
ISO/IEC JTC1/SC22/WG5 N1247
To: WG5 and X3J3
From: Larry Rolison
Date: 24 January 1997
Subject: Proposed alternative draft CD to N 1243

The model of conditional compilation presented in N1243 suffers from not just
one, but two fatal flaws:

1. It does not standardize common practice (the form of conditional
compilation generally accomplished through the use of cpp or cpp-like
source processors).

2. It does not contain any facilities whatsoever for macro definition and
expansion.

The attached cpp-like source processing working paper presents an alternative
approach which does not suffer from these flaws.

FEB 1997 WORKING DRAFT X3J3/97-112

FEB 1997 WORKING DRAFT 1

Section 1: Overview
[Jon expressed a concern about all the references to the C standard. I really don’t want to copy
in large chunks of the C standard, especially regarding expression evaluation. Anybody have
any ideas?]

[I used the ANSI C standard in drafting this paper. The ISO C standard added some sections
which causes a mismatch of ANSI C and ISO C section numbers. During later processing of
this paper, I will track down all section references to the C standard to make sure they
correspond to the ISO section numbering.]

1.1 Scope
ISO/IEC 1539 is a multi-part International Standard; the parts are published separately. The first
part of the standard, 1539-1, specifies the form and establishes the interpretation of programs
expressed in the Fortran language. The second part, 1539-2, defines additional facilities for the
manipulation of character strings of variable length. This publication, 1539-3, which is the third
part, specifies the form and establishes the interpretation of source processing directives that may
be interspersed in Fortran source program text. The purpose of this part is to promote portability,
reliability, and maintainability of Fortran programs for use on a variety of computing systems. A
processor conforming to 1539-1 need not conform to 1539-3.

Throughout this publication, the term "this standard" refers to 1539-3 and the term "the C
standard" refers to ISO/IEC 9899.

1.2 Processor
The combination of a computing system and the mechanism by which source text is transformed
for use on that computing system is called a processor in this standard. In particular, the processor
described by this standard is called a source processor.

1.3 Inclusions
This standard specifies

(1) The forms that source processing directives may take,
(2) The rules for interpreting the meaning of a source processing directive,
(3) The form of the input to the source processor, and
(4) The form of the output from the source processor.

1.4 Exclusions
This standard does not specify

(1) The mechanism by which source text is transformed,
(2) The operations required for setup and control of the source processor on computing

systems,
(3) The method of transfer of source text to or from a storage medium,
(4) The processor behavior and resultant output (if any) when this standard fails to

establish an interpretation,

X3J3/97-112 WORKING DRAFT FEB 1997

2 WORKING DRAFT FEB 1997

(5) The size or complexity of Fortran source lines and/or source processing directives that
will exceed the capacity of any specific computing system or the capability of a
particular source processor,

(6) The physical properties of the representation of quantities and the method of rounding,
approximating, or computing numeric values on a particular processor,

(7) The physical properties of the source text input file, or
(8) The physical properties and implementation of storage.

1.5 Conformance
The source text input to the source processor is standard-conforming Fortran source text if the
Fortran source lines (2.1), source processing directive lines, and macro invocations have an
interpretation according to this standard.

A processor conforms to this standard if

(1) It processes the source processing directives and macro invocations contained in any
standard-conforming Fortran source text file in a manner that fulfills the
interpretations herein, subject to any limits that the processor may impose on the size
and complexity of the source text file, the directives, or the macro invocations;

(2) It contains the capability to detect and report the use within a submitted source
processing directive or macro invocation of an additional form or relationship that is
not permitted by the numbered syntax rules or their associated constraints;

(3) It contains the capability to detect and report the use within a source processing
directive of an intrinsic procedure whose name is not defined in this standard or in
Section 13 of 1539-1 (conformance to Section 13 of 1539-1 is only required when the
processor is interpreting expressions according to 1539-1); and

(4) It contains the capability to detect and report the reason for rejecting a submitted
Fortran source text file.

A standard-conforming processor may allow additional forms and relationships provided that
such additions do not conflict with the standard forms and relationships. However, a standard-
conforming processor may allow additional intrinsic procedures within source processing
directives. A standard-conforming source processing directive shall not use nonstandard intrinsic
procedures that have been added by the processor.

Because a standard-conforming source processing directive (particularly a macro expansion) may
place demands on a processor that are not within the scope of this standard, conformance to this
standard does not ensure that the source text input file will be processed consistently on all or any
standard-conforming source processors.

In some cases, this standard allows the provision of facilities that are not completely specified in
the standard. These facilities are identified as processor dependent, and they shall be provided,
with methods or semantics determined by the processor.

NOTE 1.1
The processor should be accompanied by documentation that specifies the limits it imposes
on the size and complexity of a directive, macro expansion, or source text input file and the
means of reporting when these limits are exceeded, that defines the additional forms and
relationships it allows, and that defines the means of reporting the use of additional forms
and relationships.

The processor should be accompanied by documentation that specifies the methods or
semantics of processor-dependent facilities.

FEB 1997 WORKING DRAFT X3J3/97-112

FEB 1997 WORKING DRAFT 3

1.5.1 Standard C source preprocessing compatibility

[This is where differences between Fortran standards are described. I will either describe the
differences between the C source preprocessor and the one described in this document in an
Annex or in each place in the document where a particular feature is described if there is
sufficient call for noting the differences. For example, the C standard allows a name to be
simply an underscore. I contend this hardly promotes maintainability and thus require a name
beginning with an underscore to contain at least one other character. }

1.6 Notation used in this standard
In this standard, "shall" is to be interpreted as a requirement; conversely, "shall not" is to be
interpreted as a prohibition. Such requirements and prohibitions apply to the source processing
directives or to the processor as noted in this standard.

1.6.1 Informative notes

Informative notes of explanation, rationale, examples, and other material are interspersed with the
normative body of this publication. The informative material is identified by shading and is non-
normative.

1.6.2 Syntax rules

Syntax rules are used to help describe the forms that the input source text file, and source
processing lexical tokens, directives, and constructs may take. These syntax rules are expressed in
a variation of Backus-Naur form (BNF) in which:

(1) Characters from the Fortran character set (1539-1, 3.1, and 3.1 of this standard) are
interpreted literally as shown, except where otherwise noted.

(2) Lower-case italicized letters and words (often hyphenated and abbreviated) represent
general syntactic classes for which specific syntactic entities shall be substituted in
actual statements.

