Sat urday, March 1, 1997 11:59: 48 am

| SO | EC JTC1/ SC22/ Wb N1257

To: WG

From John Reid and Christian Wber
Subj ect: Enabl e revised

Date: 3 Febuary 1997

Excepti on handl i ng beyond that provided by the | EEE TR has come out
with a high vote in the M SC ballot, see N1240. To hel p W& deci de on
this issue in Las Vegas, we collect here:

1. The requirement, as summarized in item5b of the repository N1189.

2. The nechani sm as sunmarized by Christian Wber in his paper
"M scel | aneous Requirenents for Fortran2000", dated 28th Dec. 1996
whi ch the subgroup used as the basis for its voting.

3. The technical specification of ENABLE (Section 2 of the 24 CQct. 1995
draft Techni cal Report).

4. The edits for ENABLE (Section 3 of the 24 Cct. 1995 draft Technica
Report).

5. Christian Wber's ideas on nodifications of ENABLE

We suggest that the draft Technical Report be used as a starting point.
The main difference in philosophy will be that it will be designed to
handl e situations where halting would ot herwi se occur, since

| EEE_ARI THVETI C supports conti nued execution with the | EEE exceptions
signaling. However, in order to allow for optimnzations, we would have
to retain the indeterm nacy of the point at which the transfer to the
handl er is nade. Section 5 contains the ideas of one of us in nore
detail .

2. THE REQUI REMENT (from N1189)

Nunber: 5b

Title: Condition Handling

Submitted By: US

Status: Being devel oped for 2000 Revi sion

Ref erences: Section F.4 of X3J3/S8.104 (Appendix F)
N90O0

Basi ¢ Functionality: Provide a structured way of dealing with
relatively rare, synchronous events, such as error in input data or
instability of an algorithmnear a critical point.

Rational e: A structured approach to handling exceptional conditions would
i nprove both the maintainability and robustness of Fortran prograns.

Sat urday, March 1, 1997 11:59: 48 am

Much of the error handling code which clutters up the expression of
the underlying algorithmin current prograns could instead be noved
to a separate handler. Such handlers would, in turn, encourage
programmers to wite, and provide facilities to support, nore

compl ete code for dealing with exceptional conditions. A

bl ock-structured approach woul d preserve, for both the programer
and the conpiler, a clear connection between the code expressing an
al gorithm and the associ ated excepti on handl i ng code.

Estimat ed | nmpact:

Det ai |l ed Specification: The condition handling mechani sm nust have the
foll owi ng characteristics:

1. Automatic detection and signaling (when enabled) of a standard
set of intrinsic conditions, including at |least: nuneric errors,
subscript and substring bounds errors, I/Oerrors, end of file,
and allocation errors. Additional, processor-dependent intrinsic
condi tions should al so be all owed.

2. User-defined conditions, declared with a new specification statenent
and signaled explicitly by a new executabl e statenent.

3. Dummy condition arguments

4. Independent enabling and/or disabling of intrinsic conditions, on a
granularity finer than that of a scoping unit; that is, it should be
possible to enable an intrinsic condition only for a block of statenents,
possi bly even a single statenent, in a scoping unit.

5. Mnimal inpact on code performance within the innernost
condi tion-handling bl ock or scoping unit. In other words, entities
in the innernost block or scoping unit should be permtted to becone
undefi ned when a condition is signal ed when necessary to avoid extra
processor overhead.

6. Wien a condition is signaled, a search should be made up the chain of
nest ed, enabl ed condition-handling blocks and scoping units for an
associ ated user-witten handler, and control should be transferred
to the first such handler found. |If no handler is found, the result
i s processor dependent. A handler should be able to resignal the
condition that activated it.

7. Default handlers to handl e any condition

8. Appropriate inquiry functions to determ ne whether a condition has
been enabl ed and whether a handl er has been established for it.

Hi story: Request for investigation via B9/C5
Devel opment Body established, July 1995, to produce a
Techni cal Report in 1996 on handling floating
poi nt exceptions.

3. THE MECHAN SM (Christian Weber, 28th Dec. 1996)

5.1 Excepti on Handling (5, 5a, 5b, 5¢)

Sat urday, March 1, 1997 11:59: 48 am

Subj ect :
The requirenent deals with enhancenents in two directions:

1. Establish sone high-level control flow constructs (such as ENABLE... /
SIGNAL) to define - for a certain code region - a central (user-defined)
exception handl i ng nechani smwhich is invoked by the processor whenever an
error (of a certain kind) occurs

wi thin the designated piece of code, or
* wthin a subroutine which is invoked (either directly or indirectly at any
calling depth) fromw thin the designated piece of code.

