
 JTC1/SC22/WG5/N1252

Date: January 18, 1997
To: X3J3
From: R. Baker Kearfott
Subject: Interval Arithmetic - The Data Type and Low-Level
 Operations
References: X3J3/96-156, X3J3/96-065

Record of updates and explanations
______ __ _______ ___ ____________

1. January 18, 1997: Updated from X3J3/96-156 as follows:

 a) A non-ASCII character in place of "+" was corrected.

 b) The section on mixed mode operations and conversions
 was revised to incorporate extensive
 discussion within X3J3 and within the group consisting
 of me, Keith Bierman, George Corliss, David Hough,
 Andrew Pitonyak, Michael Schulte, William Walster,
 and Wolfgang Walter, with additional comments from
 Dick Hendrickson.

 c) The mixed mode conversion function INTERVAL produces
 compile-time errors when the arguments may not be
 machine representable. This is to both satisfy the
 condition that intervals contain true results, in
 a way that does not surprise the user, and to be
 consistent with Fortran’s definition of "constant"
 and "value." However, it is probably not ideal
 from the point of view of interval computations.
 Bill Walster has proposed an alternate definition
 of mixed mode conversions that may be better from
 the point of view of users of interval computations.
 Bill’s alternate proposal is appended to this document.

 (A third alternative, not developed in detail here,
 is to disallow mixed mode arithmetic, but have
 a constructor that essentially just stores endpoints.)

 The next steps:

 a) Approve the mixed-mode specifications

 b) Study the interval intrinsic functions (as briefly
 described in X3J3/96-065), and describe any necessary
 details specific to the individual functions.

==

Name and Structure
____ ___ _________

The INTERVAL type is a numeric type. Its values are closed and
bounded real intervals which are defined by an ordered pair of
real values. The first real value is the lower bound (or
infimum), the second real value is the upper bound (or supremum).
The lower bound shall be less than or equal to the upper bound.
The continuum of real numbers between and including these two
bounds (or endpoints) is said to be contained in the interval.

Note: Thus intervals contain real numbers that are not otherwise
 machine representable.

The actual internal structure of an interval data type is
implementation-dependent, and the bit structure is not directly
accessible to the user. That is, the user may change the values
of the endpoints of an interval only through setting
an entire interval, through the IVAL constructor described
below, or through an implicit conversion to interval.
The values of the lower bound and upper bound of an interval can
be obtained with the functions INF and SUP defined below.

The precision of each interval data type shall correspond to the
precision of a real data type. The kind type parameter of each
supported interval type shall be the same as the kind type
parameter of the corresponding real type.

Note: Although the interval data type is opaque, a common model
 of intervals is that of two reals. For example, for the interval
 data type corresponding to the DOUBLE PRECISION IEEE binary type,
 the lower bound can be viewed as an IEEE DOUBLE PRECISION type
 and the upper bound can be viewed as an IEEE DOUBLE PRECISION
 type.

Note: It is recommended that the default INTERVAL kind correspond
 to a REAL kind with a precision roughly that of an
 IEEE 754 "double" . It is the consensus of experts that
 interval arithmetic with precision roughly that of
 IEEE 754 "single" is of limited use.

Interval Constants
________ _________

Both where literal constants are admitted in expressions and in
input or output data, INTERVAL’s shall be represented by a single
REAL or INTEGER or a pair of REAL’s, INTEGER’s, or combinations
thereof, beginning with "(<", separated by "," if there are two
numbers, and ending in ">)". For example

(<1, 2>), (<1E0, 3>), (<1>), and (<.1234D5>)

are all valid INTERVAL constants. An INTERVAL constant specified
by a single number is the same as an INTERVAL constant specified
by two numbers, both of whose endpoints are equal to the single
number. When such a decimal constant is converted to its internal
representation, the internal representation shall contain the
decimal constant, regardless of how many digits are specified by
the decimal constant. For example, upon execution of the
statement:

X = (<0.31415926535897932384626433832795028D+01>)

the interval X shall contain the smallest-width machine interval
that contains the number 3.1415926535897932384626433832795028.

Interval constants shall admit kind type parameters, such as in
the construction (<1,2>)_2. An interval constant with no kind
type parameter shall be of default type.