An example of such an abbreviation used in a syntactic terms is:

(3) The syntactic metasymbols used are:

(4) Each syntax rule is given a unique identifying number of the form Rsnn, where s is a
one- or two-digit section number and nn is a two-digit sequence number within that
section. The syntax rules are distributed as appropriate throughout the text, and are
referenced by number as needed. In some cases, a rule may be used in a given section
but is more fully described in a later section; in such cases, the section number s is the
number of the later section where the rule is defined.

arg for argument

is introduces a syntactic class definition
or introduces a syntactic class alternative
[] encloses an optional item
[] ... encloses an optionally repeated item

which may occur zero or more times

■ continues a syntax rule

X3J3/97-112 WORKING DRAFT FEB 1997

4 WORKING DRAFT FEB 1997

1.6.3 Assumed syntax rules

In order to minimize the number of additional syntax rules and convey appropriate constraint
information, the following rules are assumed. The letters "xyz" stand for any legal syntactic class
phrase:

xyz-list is xyz [, xyz] ...

xyz-name is name

1.6.4 Syntax conventions and characteristics
(1) Any syntactic class name ending in "-directive" follows the source processing directive

form rules. Conversely, everything considered to be a source processing directive is
given a "-directive" ending in the syntax rules.

(2) Expression hierarchy is described rigorously in the definition of constant-expression (C
standard, 3.4) and in section 7 of 1539-1 (applicable only if expressions are being
evaluated according to 1539-1).

1.6.5 Text conventions

In the descriptive text, an English word equivalent of a BNF syntactic term is usually used.
Specific directive keywords are identified in the text by the lower-case keyword in a distinctive
font, e.g., "#define directive". Boldface words are used in the text where they are first defined
with a specialized meaning. Any feature of the source processor that references an obsolescent
feature of 1539-1 uses the same distinguishing type size as used in 1539-1.

1.7 Normative references
The following standards contain provisions which, through reference in this standard, constitute
provisions of this standard. At the time of publication, the editions indicated were valid. All
standards are subject to revision, and parties to agreements based upon this standard are
encouraged to investigate the possibility of applying the most recent editions of the standards
indicated below. Members of IEC and ISO maintain registers of currently valid International
Standards.

ISO/IEC 9899-1990 (E) Programming Language - C

NOTE 1.2
An example of the use of the syntax rules is:

digit-string is digit [digit] ...

The following are examples of forms for a digit string allowed by the above rule:
digit
digit digit
digit digit digit digit
digit digit digit digit digit digit digit digit

When a specific number character is substituted for digit, actual digit strings might be:

4
67
1999
10243852

NOTE 1.3
This sentence is an example of the size used for obsolescent features.

FEB 1997 WORKING DRAFT X3J3/97-112

FEB 1997 WORKING DRAFT 5

ISO/IEC 9899:1990/Amendment 1:1994, Amendment 1: C Integrity

ISO/IEC 9899:1990/Technical Corrigendum 1

ISO/IEC 9899:1990/Technical Corrigendum 2

ISO/IEC 646:1991, Information processing—ISO 7-bit coded character set for information
interchange.

X3J3/97-112 WORKING DRAFT FEB 1997

6 WORKING DRAFT FEB 1997

FEB 1997 WORKING DRAFT X3J3/97-112

FEB 1997 WORKING DRAFT 7

Section 2: Fortran source processing terms and concepts
The source processor can conditionally process and skip sections of the submitted source text,
include other source text, and replace macros. These capabilities are sometimes called source
preprocessing, because conceptually they often occur before the source text is submitted to the
Fortran language processor.

2.1 Conceptual model
A Fortran source line is defined to be a Fortran line as defined by 1539-1, 3.3. In particular, this
means a Fortran source line is a sequence of zero or more characters which may constitute Fortran
statements, a comment, or an INCLUDE line. In addition, this standard allows a Fortran source
line to contain source processing macro references. However, during processing of the source text
input file, all such macros shall be transformed into Fortran source text such that at the end of
source processing no macro references remain in any Fortran source lines.

The source processor permits the Fortran source lines to appear in free source form or fixed source
form as defined in 1539-1, 3.3. As in 1539-1, free form and fixed form source lines shall not be mixed in the same
source text input file. The means for specifying the source form of a source text input file are processor dependent.

A directive line is a line that begins with the # character as defined by the numbered syntax rules
and associated constraints in this standard.

A line is defined to be either a Fortran source line or a directive line. The two types of lines may
be distinguished by the presence of the leading # character. A Fortran source line does not start
with this character.

A file is defined to be a collection of Fortran source lines and source processing directive lines
where the number of either or both of these lines may be zero. That is, a file may be empty. The
Fortran source lines are assumed to conform to the numbered syntax rules and associated
constraints of 1539-1 (with the possible addition of macro references) but there is no requirement
that they conform to 1539-1.

The model used in this standard to conceptually describe the actions of source processing (and
thus the conceptual actions of a source processor) is that the source text to be operated upon is a
collection of Fortran source lines and directive lines contained in a file. This file is serves as the
input to the source processor. The source processor then interprets any directives and macro
references contained in the file and outputs another file containing zero or more Fortran source
lines, and possibly #line directives ([#line directive]). There is no requirement, however, that the
input to the source processor be physically contained in a file and there is likewise no requirement
that the output of the source processor be physically contained in a file. There is no requirement
that the Fortran source lines output by the source processor conform to the numbered syntax rules
and associated constraints of 1539-1 or that the collection of Fortran source lines output by the
source processor constitute a standard-conforming Fortran program as defined by 1539-1.
Furthermore, there is no requirement that the output of the source processor serves as input,
directly or indirectly, to a Fortran language processor. And finally, there is no requirement that a
Fortran source processor be physically part of a Fortran language processor (but there are likewise
no provisions in this standard which would prohibit packaging a source processor physically with
a language processor).

X3J3/97-112 WORKING DRAFT FEB 1997

8 WORKING DRAFT FEB 1997

2.2 Input to the source processor
The input to the source processor is a file containing Fortran source lines with interspersed
directives. Each source processor directive shall begin with the number sign character (#). This
character shall appear as the first significant character in a line; that is, only whitespace (x,y) may
precede this character. If the # character is followed by a directive keyword, only whitespace may
appear between the # character and the keyword.

Blanks within a source processing directive are significant. A source processing directive is
unaffected by the source form of the Fortran source lines in the source text input file. The
maximum allowed length of a source processing directive is processor dependent.

2.3 Output from the source processor
The output of the source processor is a file containing zero or more Fortran source lines and zero
or more #line directives. The lines output are dependent on any source processing directives, in
particular #if directives, contained in the input file. Source processing directive lines other than
#line directive lines shall not be contained in the output file.