The control flow construct should all ow

bl ock-structured nesting of exception handling definitions, and

the signaling of user-detected exceptions at any calling depth which wll
cause a junmp ("longjunmp") to the nearest appropriate exception handling
bl ock further up the calling chain.

2. Establish sone nmechanismto control the behaviour of the processor in certain
error situations where now (normally in a processor-dependent fashion)

* the programis termnated with sonme error nessage, or
* the error mght be ignhored, resulting in wong programresults.

Exanpl es for such error situations are
* | EEE floating point exceptions if the algorithmshall be halted in case of

error (note that the | EEE TR covers *only* the case of continuation with
not - a- nunber results after exceptions),

* integer arithnetic exceptions,

* lack of nenory,

* |/Oerrors if no | OSTAT... paraneter has been specified,
* access of array elenments beyond the index bounds,

* access of dummy argunents which are not present,

et c.

Exanpl e how the requirenent m ght be satisfied:
The | ast version of John Reid' s ENABLE proposal woul d essentially satisfy al
the requirenents
It introduced for the definition of "exception areas" a syntax |ike:
ENABLE (conditi on)
Fortran code to be controlled
HANDLE
Fortran code to deal with the exception
END ENABLE
For signalling a user-detected exception there was some new
SI GNAL (condition)

st at enent .

Some reduced syntax (as Jerry Wagener has proposed) might be - as a first step -
sufficient as well.

Sat urday, March 1, 1997 11:59: 48 am

It should be possible to discuss separately the general high-Ievel construct
(ENABLE...) and the set of error situations which have to be detected by every
Fortran processor.

W d odius has collected a list of aspects (which I think is quite
conpr ehensi ve) which m ght have to be considered during the design of sone
exception handling facility: see attachment B

Rat i onal e:

The reasons for exception handling (in general) are described in the repository.
It has been argued that the exception handling needs are now sufficiently
satisfied by the IEEE TR This is, however, only partially true:

- The I EEE deals with | EEE fl oating point exceptions only, and even with these
only if the algorithmnmay be continued (with not-a-nunber result) in case of
error.

Al'l the other exceptions (see above) cannot be handled so far.

- There is no high-level construct yet to deal with exceptions at a centra
point, especially if the exceptions occur further down the calling chain.
Therefore, the handling of exceptions which may occur in subroutines nust
currently be programred as foll ows:

* the subroutine reports any exception by sone return paramneter val ue,

* at each invocation of the subroutine the caller must inquire this return
value, normally just to stop the further processing in case of error and
to hand back a (different) return value to its own caller.

This handling is very error prone and causes the production of a |ot of
Iines of code which are unnecessary in other programn ng | anguages (such as
C++ which *does* offer an appropriate exception handling feature).

Probl ens:

1. The routines along the call chain between the exception handling bl ock and
the "signalling" point nust always be prepared for a ternination by
"l ongj unmp". This preparation may involve sone additional calling overhead
even if no exception ever occurs.

Possi bl e sol uti ons:

* accept the overhead (which is not all that large after all),

* demand fromthe user that he marks all subroutines which should prepare to
for a longjunmp termnation with sone new syntax construct (e.g. USE
EXCEPTI ON_SUPPORT) .

2. The detection of certain exceptions may be difficult to inplenent (e.g.
| NTEGER_OVERFLOW may not be supported by all hardware architectures).

3. The inpact of exception handling on optim zation nmust be carefully observed
(I think, though, that John Reid' s proposal has solved this problem
adequat el y).

X3J3 status: Vote Yes=6, No=8
Amount of work for X3J3:

| arge, although a good part (mpst?) of the necessary work has al ready been done
by John Reid's ENABLE proposal

Attachnent B:

Sat urday, March 1, 1997 11:59: 48 am

Aspects of Exception Handling Constructs
(by W d odius)

1. Should the handler be a statenent, a la CLU (=> the actual handling is
done by an internal procedure), or a block, a la Ada, or both (simlar to
the alternatives of using an I F statenent or an |IF construct)?

NOTE: A statenent handler is less distracting in terms of understanding the
normal flow of control, a block construct can nmake it easier to understand
the handling of the exceptional cases. Internal procedures nmake the handling
of errors using a statement handler relatively easy.

2. Should there be a distinction between conditions and exceptions, where the
optimizer is allowed to assunme for exceptions, (but not for conditions) that
their occurrence is sufficiently rare that it can optim ze the unexceptiona
path to al nost any detriment to the exceptional path?