Note: Thus, on machines in which the interval data type X
 appearing in the example above contained endpoints with accuracy
 that corresponded to less than 35 decimal digits, the interval X
 would contain the mathematical number PI.

Arithmetic Operations
__________ __________

The four basic operations +, -, *, and / are defined to contain
the ranges of the corresponding operations on real numbers.
Specifically, let X = [xl,xu] and Y = [yl,yu] be intervals, where
xl, xu, yl, and yu represent the lower and upper bounds of X and Y,
respectively. Then:

X + Y shall contain the exact value [xl + yl, xu + yu],

X - Y shall contain the exact value [xl - yu, xu - yl],

X * Y shall contain the exact value
 [min{xl*yl, xl*yu, xu*yl, xu*yu}, max{xl*yl, xl*yu, xu*yl, xu*yu}],

1 / X shall contain the exact value [1/xu, 1/xl] if xu < 0 or xl > 0,
 and shall signal ’denominator contains zero’ otherwise.

X / Y shall contain the exact value
 [min{xl/yu, xl/yl, xu/yu, xu/yl}, max{xl/yu, xl/yl, xu/yu, xu/yl}]

 if yu < 0 or yl > 0, and shall signal ’denominator contains zero’
 otherwise.

Note: Particular processors may support an extended interval
 data type, in which division by intervals that contain zero
 yields a meaningful result. For example, a meaningful
 interpretation of [1,2]/[-1,2] is the set-theoretic union of the
 two intervals (-infinity,-1] and [1/2,infinity).

Note: Using floating point arithmetic, the operations on the
 right-hand sides may first be computed, then the lower bound may
 be rounded down to a number known to be less than or equal to the
 exact mathematical result, and the upper bound may be rounded up
 to a number known to be greater than or equal to the exact
 mathematical result. If a processor provides directed roundings
 upwards (towards plus infinity) and downwards (towards minus
 infinity), then the operation and the rounding can be performed
 in one step, e.g. if the processor conforms to the IEEE 754
 standard. The excess interval width caused by this outward
 rounding is called ROUNDOUT ERROR.

Note: There is an alternate implementation of interval
 multiplication that also gives the range of the real operator "*"
 over the intervals X and Y. This alternative involves nine cases
 determined by the algebraic signs of the endpoints of X and Y;
 see page 12 of R. E. Moore, "Methods and Applications of Interval
 Computations," SIAM, Philadelphia, 1979. The average number of
 multiplications required for this alternative is less than above,
 but one or more comparisons are required.
 Implemented in software, the relative efficiencies of the
 alternative above and the nine-case alternative are
 architecture-dependent, although the nine-case alternative is
 often preferred in low-level implementations designed for
 efficiency.

Note: The only processor requirement is that the computed
 intervals contain the exact mathematical range of the
 corresponding point operations. In an ideal implementation (not
 required), the result of the operations is the smallest-width
 machine interval that contains the exact mathematical range.

Note: IEEE arithmetic can be used to perform ideal (minimum width)
 interval operations. For example, take

 [xl,xu] + [yl,yu] = [xl+yl,xu+yu]

 in exact interval arithmetic. The IEEE 754 standard defines a
 downwardly (upwardly) rounded operation as producing the same
 result as would be obtained by computing the exact result, then
 rounding it to the nearest floating point number less (greater)
 than or equal to the exact result. Thus, if the result xl+yl is
 rounded down and xu+yu is rounded up according to the IEEE
 specifications, the result is an ideal interval addition.

Mixed Mode Operations and Conversions
_____ ____ __________ ___ ___________

Explicit conversion to interval is performed with the
conversion function INTERVAL as follows:

Z = INTERVAL(R[,S][,KIND=<<kind>>][,EPSILON=<<fuzz>>])

where Z is an INTERVAL, and R and S are INTEGER or REAL or
COMPLEX. If KIND=<<kind>> is present, then <<kind>> is a valid
kind parameter for the INTERVAL data type, and the converted
value shall be an INTERVAL of kind <<kind>>. If KIND =<<kind>> is
not present, then the result of INTERVAL shall be of default
INTERVAL kind. If both R and S are present, then R shall be less
than or equal to S. If S is absent, then the conversion shall be
as if S were present and equal to R. If <<fuzz>> is present, then
<<fuzz>> is INTEGER, REAL, or INTERVAL. If <<fuzz>> is an INTERVAL
value, it shall be as if it were a REAL value of corresponding
type, and value equal to SUP(<<fuzz>>). If any argument to
INTERVAL is complex, it shall be as if the arguments were real and

equal to the real part of the actual value.