The source processor shall not modify the text of a Fortran comment. In particular, this means that
if a Fortran comment contains a set of characters which would otherwise constitute a macro
reference, that set of characters is not processed as a macro reference. The set of characters are
regarded as comment characters.

The expansion of a macro or a string replacement may cause the column width of a Fortran source
line to exceed column 132 (for free form) or 72 (for fixed form). By default, the source processor shall
output the line as generated. It may optionally generate continuation lines as needed and an
appropriate continuation symbol for each continuation line (using the appropriate form as defined
for continuation lines in 1539-1). The method of directing the source processor to generate
continuation lines is processor dependent.

[QUESTION: One reviewer suggested that the command line optionality in this case not be
provided. He prefers that the source processor always generate the continuation lines or always
issue a diagnostic if the line exceeds the max for the source form. I think that users are going to
want to be able to control whether or not they want the continuation lines generated. There
could, of course, be a third way to handle this: the source processor issue a diagnostic if the line
exceeds the max length for the source form. This would be another command line option. So
then we’d have: (default) just output the line as generated, (command line opt 1) if the line
exceeds the max length for the source form, break it into continuation lines, (command line opt
2) if the line exceeds the max length for the source form, issue a diagnostic. Opinions?]

NOTE 2.1
The intent is that by default the source processor just outputs the line at whatever length is
produced by the macro expansion. If the output from the source processor is later provided
as input to a Fortran language processor and if the resultant line length exceeds the maximum
specified by 1539-1 for the source form of the file input to the Fortran language processor, it is
assumed that the Fortran language processor will issue a diagnostic message. It is also the
intent that the source processor provide a command line option that specifies that
continuation lines are to be generated when a macro expansion causes the output line to
otherwise exceed the maximum length for the Fortran source form.

FEB 1997 WORKING DRAFT X3J3/97-112

FEB 1997 WORKING DRAFT 9

Section 3: Characters, lexical tokens, and source form

3.1 Processor character set
The processor character set is as described in 1539-1, 3.1, with the addition of the characters in the
basic source and execution character sets, escape sequences, and null character as defined in 2.2.1
of the C standard.

Rxxx character is alphanumeric-character
or special-character

Rxxx alphanumeric-character is letter
or digit
or underscore

3.1.1 Letters

The letters are the 26 upper-case letters as described by 1539-1, with the addition that the source
processor allows lower-case letters. Within a Fortran source line, the lower-case letters are
equivalent to the corresponding upper-case letters except in a character context (1539-1, 3.3) or in a
macro reference. Within source processing directives and macros (including macro references
contained in Fortran source lines), lower-case letters are distinguished from the corresponding
upper-case letters.

The set of upper-case and lower-case letters defines the syntactic class letter.

3.1.2 Digits

The 10 digits are as described in 1539-1, 3.1.2 and define the syntactic class digit.

3.1.3 Underscore
Rxxx underscore is _

The underscore may be used as a significant character in a source processing name, including the
first character of a source processing name.

3.1.4 Special characters

The special characters are as defined in 1539-1, 3.1.4, with the addition of the characters called
"graphic characters" in 2.2.1 of the C standard except for the vertical tab and form feed characters.
Together, these two sets of characters define the syntactic class special-character.

3.1.5 Additional characters

Additional characters may be representable in the processor, but may appear only in comments
(both Fortran and source processing), character constants (both Fortran and source processing),
and character string edit descriptors.

The source processor does not support nondefault character types in source processing directives
and macros.

X3J3/97-112 WORKING DRAFT FEB 1997

10 WORKING DRAFT FEB 1997

3.2 Low-level syntax
The low-level syntax describes the fundamental lexical tokens of the source text input file. The
term lexical tokens may refer to both Fortran language lexical tokens and the tokens making up a
source processing directive or macro reference. When necessary, the tokens may be identified as
being Fortran language tokens or source processing tokens. Lexical tokens in general are defined
by 1539-1, 3.2.

3.2.1 Names

Names are used for various entities such as source processing variables and macros. The rule for
the formation of a name differs from 1539-1 in that a source processing name may start with an
underscore character.

Rxxx name is letter [alphanumeric-character] ...
or underscore alphanumeric-character ■

■ [alphanumeric-char] ...

3.2.2 Constants

If the source processor is evaluating expressions in Fortran expression evaluation mode (x,y), all
literal constants in directives shall have the forms of Fortran literal constants as described in 1539-
1, 3.2.2 and shall be evaluated as specified by 1539-1. If the source processor is evaluating
expressions in C expression evaluation mode, the forms of constants allowed in directives are shall
have the forms of C literal constants as described in 6.1.3 of the C standard and shall be evaluated
as specified by the C standard.

3.2.3 Operators

If the source processor is in Fortran expression evaluation mode, the operators supported are as
described in 1539-1, 3.2.3, syntactic class intrinsic-operator. No defined operator shall appear in any
expression in any directive.

If the source processor is in C expression evaluation mode, the operators that are supported is the
following subset of the operators described in 6.1.5 of the C standard:

<, >, ==, !=, >=, <=, +, -, /, *, %, <<, >>, &, ~, |, &&, ||

NOTE 3.1
Although a name may begin with an underscore, generally the use of an underscore as the
first character is discouraged because it may conflict with a name predefined by the
implementation. In fact, the C standard has the concept of reserved identifiers (4.1.2.1 - need
ISO section ref). It states, in particular, that all identifiers that begin with an underscore and
either an uppercase letter or another underscore are always reserved for any use. Thus, if the
Fortran program is communicating with any C routines, the use of identifiers beginning with
underscores in the Fortran program could cause conflicts with names reserved by the vendor
of the C product.

NOTE 3.2
"Fortran evaluation mode" means that the conditional expressions of source processing if-
constructs are logical expressions, not integer expressions. It also allows the use of Fortran
intrinsic procedures in the expressions (note, however, that the expressions are initialization
expressions).

FEB 1997 WORKING DRAFT X3J3/97-112

FEB 1997 WORKING DRAFT 11

3.2.4 Whitespace

Whitespace within a source processing directive is defined to be a sequence of one or more blanks
or horizontal tabs (also called simply "tabs") between source processing tokens. For the purposes
of this definition, the # character beginning a directive and the directive keyword are also both
considered to be source processing tokens. Additionally, a source processing comment may appear
anywhere the white space may appear.

3.3 Source form

3.3.1 Source processing commentary

The delimiter "/* " initiates a source processing comment except when the character sequence
appears in a character context. The comment extends to the first subsequent "*/ " delimiter. The
comment start character sequence "/* " within a comment has no effect. The ending delimiter of
the source processing comment is not required to be on the same line as the beginning delimiter;
that is, a source processing comment may continue across multiple lines.