3. Should there be a distinction between errors and warni ngs, where for
errors execution of normal code should stop and control of flow should
propagate instantly to the first available handler at the same |level or up
the call path at which time the handler is executed (typical exception
handl i ng behavior), while for warnings the behavior should be that nornal
execution continues until an appropriate handl er at the sane |evel or up the
call path is encountered at which time the handl er is executed?

Not e: The behavi or of warnings are simlar to Fortran's floating point
exceptions, or a typical set an integer flag and test.

4. Should the default upon entering the handler be to set the condition to
qui et or to renmain signaling?

Note: Leaving the condition active is probably the safest, setting it
i nactive probably reduces the amount of coding.

5. Should the default upon | eaving the handler be to set the condition to
qui et or to renmain signaling?

Note: Leaving the condition active is probably the safest, setting it
i nactive probably reduces the amount of coding.

6. Can the condition carry with it additional data?

Note: Virtually all recent exception handling systens allow the condition to
carry additional information that m ght prove useful in understanding the
exception source. Ada lets it carry a string. Mdula 3, C++, Java, CLCS
Dylan, let it carry alnost arbitrary information

7. \What are the allowed propagation paths after the exception is cleared and
handl ed?

a. To the code i mediately after the handl er

b. To the code i medi ately after the point where the exception was generat ed.
Most people | think would rightly vote no, although it nay be a usefu

capability during code debuggi ng.

c. To the code imediately after the statenment at the level of the handl er
whi ch served as the ultinmate source of the condition. Mst people |I think

Sat urday, March 1, 1997 11:59: 48 am

woul d rightly vote no.

d. To the start of the code within which the condition was generated? (Eiffe
RETRY semantics) | would vote yes.

8. Shoul d the | anguage include a condition that cannot be turned of f? (Abort)

9. What sort of error propagation should be allowed for functions? Can they
only propagate warnings or Abort?

Not e: Standard exceptions are inconpatible with Fortran's senmantics for
Functi ons.

10. Should a function always generate a "valid" result even if an exception
i s generated?

11. Shoul d the code be required to docunent what conditions can propagate out
of the scope of a programming unit? If so should it be docunented at the
subprogram or the nodul e | evel ? Does the propagati on of an unlisted error
result in the generation of Abort?

Note: mpost witers of code hate the documentation, nost users appreciate it.

12. Shoul d the exception handling systembe integrated with an assertion (a
la C or requirement (a la Eiffel) construct?

Note: That the authors of Numerical Recipes in Fortran 90 found the creation
of an assert subroutine to be useful and reconmend it as an addition to the
| anguage.

13. The data initialization statements in specification part of Fortran
programunits, can result in stack over flows, various nunerical error, etc.
do we want the exception handling systemto deal with those?

14. |If constructors or destructors are added to the | anguage and can generate
exceptions, how do we deal with partially constructed objects?

Note: This has been a major problemw th C++ s exception handling system

15. If parallel execution is allowed, how do we deal with multiple
si mul t aneousl y generated exceptions?

4. TECHNI CAL SPECI FI CATI ON PART OF THE ENABLE DRAFT TR

(24 Cct. 1995, Section 2)

For dealing with exceptional events, this proposal involves the

addi tion of a new construct, some new statenments, and an intrinsic
nmodul e containing a derived type for conditions, sone operations for
this derived type, and a set of intrinsic conditions.

The new construct has the general form
enabl e statenent
[enabl e bl ock]
[handl e st at enent
handl e bl ock]
end enabl e statenent
Nesting of enable constructs is pernmitted. An enable or handl e bl ock

Sat urday, March 1, 1997 11:59: 48 am

may itself contain an enable construct. Also, nesting with other
constructs is pernmitted, subject to the usual rules for proper nesting
of constructs.

An enable block is has a set of conditions that are said to be
"enabled" within it. A processor normally required to detect the
occurrence of the associated events, which may nmean that different
compi l ed code is needed or that a node flag has to be set. If such an
event is detected, the condition is set to a nonzero (signaling) value
and there is a transfer to the handler, but there is no requirenent
that this be done inmediately. |Indeed, on a processor that conforms to
| EEE 754-1985, the expectation is that execution will continue after a
fl oating-point exception, but with a flag raised and that the flag wll
be tested when execution of the enable block is conplete. Some
conditions, such as | NSUFFI Cl ENT_STORAGE are likely to cause an

i medi ate transfer of control

Simlarly, a handle block has a set of conditions that are said to be
"handled" withinit. Normally, the set of conditions that are enabl ed
in the enable block are handled in the handle block, but there is
syntax to allow additional conditions to be handl ed. When an enabl e
construct is nested in a handl e block, a handl ed condition may be
enabl ed once again. For any particular statement, a condition is

ei ther enabled or handled or neither. If a condition is enabled in an
enabl e bl ock and handl ed on its enabl e statement (because of nesting),
a copy of the condition is made and is restored when the construct
fini shes execution unless the condition signals in the construct and is
not handl ed there.