In all cases, where containment cannot be guaranteed, a
compile-time error shall be issued. Variables and variable
expressions, regardless of their history, are assumed to be
exactly machine representable.

The interval value stored in Z shall be an enclosure for the
specified interval, with an ideal enclosure equal to a machine
interval of minimum width that contains the exact mathematical
interval in the specification.

Examples: Z = INTERVAL(1) results in an interval of default
 kind that contains the value 1.

 Z = INTERVAL(0.5) results in an interval of
 default kind that contains the value 0.5.

 If the statement Z = INTERVAL(0.1) is encountered,
 a compile-time error is issued on machines that
 don’t use fractional decimal representations.
 Similarly, if the statement Z = INTERVAL(RPARAM)
 is encountered, where RPARAM is a named REAL
 constant that may not be an exact representation
 of its corresponding exact decimal expression,
 then a compile-time error is issued.

 Z = INTERVAL(R) results in an interval of default kind
 that contains the real value R.

Note: When compile-time errors are issued is processor-dependent in
 certain cases. The expression Z = INTERVAL(0.1) shall always
 result in an error on processors without fractional decimal
 arithmetic, since 0.1 is not exactly representable.
 However, a particular processor may ascertain through
 analysis that a named REAL constant is exactly represented,
 whereas another will issue an error.

If EPSILON=<<fuzz>> is absent, then the lower bound of Z shall
be less than or equal to R, and the upper bound of Z shall be
greater than or equal to S.

If EPSILON=<<fuzz>> is present and <<fuzz>> is equal to zero,
then Z shall be as if <<fuzz>> were absent.

If EPSILON=<<fuzz>> is present and <<fuzz>> is not equal to
zero, then the lower bound of Z shall be less than or equal to
R-eps, and the upper bound of Z shall be greater than or
equal to S+eps, where eps = SUP(ABS(INTERVAL(<<fuzz>>)).

Note: Non machine-representable values of <<fuzz>> produce
 compile-time errors.

INTERVAL may also be used to convert between different kinds
of INTERVAL: INTERVAL(Z,KIND=<<kind2>>) shall be
an INTERVAL with kind number <<kind2>> that contains
the value Z, where Z is an INTERVAL value of any
available kind. If EPSILON=<<fuzz>> is present, then
INTERVAL(Z[,KIND=<<kind2>>],EPSILON=<<fuzz>>) shall be
an INTERVAL (of kind <<kind2>> if KIND=<<kind2>> is present)
whose lower bound is less than or equal to
INF(Z)-<<fuzz>> and whose upper bound is greater than
or equal to SUP(Z)+<<fuzz>>.

Examples. INTERVAL((<3.141>),EPSILON=(<1e-3>)) will be an INTERVAL
 of default type that contains an interval centered
 at the exact value 3.141 and of semi-width exactly 1e-3.

 If X is a default real variable, then
 INTERVAL(X,EPSILON=(<1e-3>)) will be an INTERVAL
 of default type that contains
 [X-.001,X+.001], where here .001 means the exact

 decimal constant.

 INTERVAL(3,EPSILON=0) will, in general, be an interval
 of default type that contains the number 3. On most
 processors, INTERVAL(3,EPSILON=0) can equal [3,3].

Mixed mode operations between INTERVAL’s of one kind and another
are permitted, as well as mixed mode operations between INTERVAL’s
and INTEGER and REAL. The result of a mixed mode operation
between an INTERVAL and an INTEGER or REAL shall be an
INTERVAL.

The operations shall be consistent with 7.1.4.2 of X3J3/96-007
(March 4, 1996 version). In a mixed-mode operation between
INTERVAL’s of different types, the kind type parameter of the
result shall be that of the operand with greater decimal
precision or is processor dependent if the operands have the same
decimal precision. In a mixed-mode operation between an INTEGER
and an INTERVAL, the kind type parameter of the result is that of
the INTERVAL. In a mixed mode operation between an INTERVAL and
a REAL, the kind type parameter of the result shall be that of the
operand with greater decimal precision or is processor dependent
if the operands have the same decimal precision, provided an
INTERVAL of such a type is supported on the processor; if no such
INTERVAL type is supported on the processor, then the result
shall be an INTERVAL of type corresponding to the highest decimal
precision supported on the processor.