Lines containing only blanks or containing no characters are also comment lines.

A source processing comment may appear within a source processing directive anywhere
whitespace (x.y) may appear. A Fortran source line shall not contain a source processing comment.
Source processing comments may precede the first Fortran source line or directive line in the
source text input file and may follow the last Fortran source line or directive line.

Comments have no effect on the interpretation of any source processing directives or the Fortran
source lines in the source text input file.

Source processing comments shall not be output by the source processor. For purposes of
evaluating directive lines, the source processor shall replace each source processing comment with
a single blank character.

3.3.2 Source processing directive continuation

The character "\ " with no following characters is used to indicate that the current source
processing directive is continued on the next line. The continuation takes effect even when the "\ "
(with no characters following it on the line) appears in a character context. When used for
continuation, the "\ " is not part of the directive. Source processing comment lines can be
continued across multiple lines without the use of the continuation character; that is, a "\ " within a
comment has no effect.

NOTE 3.3
In other words, a source processing comment can appear before the # that begins the directive
because the comment is first replaced by a single blank. Thus,

/* This is a comment. */ #define SMALL 0

becomes

 #define SMALL 0

and

/* SMALL */ define SMALL 0

becomes

define SMALL 0

X3J3/97-112 WORKING DRAFT FEB 1997

12 WORKING DRAFT FEB 1997

As described in 2.2.1 of the C standard, the "\ " may also be used to initiate an escape sequence
inside a character string literal. This use of the "\ " does not constitute a continuation (because it is
not the last character on the line).

FEB 1997 WORKING DRAFT X3J3/97-112

FEB 1997 WORKING DRAFT 13

Section 4: Input and directive forms

4.1 High level syntax
Rxxx source-text is [source-text-part] ...

Rxxx source-text-part is Fortran-source-line
or directive-line
or if-construct

The rule for source-text describes the contents of the input file to the source processor. Section 2.1
of this standard defines the syntactic class Fortran-source-line.

4.2 Directive overview
The general term "source processing directive" or simply "directive" includes both directive-line and
if-construct.

A source processing directive consists of a sequence of source processing tokens that begins with a
character. The # character signals that this line of the source text contains a source processing
directive. Since lower-case letters are distinguished from upper-case letters in directive lines, the
letters making up a source processing keyword shall all be lower case.

Rxxx directive-line is expr-eval-mode-directive
or macro-def-directive
or macro-undef-directive
or include-directive
or error-directive
or stop-directive
or null-directive
or line-directive

4.3 Expression evaluation mode
Rxxx expr-eval-directive is #fortran_mode

or #c_mode

The source processor shall be capable of evaluating expressions both according to 1539-1 (the
default expression evaluation mode) and according to the C standard. All expressions shall be
evaluated in a single evaluation mode for the entire source text file input to the source processor as
well as for all source text included by any #include directive (at any level of nesting)
encountered while processing the source input file.

The default expression evaluation mode may be confirmed via use of the #fortran_mode
directive. Expression evaluation mode may be set to the C mode via the #c_mode directive. If
either directive appears in any of the source text input to the source processor, the only directives
that may appear before the expression evaluation mode directive are #line directives.

When the source processor is in Fortran expression evaluation mode, all expressions shall have the
form of initialization expressions. Each such initialization expression shall be evaluated as
described in 1539-1, section 7. No defined operator shall appear in any expression in any directive.

X3J3/97-112 WORKING DRAFT FEB 1997

14 WORKING DRAFT FEB 1997

When the source processor is in C expression evaluation mode, the evaluation of expressions
supported by the source processor is as described in 6.3 of the C standard.

4.4 Macro definition and replacement
Rxxx macro-def-directive is object-like-macro

or function-like-macro

Rxxx object-like-macro is #define name [sp-token] ...

Rxxx function-like-macro is #define name(dummy-arg-list) sp-token ...

Constraint: The left parenthesis delimiter of the dummy-arg-list shall immediately follow the
name with no intervening whitespace.

Rxxx dummy-arg is name

[Difference: The ANSI doc I used when drafting this paper and C9x as well allow the
argument list to be empty. I can see no utility in this (and apparently neither did Sun because
their fpp also requires at least one argument) so until I’m beaten up badly on this, I’m requiring
at least one argument to be present.]

A name defined as a macro without a parenthesized dummy-arg-list is called an object-like macro.
The name is also termed a source processing variable.

A name defined as a macro with a parenthesized dummy-arg-list is called a function-like macro.

The name following #define is called the macro name.

The collection of source processing tokens (sp-tokens) following the macro name of an object-like
macro or the dummy argument list of a function-like macro is called the replacement list.

Any whitespace preceding or following the replacement list is not considered part of the
replacement list for either the object-like or function-like macros.

Two replacement lists are identical if and only if the source processing tokens in both have the
same number, ordering, spelling, and white-space separation, where all whitespace separations are
considered identical.

A macro definition is in effect until a #undef directive is encountered which specifies the macro
name or (if none is encountered) until the end of the source text input file.

If a # character is followed by a sequence of characters that is not the same as any directive
keyword (such as define) and the # and its following sequence of characters occur on a line
where a directive could begin, the sequence of characters (which may appear to be a name) is not
subject to macro replacement. Since the line does not follow the form of any directive described in
this standard, it is not recognized as a source processing directive and thus is output to the output
file.

A macro name has two characteristics associated with it: a definition state and a value, where the
value is optional (the "value" is the replacement list). Thus, a macro name may be defined but
have no value (there were no tokens specified in the replacement list or after macro expansion in
the replacement list was complete, no tokens remain). The definition state and value of a macro
name are of particular relevance to the if-construct directives (x.y).

Example:

#define STATUS_VALUE /* This macro has no value but */
 /* the name is defined. */

NOTE 4.1
Output of such a line will probably cause a Fortran language processor to produce an error if the
output file is submitted to a Fortran language processor.

FEB 1997 WORKING DRAFT X3J3/97-112

FEB 1997 WORKING DRAFT 15

#define STATUS "Value: " STATUS_VALUE

If the definitions of STATUS_VALUE and STATUS are as shown and STATUS is referenced
elsewhere in the source input file, after macro replacement in the replacement list of STATUS, its
value "Value: " (unchanged) because the replacement list for STATUS_VALUE contains no
tokens.

The source processor shall provide a mechanism at processor invocation to initially define or
undefine a macro name and shall provide a mechanism to specify an initial integer value for a
source processing variable. If no value is specified with the source processing variable name, it is
the same as if the name was specified to have the value 1. The mechanism by which the definition
state or value are initially specified is processor dependent.