A processor that does not conformto | EEE 754-1985 is not required to
det ect UNDERFLOW | NEXACT, or | NVALID.

The derived type is
TYPE CONDI TI ON
SEQUENCE
PRI VATE
I NTEGER VALUE = 0 ! Al conditions are initially quiet.
END TYPE CONDI TI ON
The quiet value is zero and all nonzero values indicate signaling. A
conditions are initialized by default to the value zero. The signaling
val ues set by the processor for intrinsic conditions are all positive,
but negative values may be set by Fortran code. For the definition of the
modul e and the intrinsic conditions, see the proposed new section 15 at
the end of this paper. Also, there are nore exanples in the proposed
new sub-section 8.1.5.5.

The type is a sequence type to allowintrinsic conditions to have
equi val enced arrays, thereby permtting shorthands for long lists of
intrinsic conditions.

If a non-intrinsic procedure is invoked froma statenent
for which a condition is enabled, this has no effect on the enabling of
the condition in the procedure invoked.

By default, any condition enabled in an enable bl ock is enabled in any
enabl e constructs nested in it. However, the set of enabled conditions
may be altered using optional syntax on the enable statenment. Qutside
all enable constructs, no conditions are enabled unless there is a DEFAULT _ENABLE stat:

If an enabl ed condition signals during the execution of the enable

Sat urday, March 1, 1997 11:59: 48 am

bl ock, control is transferred to the handl e bl ock. A sinple example is
the foll ow ng:

! Exanple A
USE CONDI Tl ONS

ENABLE (OVERFLOW
' First try a fast algorithmfor inverting a matrix.

HANDLE
! Fast algorithmfailed; use slow one.

END ENABLE

Here, the code in the enabl e bl ock takes no precautions agai nst
overflow and will usually execute correctly. Should it fail with
overflow, the alternative algorithmis used instead.

The transfer to the handle block is inprecise in order to allow for
optim zations such as vectorization. Any variable that is defined or
redefined in a statement of the enable bl ock beconmes undefined. In
Exanple A, a copy of the matrix itself would need to be available for
the slow al gorithm

If there is no handler for an enabled condition that is signaling, a
transfer of control as for a return statenment takes place in a
procedure or as for a stop statenment takes place in a main program |f
the condition beconmes undefined (14.7.6) (that is, if it runs out of
scope), the processor issues a message on the unit identified by * in a
WRI TE st at enent and stops, unless the condition is UNDERFLOW or

| NEXACT. The nessage nust indicate which conditions are signaling and
their val ues.

A condition that is not enabled nay neverthel ess signal. This may
happen if it is intrinsic or if it is enabled in a called procedure and
is not handl ed by that procedure. For this reason, there is an option on
the handl e statenent to specify the handling of conditions that are not
enabl ed. For exanpl e,

HANDLE (ALL_CONDI TI ONS)
specifies that any intrinsic condition that signals during the
execution of the enable bl ock be handl ed.

When an enabl e statenment is encountered, if any signaling conditions
are enabl ed or handl ed or are about to be enabled or handled, a
transfer of control to the next outer handler for a signaling condition
(or a return or stop) takes place. This ensures that all enabled and
handl ed conditions are quiet on entering the enable block. Upon nornmnal
compl etion of the handl e bl ock, any signaling condition that it handles
is reset to quiet.

The transfer to the handler may be made nore precise by adding within
the enabl e bl ock a nested enable construct with no handler. If an
enabl ed condition is signaling when the inner enable statenment is
executed, control is transferred to the handler. This reduces the
imprecision to either the statenents within the inner construct or
those outside the inner construct. Adding such a construct to the code
of Exanple A gives:

! Exanple B
USE CONDI Tl ONS

Sat urday, March 1, 1997 11:59: 48 am

ENABLE (OVERFLOW
' First try a fast algorithmfor inverting a matrix.
I Code that cannot signal overfl ow
DO K =1, N
ENABLE

END ENABLE
END DO
ENABLE

END ENABLE
HANDLE
I Alternative code which knows that K-1 steps have executed nornally.

END ENABLE
Note that the enable, handle, and end-enable statenments provide effective
barriers to code mgration by an optim zing conpiler.