When an implicit conversion occurs according to the above rules,
it shall be as if a call to INTERVAL were used, with appropriate
KIND=<<kind>> argument and without an EPSILON=<<fuzz>> argument.

Note: Mixed mode operations in general do not give appropriate
 enclosures, since REAL values may represent results of
 computations and conversions in which error has accumulated.
 Users are encouraged to explicitly use INTERVAL with an
 appropriate value of <<fuzz>> for conversion of variables,
 to use interval constants rather than converting
 real constants, and to use interval constants and interval
 arithmetic from the beginning where rigorous enclosures are
 desired.

Example. If X is an INTERVAL of default type, and R is a
 REAL variable, then X**2 + 3*X + R shall be equal
 to X**2 + INTERVAL(3)*X + INTERVAL(R)

Implicit conversion from INTERVAL to REAL and INTERVAL to
INTEGER are defined. If the conversion is to REAL, then the
converted value shall be equal to MID(X), where X the interval to
be converted and where MID is defined below.
If the converted value is to be INTEGER, then the value shall be
equal to INT(MID(X)). Such an implicit conversion from INTERVAL
occurs only in an assignment statement. In particular, an
INTERVAL value may be assigned to an INTEGER or a REAL.

Example: If X is an INTERVAL and R is a REAL, then
 R = X
 is identical to R = MID(X), which, in turn,
 is identical to R = REAL(X).

Implicit conversion to interval in assignment statements is also
allowed. The conversion from INTEGER or REAL to INTERVAL
shall be as if a binary operation between the left member and
the right member occurred.

Example: If X is an INTERVAL of default type, and
 the default INTERVAL type corresponded
 to DOUBLE PRECISION real, then
 X = 0.3D0
 is the same as
 X = INTERVAL(0.3D0)

Note: The functions INF and SUP defined below may also be used to
 convert an INTERVAL to another data type.

New Infix Operators

The following infix operators shall be a part of standard interval
support.

 Syntax function
 ______ ________

Z = X.IS.Y Z <-- intersection of X and Y, that is,
 [max{xl,yl},min{xu,yu}] if
 max{xl,yl} < = min{xu,yu} and
 signals an "intersection of disjoint
 intervals" otherwise.

Z = X.CH.Y Z <-- [min{xl,yl}, max{xu,yu}]
 ("interval hull" of X and Y. The mnemonic is
 "convex hull")

 X.SB.Y .TRUE. if X is a subset of Y
 (i.e. if xl >= yl .AND. xu <= yu)

 X.PRSB.y .TRUE. if X is a proper subset of Y
 (i.e. if X.SB.Y .AND. (xl > yl .OR. xu < yu)

 X.SP.Y .TRUE. if and only if Y.SB.X is true
 (i.e. if xl <= yl .AND. xu >= yu)

 X.PRSP.Y .TRUE. if and only if Y.PSB.X is true
 (i.e. if Y.SB.X .AND. (yl > xl .OR. yu < xu)

 X.DJ.Y .TRUE. if X and Y are disjoint sets
 (i.e. if xl > yu or xu < yl)

 R.IN.X .TRUE. if the REAL value R is contained in the
 interval X (i.e. if xl <= R <= xu)

Note: Intervals are closed. So, if R.IN.X, then R may be equal
 to one of the endpoints of X.

Interval Versions of Relational Operators

The following relational operators shall be extended to interval
operations, in the "certainly true" sense. That is, the result
is .TRUE. if and only if it is true for each pair of real values
taken from the corresponding interval values.

 Syntax function
 ______ ________

 X.LT.Y .TRUE. if xu < yl

 X.GT.Y .TRUE. if xl > yu

 X.LE.Y .TRUE. if xu <= yl

 X.GE.Y .TRUE. if xl >= yu

Another set of relational operators, the POSSIBLY TRUE relationals,
shall be defined as follows.