If a macro name is specified at processor invocation to be both defined and undefined, or to be
defined multiple times, the order of determination of the final definition state and/or value of the
macro name is processor dependent.

By default, the source processor only recognizes macro references in other directives. As described
earlier in this section. directive keywords are not subject to macro replacement. The source
processor shall also be capable of recognizing macro reference within Fortran source lines (outside
of comments, IMPLICIT statement implicit-spec-lists (1539-1, 5.3), text in FORMAT statements, and
string literals). The method for directing the processor to recognize macro references in Fortran
source lines is processor dependent.

[Need to explain here in a note why contexts such as the IMPLICIT stmt are ignored.
Question: Does "FORMAT statement" also include formats contained directly in I/O
statements?]

The replacement list for a macro name shall replace only name tokens in other directive lines (and
optionally in Fortran source lines). That is, the sequence of characters in name is not recognized in
every context where the same sequence of characters occurs. The sequence of characters is only
recognized as a macro reference if the sequence of characters constitutes an entire token. Thus,
given

#define INT 1
#define INTEGER 2

NOTE 4.2
A more typical use of an object-like macro without a replacement list is to use it to determine
whether or not Fortran source lines are to be output via an if-construct. For this usage, only a
definition state is needed; the value of the macro is unimportant (and therefore unnecessary).
For example:

 #define System_1
 ...
 #ifdef System_1
 ...
 #endif

NOTE 4.3
The intent is that the initial definition state or value is provided via command line option.
POSIX compliant and at least some other Unix source (pre)processors use the -D to specify the
definition state and value, and use the -U option to specify that a macro name is undefined.

NOTE 4.4
The intent is that the recognition of macro references in Fortran source lines be specified via a
command line option.

X3J3/97-112 WORKING DRAFT FEB 1997

16 WORKING DRAFT FEB 1997

If macro INTEGER is later referenced, the first three characters of INTEGER are not replaced by 1
(the value or replacement list for INT) because the first three characters do not constitute an entire
token.

If the processor has been directed to recognize macro names in Fortran source lines, macro names
are likewise only recognized if they correspond to Fortran tokens. A Fortran literal constant
containing a kind type parameter value is considered to be a single token.

Example:

Assume the source processor has been directed to recognize macro names in Fortran source lines
and suppose the following Fortran source lines are in fixed source form.

1. #define LARGE 8
2. #define CALLF(x) f(x)
3. INTEGER(L A R G E) LARGE_ARRAY(1000)
4. LARGE _ARRAY = 1_ LARGE
5. CALL F(10)
6. X = CALL F(10)

In line 3, the integer 8 is substituted for the kind type parameter value in the INTEGER attribute
because the blanks in "L A R G E" are insignificant. The character sequence LARGE in
LARGE_ARRAY is not subject to macro substitution because the character sequence does not
constitute an entire token; rather, it is a part of the token LARGE_ARRAY.

In line 4, again the first character sequence LARGE is a part of a name token so no macro
substitution is done; the blank between LARGE and the remainder of the token is insignificant. A
numeric literal constant and its kind type parameter value form a single token, so the second
LARGE is also not subject to macro substitution.

In line 5, even though the blank is insignificant, CALL and F constitute two individual tokens so no
macro substitution is performed .

In line 6, again the blank between CALL and F is insignificant but in this case the significant
characters constitute a single token since this is not a context where a CALL statement can appear,
so macro substitution does take place.

After macro substitution, the four Fortran source lines would appear as follows:

 INTEGER(8) LARGE_ARRAY(1000)
 LARGE _ARRAY = 1_ LARGE
 CALL F(10)
 X = f(x)

A macro name is recognized from the point of definition to the end of the source input file.

4.4.1 Object-like macro

The directive form

#define name string

defines the value of an object-like macro (source processing variable) name to be set of source
processing tokens contained in string. A source processing variable may appear in the conditional
expression of a conditional source processing directive and thus participate in the determination of
which source text lines are produced by the source processor.

A source processing variable can be explicitly undefined using the #undef directive (x.y).

A source processing variable can be implicitly redefined by another #define directive provided
that the second definition is also an object-like macro and the two replacement lists are identical.

The simplest use of a macro is an object-like macro that defines a constant value, as in

FEB 1997 WORKING DRAFT X3J3/97-112

FEB 1997 WORKING DRAFT 17

#define RELEASE 1
#define System_Name "System 31"
#define TABLE_SIZE 100

If source processing was also being performed on the Fortran source lines then TABLE_SIZE could
be used to declare the size of an array as in the following:

 INTEGER table(TABLE_SIZE)

Since lower-case and upper-case letters are distinguishable when a macro name is being replaced
in a Fortran source line, if the Fortran source line was written as

 INTEGER table(Table_Size)

the macro replacement does not take place.

4.4.2 Function-like macro

A directive of the form

#define name(dummy-arg-list) string

defines a function-like macro with arguments. The dummy arguments are specified by the
parenthesized list of names, whose scope is limited to this function-like macro definition. Each
subsequent appearance of the function-like macro name followed by a parenthesized argument list
introduces the sequence of tokens that replace the dummy argument list in the macro definition
(each subsequent appearance of the macro name is termed an invocation or expansion of the
macro). The replacement sequence of tokens is terminated by the matching right parenthesis,
skipping intervening matched pairs of left and right parenthesis characters. As in the definition of
a function-like macro, in a function-like macro reference the left parenthesis of the dummy-arg-list
must immediately follow the macro name with no intervening whitespace.

In a macro invocation, the sequence of tokens bounded by the outermost matching parentheses
forms the actual argument list of the function-like macro. Commas between inner matching
parentheses do not separate the arguments of the list. If (before argument substitution) any
argument consists of no tokens, the behavior is undefined. If there are sequences of tokens within
the list of actual arguments that would otherwise act as source processing directives, the behavior
is undefined.

The sequence of tokens making up an invocation of a function-like macro are not required to all be
on the same line. That is, a function-like macro reference may be continued using the source
processing continuation character ’\’.

A function-like macro may be explicitly undefined using the #undef directive.

A function-like macro may be implicitly redefined by another #define directive provided that the
second definition is also a function-like macro that has the same number and spelling of dummy
arguments, and the two replacement lists are identical.

Example: The following defines a function-like macro whose value is the sum of its arguments and
illustrates a use of a function-like macro. TABLE_SIZE is the object-like macro defined in the
example in [x.y].

#define SUM(arg1, arg2) arg1 + arg2
#define INIT_SIZE SUM(TABLE_SIZE, 100)

4.4.2.1 Function-like macro invocation and replacement

The number of actual arguments in an invocation of a function-like macro shall agree with the
number of dummy arguments in the macro definition.