There is an option on the enable statement to specify that sone of the

enabl ed conditions are 'imedi ate'. Any <executabl e-construct> of the

enabl e bl ock that m ght signal one of the imrediate conditions is

treated as if it were followed by an enable construct with an enpty

body and no handler. An exanple of such an enable statenent is
ENABLE, | MVEDI ATE (OVERFLOW

There is a facility for naking a specified condition signal with the
default value -1 or a specified
value. This is done with the SI GNAL statenent:

S| GNAL(OVERFLOW - 3)

S| GNAL(DI VI DE_BY_ZERO)
It causes a transfer to the handler if in an enable block that has a
handl er for the condition; otherwise, it causes a return in a
subprogramor a stop in a main program This may not be used to set
conditions quiet.

Assignnent from a value of type default integer may be used to alter
the value of a condition. For exanple,

ALL_CONDITIONS = 0
sets all intrinsic conditions quiet. Assignment to a signaling state
does not cause an i medi ate transfer of control, but may cause a
transfer on conpletion of an enabl e block or on encountering an enable
statement. The nodul e contains the constants

TYPE(CONDI TI ON), PARAMETER :: QU ET = CONDITION(O), &

DEFAULT_SI GNALI NG = CONDI Tl ON(- 1)

to all ow statements such as

Dl VI DE_BY_ZERO = QUI ET; OVERFLOW = DEFAULT_SI GNALI NG
It may be useful to set values other than -1 to give nore information
about the circunstance.

Assi gnnent may al so be used to place the value of a condition in a
vari abl e of type default integer:

| = OVERFLOW
and conditions may be tested for equality with another condition or a
val ue of type default integer:

| F (OVERFLOME=QUI ET . OR. DI VI DE_BY_ZERQO =-1) THEN

Conditions are |like other derived types except in these respects:
1. An intrinsic operation or procedure that is invoked froma
statement for which a set of intrinsic conditions is enabled

Sat urday, March 1, 1997 11:59: 48 am

behaves as if those conditions were accessed in the
intrinsic's code by a use statenent for those conditions.
This may al so happen for intrinsic conditions that are not
enabl ed.

2. There is a special relationship between enabl ed or handl ed
conditions and the control flow

3. In a pure procedure, any conditions that are accessible
outside the procedure are treated in a special way. They are
enabl ed by default outside enable constructs, so there is an
imediate return if any is signaling. They are treated as having
been declared locally. If the condition is signhaling on return
and the global value is not, the local value is copied to the
gl obal val ue.
[Note: The intention is to permt the concurrent execution of the
procedure on several independent processors, each with its own
separate condition handling hardware. If one or nore of them
signals a condition and fails to handle it, the caller is told
about one such occurrence.]

In a handler, if it is desired to | eave without resetting the handl ed

conditions quiet (with the expectation that they will be handl ed by an
outer handler or by the caller), this can be achieved with the
st at enent

RESI GNAL

A transfer of control to the next outer handler for a signaling handl ed
condition (or a return or stop) occurs w thout the values of the
condi ti ons changi ng.

If a condition is signaling when the program stops, the processor nust
issue a warning on the unit identified by * in a WRITE statenment. The
message must indicate which conditions are signaling and their val ues.

Nei t her a handl e statenment nor an end-enable statenent is permitted to
be a branch target. A handle-block is intended for execution only
followi ng the signaling of a condition that it handles, and an
end-enabl e statenment is not a sensible target because it would permt
ski pping the handling of a condition

Branchi ng out of an enable construct is not permtted. This lints the

extent of uncertainty over which statenents have been executed when a
handl er is entered.

5. EDITS PART OF THE ENABLE DRAFT TR (24 Cct. 1995, Section 3)

4/ 30. Add
An executing programis pernitted to violate a prohibition or
restriction where this corresponds to an intrinsic condition
(2.4.8) that has been enabled (8.1.5.1). A prohibition or
restriction expressed as a constraint to the syntax rules is
never relaxed in this way. The intrinsic conditions are specified
in 15.1.

10/ 47+. Add
<<or>> <enabl e-construct>

Sat urday, March 1, 1997 11:59: 48 am

11/2-30. Add to R216 (in al phabetic positions) the lines
<<or>> <resignal-stnt>
<<or>> <signal-stmt>

14/ 35. After 'DO constructs,', add ' ENABLE constructs,'.

14/ 38+. Add:
(4) Execution of a signal or resignal statenent (8.1.5.4) may
change t he execution sequence.
(5) Execution of an enable statenment (8.1.5.1) may change the
execution sequence.