 Syntax function
 ______ ________

 X.PLT.Y .TRUE. if xl < yu (i.e. if .NOT.(X.GE.Y))

 X.PGT.Y .TRUE. if xu > yl (i.e. if .NOT.(X.LE.Y))

 X.PLE.Y .TRUE. if xl <= yu (i.e. if .NOT.(X.GT.Y))

 X.PGE.Y .TRUE. if xu >= yl (i.e. if .NOT.(X.LT.Y))

Finally, equality and inequality of intervals are defined by viewing
the intervals as sets.

 Syntax function
 ______ ________

 X.EQ.Y .TRUE. if xl=yl and xu=yu

 X.NE.Y .TRUE. if .NOT. (X.EQ.Y)

Operator Precedence
________ __________

The precedence of these operators is as follows:

Category of Operators Precedence
operation

Extension <defined-unary-op> Highest
Numeric ** .
Numeric *, /, .IS. .
Numeric unary + or - .
Numeric binary + or -, .CH. .
Character // .
Relational .EQ., .NE., .LT., .PLT., .LE., .PLE., .GT., .PGT., .
 .GE., .PGE., .SB., .PRSB., .SP., .PRSP., .DJ.,.IN. .
Logical .NOT. .
Logical .AND. .
Logical .OR. .
Logical .EQV. or .NEQV. .
Extension <defined-binary-op> Lowest

Special Interval Functions
_______ ________ _________

The following utility functions shall be provided for conversion from
INTERVAL to REAL, etc.

 Syntax function attainable accuracy
 ______ ________ ___________________

R = INF(X) Lower bound of X (the value in the lower
 storage unit of the interval
 datum X)

R = SUP(X) Upper bound of X (the value in the upper
 storage unit of the interval
 datum X)

R = MID(X) Midpoint of X (a floating point approximation,
 always greater than or equal to
 the value returned by INF and
 less than or equal to the value
 returned by SUP)

R = WID(X) R <-- xu - xl (the value shall be rounded up,
 "Width" to be greater than or equal to
 the actual value)

R = MAG(X) R <-- max { |xl|, |xu| }
 "Magnitude"

 | min { |xl|, |xu| } if .NOT.(0.IN.X),
R = MIG(X) R <--|
 | 0 otherwise.

 "Mignitude"

 |
Z = ABS(X) Z <-- | [min{|x|}, max{|x|}]
 | x.IN.X x.IN.X

 Range of absolute value

Z = MAX(X,Y) Z <-- [max {xl,yl}, max {xu,yu}]

 Range of maximum
 MAX shall be extended analogously
 for more than two
 arguments.

Z = MIN(X,Y) Z <-- [min {xl,yl}, min {xu,yu}]

 Range of minimum
 MIN shall be extended analogously
 for more than two
 arguments.

N = NDIGITS(X) Number of leading decimal digits that are the same in
 xl and xu. n digits shall be counted as the same if
 rounding xl to the nearest decimal number with n
 significant digits gives the same result as rounding
 xu to the nearest decimal number with n significant
 digits. If xl=xu, , then NDIGITS(X) shall return
 PRECISION(R)+1, where R is any real of kind the same as
 the kind of the INTERVAL X (that is, whose precision
 is the same as the precision of X).

Note: On many machines, INF, SUP, MAG, MIG, ABS, MAX, and MIN
 can be exact, if the target is of a type that corresponds to the
 input. This is because these functions merely involve storing
 one of the endpoints of the interval into the target variable.
 Similarly, the conversion function IVAL can be exact on such
 machines if it specifies conversion from REAL data of
 corresponding type.

Except for NDIGITS, all of these special interval functions
shall be elemental.

Note regarding NDIGITS: For example, if X = [0.1996,0.2004],
 then three leading decimal digits of this function are the same,
 and NDIGITS(X) is equal to 3. This is because, if .1996 and .2004
 are each rounded to the nearest decimal number with three
 significant digits, they both round to .200, yet they round to
 different four-digit decimal numbers. This value can
 be computed as INT(-LOG10(2.004-1.996). In many cases,
 the value can be computed as INT(-LOG10(xu-xl) + e LOG10(b)),
 where e = MAX(EXPONENT(xl),EXPONENT(xu)) and b=RADIX(X).