X3J3/97-112 WORKING DRAFT FEB 1997

18 WORKING DRAFT FEB 1997

In IMPLICIT statement bounds and text in FORMAT statements, macros are not expanded only in
case of conflict with valid literals in that context.

[Keith: Please find out what the above paragraph means. From fpp doc.]

After the actual arguments for the invocation of a function-like macro have been identified,
argument substitution takes place. A dummy argument in the replacement list, unless preceded by
a # or ## operator or followed by a ## operator ([The # op], [The ## op]), is replaced by the
corresponding actual argument after all macros contained therein have been expanded. Before
being substituted, each actual argument’s tokens are completely macro replaced.

[There seems to be some questions as to what the above paragraph is saying. I essentially
duped it from the C standard so I don’t want to further endanger the text by trying to rewrite it
and get it wrong. Any C weenies out there care to translate?]

4.4.2.2 The # operator

Each # operator in the replacement list for a function-like macro shall be followed by a dummy
argument name as the next source processing token in the replacement list.

For each such # operator followed by a dummy argument in the replacement list, both are replaced
by a single character string literal that contains the spelling of the source processing token
sequence for the corresponding actual argument. Each occurrence of white space between the
actual argument’s source processing tokens becomes a single space character in the character string
literal. White space before the first source processing token and after the last source processing
token comprising the actual argument is deleted. Otherwise, the original spelling of each source
processing token in the actual argument list is retained in the character string literal, except for
special handling for producing the spelling of string literals and character constants: a ’\ ’
character is inserted before each ’" ’ and ’\ ’ character, including the delimiting ’" ’ characters. If the
replacement that results is not a valid character string literal, the behavior is undefined. The order
of evaluation of # and ## directive operators is processor dependent.

Example:

#define str(s) # s

An invocation of str as str(21: 3) produces the character string literal "21: 3" after the
leading and trailing blanks have been deleted and the interior blanks have been replaced with a
single blank.

4.4.2.3 The ## operator

A ## directive operator shall not occur at the beginning or at the end of a replacement list for
either form of macro definition.

If a dummy argument name in a replacement list is immediately preceded or followed by a ##
directive operator, the dummy argument name is replaced by the corresponding actual argument’s
token sequence.

For both object-like and function-like macro invocations, before the replacement list is reexamined
for more macro names to replace, each instance of a ## directive operator in the replacement list
(not from an argument) is deleted and the preceding token is concatenated with the following
token. If the result is not a valid token, the behavior is undefined. The resulting token is available
for further macro replacement. The order of evaluation of ## directive operators is processor
dependent.

[I may add some detail from the C rationale about how this operator works.]

Example:

#define str(s) # s

FEB 1997 WORKING DRAFT X3J3/97-112

FEB 1997 WORKING DRAFT 19

#define xstr(s) str(s)
#define INCFILE(n) vers ## n
...
#include xstr(INCFILE(2))

The result of the invocation of xstr is "vers2" . The actions are as follows:

(1) The token 2 is the actual argument to INCFILE and corresponds to the dummy
argument n. INCFILE(2) is replaced by vers ## 2 . Before the replacement list
vers ## 2 is reexamined for more macro names to replace, the ## directive operator
is removed and vers is concatenated with 2, producing vers2 . vers2 does not
contain any more macro names so the replacement for INCFILE(2) is complete.

(2) xstr(vers2) is then replaced by str(vers2) .
(3) str(vers2) is replaced by # vers2 which is in turn replaced by the character string

literal "vers2" .

The invocation of xstr(INCFILE(2)) is now complete so the #include line is

#include "vers2"

4.4.3 Rescanning and further replacement

After all dummy argument names in the replacement list have been substituted, the resulting
token sequence is rescanned along with all subsequent tokens in the source file for more macro
names to replace.

If the name of the macro being replaced is found during this scan of the replacement list (not
including the rest of the source text file’s source processing tokens), it is not replaced. Further, if
any nested replacements encounter the name of the macro being replaced, it is not replaced. These
nonreplaced macro name tokens are no longer available for further replacement even if they are
later (re)examined in contexts in which that macro name would otherwise have been replaced.

The resulting completely macro-replaced token sequence is not processed as a source processing
directive even if it resembles one.

The following example illustrates the rules for redefinition and reexamination.

Macro definitions...
#define x 3
#define f(a) f(x * (a))
#undef x
#define x 2
#define g f
#define z z(0)
#define t(a) a

! Fortran source code
 q = f(y+1) + f(f(z)) * t(t(g)(0) + t)(1)

Evaluation of the macro invocations in the Fortran source code line:

(1) Since the replacement list for a macro is determined dynamically when the macro is
referenced rather than statically when the macro is defined, and since in this example
x was undefined and then redefined with the value 2, the macro replacement for
f(y+1) is f(2 * (y+1)) . After these macro replacements, the source code
effectively is:

q = f(2 * (y+1)) + f(f(z)) * t(t(g)(0) + t)(1)

(2) Similarly, the first replacement of f(f(z)) becomes f(2 * (f(z)) . The rescan
replaces the inner macro invocation so the tokens now become f(2 * (f(2 *
(z))) . And, finally, macro replacement is done for z producing f(2 * (f(2 *
(z(0))))) . The Fortran source now effectively appears as:

X3J3/97-112 WORKING DRAFT FEB 1997

20 WORKING DRAFT FEB 1997

q = f(2 * (y+1)) + f(2 * (f(2 * (z(0))))) * t(t(g)(0) + t)(1)

(3) The series of replacements for t(t(g)(0) + t) is:

t(g)(0) + t

g(0) + t

f(0) + t

f(2 * (0)) + t

[I am told my descriptions of the actions of the above macro expansions are not correct even
though I arrive at the same final text as does the C standard from which I stole this example. I
will get together with people much more knowledgeable than me in C and get the wording
right.]

When the replacement is done, the remainder of the Fortran source line appears as f(2 * (0))
+ t(1) but the t(1) is not subject to further macro replacement as described in earlier in this
section.

After all replacements, the statement has been transformed to:

 q = f(2 * (y+1)) + f(2 * (f(2 * (z(0))))) * f(2 * (0)) + t(1)

To demonstrate the redefinition rules, the following sequence is valid.