15/ 33+ Add
<<2.4.8 Condition>>

A <<condition>> is a scalar variable of derived type CONDI TI ON (15) and
is associated with the occurrence of an exceptional event. The val ue of
a condition is the value of its only conponent, which is of type
default integer. The value O corresponds to the <<quiet>> state and
this is its initial value. Nonzero values correspond to the
<<signal i ng>> state. Values set by the processor to indicate signaling
of an intrinsic condition (15.1) are positive and otherw se processor
dependent .

[Note: The reason for specifying that conditions have integer

values is that this | eaves open the possibility of providing detail ed

i nformation about the condition. The intrinsic values are forced to be
positive so that a negative value can be seen to be created by source
code and not by the system]

[Note: Although multitasking is not part of Fortran 90, the interaction
of this proposal with nultitaski ng extensions has been considered. A
nmodel is that each virtual processor has a separate instance of each
condition. |If an enable construct contains statenments that spawn
tasks, enable, handle, and end-enable statenents act as barriers at

whi ch the condition values are nerged; if any is signaling, one of the
signaling values is taken. Condition handling is therefore perm ssible
within a pure procedure.]

25/ 33+ Add
END ENABLE

78/ 19. After '"terminated', add 'unless the ALLOCATI ON ERRCOR condition is
enabl ed'

80/25. After '"ternminated' , add 'unless the DEALLOCATI ON ERROR condition is
enabl ed'

119/ 9+ Add
(4) ENABLE construct

Sat urday, March 1, 1997 11:59: 48 am

95/35. Add 'Transfers froman enable or a handle bl ock may occur only
through execution of a SIGNAL, RESIGNAL, or ENABLE statement.'.

129/ 2+. Add
<<8.1.5 Condition handling>>

A condition is a data object of the derived type CONDI TI ON of the
intrinsic nodule CONDI TIONS (15). The value of a condition is the
value of its integer conmponent. The value zero corresponds to the
normal or 'quiet' state and nonzero val ues correspond to exceptiona
circunmstances. Al intrinsic conditions have initial value zero. The
processor is required to signal a condition if the associated

ci rcunstance occurs during execution of an intrinsic operation or an
intrinsic procedure call in a statement for which the condition is
enabl ed. The processor may signal an intrinsic condition that is not
enabl ed. When the processor signals an intrinsic condition, it has a
positive val ue.

Conditions are |ike other derived types except in these respects:

1. An intrinsic operation or procedure that is invoked froma
statement for which a set of intrinsic conditions is enabled
behaves as if those conditions were accessed in the
intrinsic's code by a use statenent for those conditions.
This may al so happen for intrinsic conditions that are not
enabl ed.

2. There is a special relationship between enabl ed or handl ed
conditions and the control flow

3. In a pure procedure, any conditions that are accessible
outside the procedure are treated in a special way. The first
execut abl e statenent nust be an enable statenment for them so
there is an immediate return if any is signaling. They are
treated as having been declared locally. If the condition is
signaling on return and the global value is not, the |ocal value
is copied to the global val ue.

[Note: The proposal allows the in-lining of procedures with no change to
the enabl e constructs. This nay cause additional conditions to signal.]

[Note: On many processors, it is expected that sone intrinsic
conditions will cause no alteration to the flow of control when they
signal and that they will be tested only when the enabl e bl ock

compl etes or another enable statement is encountered. Thus the
overheads of testing the condition are confined precisely to the places
where the progranmrer has requested a test. On other processors, this
may be very expensive. They may instead cause a transfer of control to
the handler (or a return or stop) as soon as the condition signals or
soon thereafter.]

[Note: If additional code is needed (for exanple, to diagnose integer
overflow), this is required only within the scope of an enabl e bl ock.]

In a sequence of statements that contains no condition handling
statements, if the execution of a process would cause a condition to
signal but after execution of the sequence no value of a variable
depends on the process, whether the condition signals is processor
dependent. For exanple, when Y has the value zero, whether the code

Sat urday, March 1, 1997 11:59: 48 am

X =1.0Y
X =3.0
signals DI VIDE_BY _ZERO i s processor dependent.

A condition must not signal if the signal could arise only during
execution of a process further to those required or pernmitted by the
standard. For exanple, the intrinsic LOGin the statenent

IF (F(X)>0.) Y = LO¥ 2)
must not signal a condition when both F(X) and Z are negative and for the
st at enent

VWHERE(A>0.) A = LOG (A)
negative elenents of A nust not cause signaling. On the other hand, when
X has the value 1.0 and Y has the value 0.0, the expression

X>0.00001 .OR X Y>0.00001
is permtted to cause the signaling of D VIDE BY ZERO

[Note: In general, it is intended that inplenentations be free within
enabl e constructs to use the code notion techniques that they use outside
enabl e constructs.]