Note: three interval functions, MAG, MIG, and ABS, correspond to
 the point intrinsic ABS. The specification of ABS is as the
 range of the absolute value function, consistent with the general
 principle that the results of interval functions shall contain
 the ranges of corresponding point intrinsics. Although "MAG(X)"
 is written |X| in much of the interval literature, it is more
 natural in various applications to have ABS(X) denote the range
 of the absolute value function.

If WID(X) is not exact, then its value shall be upwardly rounded.

Note: WID(X) often appears in convergence criteria of the form
 WID(X) < EPS. The criterion is certain to be satisfied if the
 computed value WID(X), used in the comparison, is greater than
 or equal to the exact value.

Optimization of Interval Expressions
____________ __ ________ ___________

In an interval expression, any transformations by the optimizer

that are permissible for REAL’s shall also be permissible for
INTERVAL’s. For example 1/x/y may be replaced by 1/(x*y).

Note: Different code optimizations may yield significantly
 different interval values, but each will be an enclosure of the
 range of the expression over the input intervals.

Note: If the program requires the precise form of an interval
 expression, then either parentheses may be used or
 optimization may be turned off through compiler options.

==
==
Addendum: An alternate proposal of G. William Walster for
 mixed-mode arithmetic specification
--

Here is what I would prefer.

Mixed Mode Operations and Conversions
_____ ____ __________ ___ ___________

Explicit conversion to interval is performed with the
conversion function INTERVAL as follows:

Z = INTERVAL(R[,S][,KIND=<<kind>>][,EPSILON=<<fuzz>>])

where Z is an INTERVAL, and R and S are INTEGER or REAL or
COMPLEX. If KIND=<<kind>> is present, then <<kind>> is a valid
kind parameter for the INTERVAL data type, and the converted
value shall be an INTERVAL of kind <<kind>>. If KIND =<<kind>> is
not present, then the result of INTERVAL shall be of default
INTERVAL kind. If both R and S are present, then R shall be less
than or equal to S. If S is absent, then the conversion shall be
as if S were present and equal to R. If <<fuzz>> is present, then
<<fuzz>> is INTEGER, REAL, or INTERVAL. If <<fuzz>> is an INTERVAL
value, it shall be as if it were a REAL value of corresponding
type, and value equal to SUP(<<fuzz>>). If any argument, to
INTERVAL is complex, it shall be as if the arguments were real and
equal to the real part of the actual value.

In all cases where containment cannot be guaranteed, an error
shall be issued. For example, if R or S or both are constants
that are not machine representable, the processor shall have the
option of returning a containing interval or issuing a
compile-time error.

Examples: Z = INTERVAL(1) results in an interval of default
 kind that contains the value 1.

 Z = INTERVAL(0.5) results in an interval of
 default kind that contains the value 0.5.

 If the statement Z = INTERVAL(0.1) is encountered,
 then either an error is issued or Z must be set to
 an interval that contains the decimal number 0.1.
 Similarly, if the statement Z = INTERVAL(RPARAM)
 is encountered, where RPARAM is a named REAL
 constant that may not be an exact representation
 of its corresponding exact decimal expression,
 then an error must be issued if a containing interval
 may not be produced.

 Z = INTERVAL(R) results in an interval of default kind
 that contains the real value of the variable R.

If EPSILON=<<fuzz>> is absent, then the lower bound of Z shall
be less than or equal to R, and the upper bound of Z shall be
greater than or equal to S.

If EPSILON=<<fuzz>> is present and <<fuzz>> is equal to zero,
then Z shall be as if <<fuzz>> were absent.

If EPSILON=<<fuzz>> is present and <<fuzz>> is not equal to

zero, then the lower bound of Z shall be less than or equal to
R-SUP(ABS(INTERVAL(<<fuzz>>)), and the upper bound of Z shall be
greater than or equal to S+SUP(ABS(INTERVAL(<<fuzz>>)), or an
error condition must be set.