#define OBJ_LIKE (1-1)
#define OBJ_LIKE /* white space */ (1-1) /* more */
#define FUNC_LIKE(a) (a)
#define FUNC_LIKE(a)(/* Note the white space */ \

a /* other stuff on this line
 */)

The following redefinitions are invalid:

#define OBJ_LIKE (0) [different token sequence]
#define OBJ_LIKE (1 - 1) [different white space]
#define FUNC_LIKE(b) (a) [different parameter usage]
#define FUNC_LIKE(b) (b) [different parameter spelling]

4.5 Explicit macro undefinition
Rxxx macro-undef-directive is #undef name

An #undef directive causes the specified name no longer to be defined as a macro name. This
directive is ignored if the specified name is not currently defined as a macro name.

4.6 Conditional source text selection
Rxxx if-construct is if-directive

 source-text
[elif-directive

source-text] ...
[else-directive

source-text]
endif-directive

Rxxx if-directive is #if constant-expression
or #ifdef name
or #ifndef name

Rxxx elif-directive is #elif constant-expression

FEB 1997 WORKING DRAFT X3J3/97-112

FEB 1997 WORKING DRAFT 21

or #elseif constant-expression

Rxxx else-directive is #else

Rxxx endif-directive is #endif

The #elseif directive has exactly the same uses and restrictions as the #elif directive. It simply
acts as an alternate spelling for #elif .

When the source processor is evaluating expressions in C mode, the constant-expression of an if-
construct may contain defined unary operator expressions of the form

defined name

or

defined(name)

These unary expressions evaluate to the integer value 1 if the name is currently defined as a macro
name (that is, if it is predefined or if it has been the subject of a #define directive without an
intervening #undef directive with the same name); otherwise, they evaluate to 0. The unary
operator name defined shall not be the subject of a #define or a #undef directive.

If expressions are being evaluated according to 1539-1, the constant expression of an if-construct
shall not contain these unary operator expressions.

[One reviewer would like defined to also be available when operating in Fortran expression
mode. Opinions?]

Each conditional expression of an if-construct is a source processing expression involving macros
(source processing variables specified by #define directives) and constants.

The #if and #elif/#elseif directives are used to inquire about the value of a macro where the
#ifdef and #ifndef are used to inquire about the definition state of a macro.

 The conditional expression of the #if and #elif/#elseif directives evaluates to a logical value
if expressions are being evaluated in Fortran mode or to an integer value if expressions are being
evaluated in C mode.

Prior to the evaluation of a constant-expression in an if-construct, any macros in the constant-
expression are replaced (except for those macro names subject to defined unary operators when in
C expression evaluation mode), just as in the remainder of the source text.

If expressions are being evaluated in Fortran mode then the resulting tokens comprise the
initialization expression which is evaluated according to the rules of 1539-1, section 7.

If expressions are being evaluated in C mode, and if the token defined is generated as a result of
this replacement process or use of the defined unary operator does not match one of the two
specified forms prior to macro replacement, the behavior is undefined. After all replacements due
to macro expansion and the defined unary operator have been performed, all remaining names
are replaced with the token 0 (the number zero). The resulting tokens comprise the constant
expression which is evaluated according to the rules in section 3.8.1 of the C standard, including
those cases which the C standard notes are implementation-defined.

NOTE 4.5
Note that conditional expressions in a source processing if-construct are not required to be
contained within parentheses. However, the rules for an expression in both the C standard
and 1539-1 allow an expression to be contained with parentheses so the conditional
expressions of an if-construct may be contained in parentheses if the user prefers that the if-
construct look more similar to a Fortran language IF construct.

X3J3/97-112 WORKING DRAFT FEB 1997

22 WORKING DRAFT FEB 1997

The conditional expression of the #ifdef and #ifndef directives determine whether the name is
or is not currently defined as a macro name. The constant expression in these directives is
equivalent to

#if defined name

and

#if !defined name

respectively.

The Fortran source lines in at most one of the source text blocks in an if-construct are output. If
there is an #else directive in the if-construct, the Fortran source lines in exactly one of the source
text blocks in the if-construct are output. The conditional expressions are evaluated in order of
their appearance in the if-construct until a nonzero value (true value if evaluation is according to
1539-1) is found or an #else directive or #endif directive is encountered. If a nonzero (true)
value or an #else directive is found, the Fortran source lines in the text block immediately
following are output and this completes the output of the if-construct. The conditional expressions
in any remaining #elif directives of the if-construct are not evaluated. If none of the evaluated
expressions is nonzero (true) and there is no #else directive, no Fortran source lines in any text
block in the construct are output. If Fortran source lines are output as a consequence of evaluating
the if-construct, they are output after all macro replacements have been performed on the source
lines, provided the source processor has been directed to perform macro replacements in Fortran
source lines.

Example:

This example illustrates the default evaluation of an if-construct conditional expression as a C
expression.

#define LARGE_INTS
. . .
#if defined(LARGE_INTS)
 CALL sub(1_LARGE)
#else
 CALL sub(1)
#endif

This example illustrates the optional evaluation of a source processing variable value and an if-
construct conditional expression according to 1539-1.

NOTE 4.6
Note the difference between inquiring about the definition state of a macro name vs. its value:
an #ifdef or #ifndef inquires about the definition state, but #if inquires about the value.
If, for example, a source processing variable is defined as follows:

#define OLD 0

then

#ifdef OLD
... /* Fortran source text block. */
#endif

will output the Fortran source lines in the text block, but

#if OLD
... /* Fortran source text block. */
#endif

will not.

FEB 1997 WORKING DRAFT X3J3/97-112

FEB 1997 WORKING DRAFT 23

#define LARGE_INTS .TRUE.
. . .
#if (LARGE_INTS)
 CALL sub(1_LARGE)
#else
 CALL sub(1)
#endif

These examples are for illustration purposes only (the parens surrounding the conditional
expression in the Fortran example are optional, for example). The same effects could be
accomplished in other ways.

4.7 Including source text
Rxxx include-directive is #include < character [character] ... >

or #include " character [character] ... "
or #include sp-token [sp-token] ...

The " , <, and > characters in the include-directive are a part of the syntax of the include-directive.

Additional source text, including source processing directives, may be incorporated into the
program source text during source processing. This is accomplished with the #include directive.

The effect of the #include directive is as if the referenced source text physically replaced the
#include directive prior to source processing. Included text may contain any source text,
including additional #include directives. Any such nested #include directives are similarly
replaced with the specified source text. The maximum depth of nesting of any nested #include
directives is processor dependent. Inclusion of the source text referenced by an #include
directive shall not, at any level of nesting, result in inclusion of the same source text.

[Difference: C apparently allows such recursive references. I went with the Fortran rules.
Anyone think I should use the C rules instead?]