I f execution of a RETURN or END statenment causes a condition other than

| NEXACT or UNDERFLOWt o becone undefined (14.7.6), the processor issues

a warning on the unit identified by * in a WRITE statenment and stops.

The message must indicate which conditions are signaling and their val ues.

[Note: | NEXACT and UNDERFLOW rmay signal when there is no serious
probl em]

<<8.1.5.1. The enabl e construct>>

The ENABLE construct specifies a (possibly enpty) set of conditions, an
enabl e bl ock, and (optionally) a handle block with (optionally) a
further set of conditions. The handle block is executed only if
execution of the enable block |eads to the signaling of one or nore of
the conditi ons.

R835a <enabl e-construct > <<i s>> <enabl e-stnt >
[<enabl e- bl ock>]
[<handl e- st nt >
<handl e- bl ock>]
<end- enabl e- st nmt >

R835b <enabl e- st nt > <<i s>> [<enabl e-construct - nane>: | #
ENABLE [(<main-condition-list>)]
[,-(<m nus-condition-list>)]

[, 1 MVEDI ATE (<i mredi ate-condition-list>)]
R835c <enabl e- bl ock> <<i s>> <bl ock>

R835d <handl e- st nt > <<i s>> HANDLE [(<handl ed-condition-list>)] #
[<enabl e- construct - nanme>]

R835e <handl e- bl ock> <<i s>> <bl ock>

R835f <end-enabl e-stm > <<is>> END ENABLE [<enabl e- construct - nane>]

Constraint: If the <enable-stnt> of an <enable-construct> is identified
by an <enabl e-construct-nanme>, the correspondi ng

<end- enabl e-stmt > nust specify the same
<enabl e-construct-nane>. |f the <enabl e-stnt> of an

Sat urday, March 1, 1997 11:59: 48 am

<enabl e-construct> is not identified by an

<enabl e-construct - nane>, the correspondi ng

<end- enabl e- st mt > nust not specify an

<enabl e-construct-name>. |If the <handle-stnm> is identified
by an <enabl e-construct-name>, the correspondi ng

<enabl e-stnt > nmust specify the sane

<enabl e- const ruct - nanme>.

Constrai nt: Each <mai n-conditi on> <m nus-condition, and <handl ed-conditi on>
nmust be a condition vari abl e.

Constraint: A condition nust not appear nore than once in an
<enabl e- st nt >.

Constraint: A condition nust not appear nore than once in a
<handl e- st nt >.

Constraint: An <enabl e-construct> nmust not appear in a scoping unit
unl ess the scoping unit has access to the nmodul e CONDI TI ONS

The conditions listed in the <main-condition-list> are <<enabl ed>>
during execution of the enable block. If the enable construct is nested
within an enabl e bl ock, the conditions enabled in the outer block
except those listed in the <minus-condition-list> are al so enabl ed

in the inner block. |If there is a handle-block, the conditions |isted
in the <main-condition-list> and the <handl ed-condition-1ist>

are <<handl ed>> in the enable construct. A condition is also handl ed
in an enable construct if it is handled in a construct within which it
is nested. A handl e-bl ock handl es only those conditions listed in the
<mai n-condition-list> and the <handl ed-condition-list> of its
construct.

The intrinsic condition I NSUFFI Cl ENT_STORAGE is inplicitly enabl ed

t hroughout any scoping unit, including the specification part, within
which it is accessible and the presence of its name on an enable
statenment or a handl e statenent controls only its handling.

An <enabl e-stnt > may be a branch target statenent (8.2).

[Note: Neither a handle statement nor an end-enable statenment is permtted
to be a branch target. A handle-block is intended for execution only
followi ng the signaling of a condition that it handl es, and an end-enabl e
statement is not a sensible target because it would permit skipping the
handl i ng of a condition.]

[Note: Nesting of enable constructs is permitted. An enable or handle

bl ock may itself contain an enable construct. Also, nesting with other
constructs is pernitted, subject to the usual rules for proper nesting of
constructs.]

Execution of an enable statenment causes a transfer of control if a
signaling condition is enabled or handled or is about to be enabled or
handl ed. If the enable statenent is nested in an enable bl ock that has
a handl er for such a signaling condition, the transfer is to the
handl er of the innernost such enable block. Oherwise, it is as for a
return if in a subprogram or a stop if in a main program

[Note: On return to the caller, the condition will be signaling. |If
the invocation is within an enable block in which the condition is
enabl ed or handled, there will be a transfer to the handler (or a

Sat urday, March 1, 1997 11:59: 48 am

return or stop), but not necessarily until the execution of the block
is conplete. Oherw se, the processor continues nornmal execution.]