INTERVAL may also be used to convert between different kinds of
INTERVAL: INTERVAL(Z,KIND=<<kind2>>) shall be an INTERVAL with
kind number <<kind2>> that contains the value Z, where Z is an
INTERVAL value of any available kind. If EPSILON=<<fuzz>> is
present, then INTERVAL(Z[,KIND=<<kind2>>],EPSILON=<<fuzz>>) shall
be an INTERVAL (of kind <<kind2>> (if KIND=<<kind2>> is present)
whose lower bound is less than or equal to
INF(Z)-SUP(ABS(INTERVAL(<<fuzz>>)) and whose upper bound is
greater than or equal to SUP(Z)+SUP(ABS(INTERVAL(<<fuzz>>)), or a
compile-time error message must be generated.

Examples. INTERVAL((<3.141>),EPSILON=(<1e-3>)) will be an INTERVAL
 of default type whose lower bound is less than or equal to
 3.140, and whose upper bound is greater than or equal to
 3.142. Otherwise, an error condition must be set.

 If X is a default real variable, then
 INTERVAL(X,EPSILON=1e-3) will be an INTERVAL
 of default type that contains
 [X-1e-3,X+1e-3], or an error condition will be set.

 INTERVAL(3,EPSILON=0) will, in general, be an interval
 of default type that contains the number 3. On most
 processors, INTERVAL(3,EPSILON=0) can equal [3,3].

Mixed mode operations between INTERVAL’s of one kind and another
are permitted, as well as mixed mode operations between
INTERVAL’s and INTEGER or REAL type variables and constants. The
result of a mixed mode operation between an INTERVAL and an
INTEGER or REAL shall be an INTERVAL.

The operations shall be consistent with 7.1.4.2 of X3J3/96-007
(March 4, 1996 version). In a mixed-mode operation between
INTERVAL’s of different types, the kind type parameter of the
result shall be that of the operand with greater decimal
precision or is processor dependent if the operands have the same
decimal precision. In a mixed-mode operation between an INTEGER
and an INTERVAL, the kind type parameter of the result is that of
the INTERVAL, but may be increased if needed to increase the
sharpness of the resulting interval. In all cases, containment
must be guaranteed, or an error condition set.

In a mixed mode operation between an INTERVAL and a REAL, the
kind type parameter of the result shall be that of the operand
with greater decimal precision or is processor dependent if the
operands have the same decimal precision, provided an INTERVAL of
such a type is supported on the processor.
If no such INTERVAL type is supported on the processor, then the
result shall be an INTERVAL of type corresponding to the highest
decimal precision supported on the processor. In all cases,
containment must be guaranteed, or an error condition set.

When an implicit conversion occurs according to the above rules,
it shall be as if a call to INTERVAL were used, with appropriate
KIND=<<kind>> argument and without an EPSILON=<<fuzz>> argument.

Note: Whenever a mode operation cannot be guaranteed to provide
 a proper enclosure, an error condition must be set. Since REAL
 variables may represent results of computations and conversions in
 which error has accumulated, users are encouraged to avoid mixed mode
 expressions involving REAL variables whose values may be suspect.

Example. If X is an INTERVAL of default type, and R is a
 REAL variable, then X**2 + 3*X + R shall be equal
 to X**2 + INTERVAL(3)*X + INTERVAL(R)

 X**2 + 0.1*X will either result in a containing interval
 or an error condition, depending on whether the processor
 is capable of guaranteeing containment.

Implicit conversion from INTERVAL to REAL and INTERVAL to
INTEGER are defined. If the conversion is to REAL, then the
converted value shall be equal to MID(X), where X the interval to
be converted and where MID is defined below.
If the converted value is to be INTEGER, then the value shall be
equal to NINT(MID(X)). Such an implicit conversion from INTERVAL
occurs only in an assignment statement. In particular, an
INTERVAL value may be assigned to an INTEGER or a REAL.

Example: If X is an INTERVAL and R is a REAL, then
 R = X
 is identical to R = MID(X), which, in turn,
 is identical to R = REAL(X).

Implicit conversion to interval in assignment statements is also
allowed. The conversion from INTEGER or REAL to INTERVAL
shall be as if a binary operation between the left member and
the right member occurred.

Example: If X is an INTERVAL of default type, and
 the default INTERVAL type corresponded
 to DOUBLE PRECISION real, then
 X = 0.3D0
 is the same as
 X = INTERVAL(0.3D0)

Note: The functions INF and SUP defined below may also be used to
 convert an INTERVAL to another data type.

Bill Walster