When an #include line is resolved, if the first included line is a Fortran statement line, it shall not
be a Fortran statement continuation line. If the last included line is a Fortran statement line, it
shall not be continued. If the first included line is a directive line, it shall not be a directive
continuation line. If the last included line is a directive line, it shall not be continued.

The interpretation of the character string is processor dependent and varies according to the
delimiters used or the lack of such delimiters. The source processor may ignore alphabetical case
in the character string. The maximum allowed length of character string is processor dependent.
The model used by this standard is that the character string is the name of a file that contains the
source text to be included. If the file corresponding to the specified file name is not found, the
source processor shall issue a diagnostic message. The behavior of further source processing is
undefined.

The first form of the #include directive (the one that uses the < and > delimiters), directs the
source processor to search a sequence of processor-dependent places for a file uniquely identified
by the character sequence enclosed by the < and > delimiters, and causes the replacement of the
#include directive by the entire contents of the file. The method by which the file is specified
(the form of the file name) is processor dependent.

The second form of the #include directive (the one that uses the " character as the delimiters)
causes the replacement of the directive by the entire contents of the file identified by the character
sequence enclosed by the " delimiters. The file is searched for in a processor-dependent manner. If
this search is not supported, or if the search fails, the directive is reprocessed as if it read

#include < character ... >

X3J3/97-112 WORKING DRAFT FEB 1997

24 WORKING DRAFT FEB 1997

with the identical contained character sequence (including > characters, if any) from the original
#include directive.

The tokens following #include in the third (undelimited) form of the #include directive are
processed just as in normal text. That is, each name currently defined as a macro name is replaced
by its replacement list of source processing tokens. The directive resulting after all replacements
shall match one of the other forms of the #include directive. Adjacent character string literals are
not concatenated into a single string literal; thus, an expansion that results in two string literals is
an invalid directive. After all replacements have been made and the #include directive matches
one of the other forms, the method by which a sequence of source processing tokens between the <
and > delimiters or a pair of " delimiters is combined into a single file name is processor-
dependent.

Examples:

Common uses of the #include directive are as follows:

#include <sys/ieee_defs>

#include "local_defs"

This example illustrates a macro-replaced #include directive:

#if VERSION == 1
 #define INCFILE "version_1"
#elif VERSION == 2
 #define INCFILE "version_2"
#else
 #define INCFILE "version_3"
#endif

#include INCFILE

4.8 Error directive
Rxxx error-directive is #error [character] ...

The #error directive causes the source processor to produce a diagnostic message that includes
the sequence of characters specified by the directive.

[One reviewer felt that the character strings included in the #error and #stop directives should
be tokens so that macro substitution would take place in what the user supplied to these
macros. I prefer that this *not* be the case. Opinions?]

4.9 Stop directive
Rxxx stop-directive is #stop [character] ...

The #stop directive causes termination of the source processor. At the time of termination, the
sequence of characters specified by the directive, if any, is available in a processor-dependent
manner.

4.10 Null directive
Rxxx null-directive is #

The null directive has no effect.

FEB 1997 WORKING DRAFT X3J3/97-112

FEB 1997 WORKING DRAFT 25

4.11 Line directive
Rxxx line-directive is #line digit ...

or #line digit ... " character ..."
or #line sp-token ...

In the #line directive, the " delimiter characters are a part of the syntax of the directive.

The syntactic class sp-token is defined by the description of source processing tokens in [Low-level
syntax].

The line number of the current source line is one greater that the number of lines that have been
input to the source processor while processing the source text input file to the current token. Since
each #include directive line exists as a line in the source text input file, each such #include line
is considered when determing the line number for any given line. Thus, the #line directives
output also account for #include lines.

The #line directive is the only directive that is entered into the output file by the source
processor.

A #line directive of the form

#line line-number

indicates that the source line following the #line directive is to be treated as if the line number of
that source line is line-number (interpreted as a decimal integer). The integer value of the line
number shall not be zero. The upper bound on the integer value of the line number is processor
dependent.

A #line directive of the form

#line line-number " file-name"

indicates the line number similarly and changes the presumed name of the source text input file to
be the contents of the character string literal.

A #line directive of the form

#line sp-token ...

(that does not match one of the two previous forms) is permitted. The source processing tokens
following the keyword line on the directive are processed just as in normal text (each name
currently defined as a macro name is replaced by its replacement list of source processing tokens).
The directive resulting after all replacements shall match one of the two previous forms and is then
processed as appropriate.

[The #line directive can exist in both the input and output files. I need to separate these cases
more and explain what they mean.]

Example:

Input to the source processor; assume the source is contained in file t.F :

! Line 1

NOTE 4.7
The presence of #line directives in the output file implies that the output file does not
strictly conform to 1539-1. It is generally assumed that if a source file is submitted to the
source processor and then to a Fortran language processor that the Fortran language
processor will recognize (or ignore) the #line directives, effectively removing them from the
source processed by the remainder of the Fortran language processor such that the resulting
source can constitute standard-conforming Fortran source input.

X3J3/97-112 WORKING DRAFT FEB 1997

26 WORKING DRAFT FEB 1997

! Line 2
! Line 3
#include "inc"
! Line 5
 END ! Line 6

Contents of include file "inc" :

! Inc line 1
! Inc line 2
 i = 1 ! Inc line 3
! Inc line 4
! Inc line 5

Output from the source processor:

#line 1 "t.F"
! Line 1
! Line 2
! Line 3
#line 1 "inc"
! Inc line 1
! Inc line 2
 i = 1 ! Inc line 3
! Inc line 4
! Inc line 5
#line 5 "t.F"
! Line 5
 END ! Line 6

4.12 Predefined macro names
The following macro names are defined intrinsically by the source processor:

__LINE__ The source file line number of the current source line (a decimal constant).
__FILE__ The name of the source input file (a character string literal).
__DATE__ The date the source processor began operating on the source text input file.

The date shall be represented by a character string literal of the form
 "Mmm dd yyyy ", where the names of the months are the same as those
generated by the asctime intrinsic function as defined by the C standard, and
the first character of dd is a space character if the value is less than 10. If the
date the source processor began operating on the input file is not available, an
implementation-defined valid date shall be supplied.

__TIME__ The time the source processor began operating on the source text input file.
The time shall be represented by a character string literal of the form
"hh:mm:ss " as in the time generated by the asctime intrinsic function as
defined by the C standard. If the time the source processor began operating on
the input file is not available, an implementation-defined valid time shall be
supplied.

None of these predefined macro names shall be the subject of a #define or a #undef directive. If
the processor supports a mechanism to initialize or override the definition state of a macro, these
predefined macro names shall not be the subject of such a processor-dependent mechanism of
initializing or overriding the definition state of macro name.

