, for handling components of the derived
 type which are themselves a derived type. List directed and
 NAMELIST I/O are also permitted for the "recursive" I/O
 statement.

 WRITE statements contained in the user defined I/O
 routine will insert the characters "written" into the record
 started by the original WRITE statement, starting at the
 position in the record where the last edit descriptor left
 off. Record boundaries may be created by WRITE statements
 in the user defined I/O routine. Non−advancing I/O
 may be used to avoid creating record boundaries.

 READ statements contained in the user defined I/O
 routine for read will "pick up" in the current record, where
 the last edit descriptor from the original I/O statement
 left off. Multiple records can be read, and the current
 position can be left within a record by the READ statement
 in the user defined I/O routine, thru the use of non−
 advancing i/o.

 A very robust user defined I/O routine may need to use INQUIRE to
 determine what BLANK=, PAD= and DELIM= are for the specified
 unit.

 Edit descriptors such as BN, BZ, P, etc., are permitted in
 FORMATs in user defined I/O routines, and have the
 same effect as if they had been present in the original
 FORMAT.

 | READ and WRITE statements executed in a user defined I/O
 | routine, or executed in a routine called (directly or
 | indirectly) from a user defined I/O routine shall not
 | have an ASYNCHRONOUS specifier.

 ISO/IEC JTC1/SC22/WG5 N1246
 X3J3/97−101
 page 8 of 10
 | −−
 | Rationale

 | The desire to allow users to implement new data types in a
 | MODULE requires additional language features, including I/O
 | support. The provider of a module which implements a new
 | datatype needs to be able to also provide I/O support.
 | The approach chosen extends existing Fortran features to
 | support derived types, is fairly easy to use, bypasses the
 | restrictions on derived type I/O present in Fortran 90, and
 | allows the I/O support to be bundled with the MODULE which
 | supplies the derived type definition and implements the
 | operations thereon. This also provides the ability to
 | protect these I/O operations.

 | The use of visible interfaces to trigger this functionality
 | helps preserve Fortran 90 compatability, since no Fortran
 | program can specify such an interface.

 | −−
 | Conceptual Model

 | The key concept is that the user defined I/O routines can,
 | more or less, be viewed as adding individual components into
 | the middle of the original item list, and edit desciptors into
 | the middle of the original format−specification (if any). They
 | also have full control over how input values are processed,
 | and how values are represented on output.
 | They can do so in an intelligent, dynamic, and arbitrarily
 | complex manner. They can also avoid the restrictions on
 | F90 derived type I/O (pointers, etc.), handle nested
 | derived types, and support complex data structures
 | (such as linked lists).

 | The user defined I/O routines provide a familar mechanism,
 | Fortran I/O statements, to insert data into an output record,
 | and to retrieve values from an input record.

 | The user of a derived type uses familiar Fortran syntax
 | to activate this capability. Usually, the user only needs
 | to "USE" the appropriate module, and possibly insert some
 | "DT" edit descriptors into their format−specifications.

 | All of the hard work is done by the provider/writer of the
 | derived type. Once that hard work is done, many users can
 | easily adapt their programs to use it.

 | The interface provides all the information necessary to
 | accomadate all types of Fortran I/O. A robust user defined
 | I/O routine will be quite large, but not necessarily very
 | complicated. A simple user−defined I/O routine can be
 | written quickly, and extended later to handle all the
 | possible forms of Fortran I/O.

 ISO/IEC JTC1/SC22/WG5 N1246
 X3J3/97−101
 page 9 of 10
 | −−
 | Example: (this has not been syntax checked yet)

 | TYPE linkedList
 | TYPE (linkedList), POINTER :: next
 | INTEGER :: value
 | END TYPE linkedList

 | RECURSIVE SUBROUTINE my_write_routine (unit,
 | ifu,
 | dtv,
 | iotype, w, d, m,
 | rec, err)
 | INTEGER, OPTIONAL :: unit
 | CHARACTER (LEN=*), OPTIONAL :: ifu
 | TYPE (linkedList), TARGET:: dtv ! the derived type value
 | CHARACTER (*) iotype ! the edit descriptor string
 | INTEGER, OPTIONAL :: w,d,m
 | INTEGER, OPTIONAL :: rec

 | TYPE (linkedList), POINTER :: ptr
 | INTEGER :: ww, dd ! local copies of w,d
 | CHARACTER (LEN=20) :: fmt ! format specification
 |
 | err = .FALSE.

 | IF (iotype == "NAMELIST") THEN
 | ! namelist I/O not supported yet
 | err = .TRUE.
 | RETURN
 | END IF

 | ! handle the optional "w" and "d" arguments
 | IF (present (w)) THEN
 | ww = w
 | ELSE
 | ww = 10
 | END IF

 | IF (present (d)) THEN
 | dd = d
 | ELSE
 | dd = 1
 | END IF

 | ! if we will need a format−spec, build it now
 | IF (iotype(1:2) == "DT") THEN
 | ! build a Format string for use later
 | write(fmt, "’(I’,I4,1x,I4,’)’") ww, dd ! (Iw.d)
 | END IF

 | ptr => dtv

 ISO/IEC JTC1/SC22/WG5 N1246
 X3J3/97−101
 page 10 of 10

 | DO ! main loop down the linked list

 | IF (PRESENT (unit)) THEN
 | ! external I/O
 | IF (iotype == "UNFORMATTED") THEN
 | IF (PRESENT (rec)) THEN
 | WRITE (unit, REC=rec, ERR=99) ptr%value
 | ELSE
 | WRITE (unit, ERR=99) ptr%value
 | END IF
 | ELSE IF (iotype == "LISTDIRECTED") THEN
 | WRITE (unit, *, ADVANCE="NO", ERR=99) ptr%value
 | ELSE IF (iotype(1:2) == "DT") THEN
 | IF (PRESENT (rec)) THEN
 | write(unit, fmt, REC=rec, ERR=99) ptr%value
 | ELSE
 | write(unit, fmt, ADVANCE="NO", ERR=99) ptr%value
 | END IF
 | ELSE
 | ! unrecognized i/o type
 | GO TO 99
 | END IF
 | ELSE
 | ! assume internal I/O
 | ! remember, direct access (rec=) is prohibited on
 | ! internal files, simplifies the stuff below
 | IF (iotype == "UNFORMATTED") THEN
 | WRITE (ifu, ERR=99) ptr%value
 | ELSE IF (iotype == "LISTDIRECTED") THEN
 | WRITE (ifu, *, ADVANCE="NO", ERR=99) ptr%value
 | ELSE IF (iotype(1:2) == "DT") THEN
 | write(ifu, fmt, ADVANCE="NO", ERR=99) ptr%value
 | ELSE
 | ! unrecognized i/o type
 | GO TO 99
 | END IF
 | END IF
 | IF (ASSOCIATED (ptr%next)) EXIT
 | END DO
 | RETURN ! normal exit

 |99 err = .TRUE.
 | RETURN ! error exit
 END