[Note: In an enable bl ock, the pair of statenents

ENABLE

END ENABLE
has a checking effect. |f any enabled or handl ed condition is
signaling, there will be a transfer of control to a handler (or

a stop or return).]

[Note: In a function subprogramit is very desirable to ensure that the
function value is defined even if an error condition has been di agnosed

and is expected to be handled in the calling subprogram |[If the
function value is not defined, further conditions will probably be
signal ed during the evaluation of the expression that gave rise to the
function call, which may mask the condition that was the root cause.]

[Note: If a condition handl ed by a handl er signals again during execution

of the handler, this second signal will be indistinguishable fromthe first.
If it is desired to handle it separately, it must be set to the quiet val ue
and a nested enabl e nust be provided.]

The val ue of each condition handled by a handle block is set to the
qui et val ue upon normal conpletion of execution of the block

<<8.1.5.2 Execution of an enabl e construct>>

Execution of an <enabl e-construct> begins with the first executable
construct of the <enabl e-bl ock>, and continues to the end of the bl ock
unl ess a condition enabled or handl ed in the <enabl e-construct>
signals. The <<uncertai nty-scope>> of an enabl e bl ock consists of the
statenments of the block that |ie outside any enable construct that is
nested within the enable block. If a condition handled in the

<enabl e-construct> signals in its uncertainty scope, there is a
transfer of control to a handler (or a return or stop). This transfer
of control may take place on conpletion of execution of the enable

bl ock or may take place sooner after the signaling of the condition
Any variable that m ght be defined or redefined by execution of a
statement of the uncertainty scope or of a procedure invoked in such a
statement is undefined, any pointer whose pointer association mght be
al tered has undefined pointer association status, any allocatable array
that m ght be allocated or deallocated may have been all ocated or
becone unall ocated, and the file position of any file specified in an
i nput/out put statenment that m ght be executed is processor dependent.

[Note: The transfer of control is inprecise in order to allow for
optim zations such as vectorization. As a consequence, some vari abl es
becone undefined. |In Exanple 3 of 8.1.5.5, a copy of the matrix itself
woul d need to be available for the slow algorithm]

Branchi ng out of an enable construct is not pernmitted. A CYCLE or EXIT
statement is not permitted in an enable construct unless the do
construct to which it belongs is nested within the enable construct.

An alternate return specifier in an enable construct nust not specify
the | abel of a statement outside the construct. An ERR=, END=, or ECR=
specifier in a statenment in an enabl e construct nust not be the | abe

of a statenent outside the construct. A RETURN or STOP statenent is
permitted in an enabl e construct.

[Note: The ban on branching out of an enable construct linmts the extent

Sat urday, March 1, 1997 11:59: 48 am

of uncertainty over which statenments have been executed when a handler is
entered.]

Any <execut abl e-construct> of the enable block that m ght signal one or
nore of the conditions in the | MVEDI ATE |ist on the enable statenent is
treated as if it were both preceded and foll owed by an

<enabl e-construct> with an enpty enabl e block and no handler. In this
context, an IF statenment is treated as an <if-construct> containing a
single <action-stnt> a WHERE statenent is treated as if preceded by an
<assi gnment-stmt > that assigns the <mask-expr> to a tenporary array,
and a <where-construct> is treated as such an assignment followed by a
sequence of where statements involving the tenporary array.

Executi on of a <handl e-bl ock> conpl etes the execution of its
<enabl e- const ruct >.

If no condition enabled or handled in the enable construct is signaling
on conpl etion of execution of the <enabl e-bl ock>, the execution of the
entire construct is conplete.

[Note: Nested enabl e constructs w thout handlers can be enployed to
reduce the inprecision of an interrupt. Note that enable, handle, and
end- enabl e statenments provide effective barriers to code mgration by
an optimzing conpiler.]

<<8.1.5.3 Signaling conditions that are not enabl ed>>

A condition may signal during the execution of a statement for which it
is not enabled. This causes no i Mmediate transfer of control, but may
cause a transfer on |later execution of an ENABLE or RESI GNAL

st at enent .

<<8.1.5.4 Signal and resignal statenents>>
R835g <signal -stnt> <<is>> SIGNAL (<condition-variabl e>, [<int-expr>])

Constrai nt: The <condition-vari abl e> nust be a vari able of derived
type CONDI Tl ON

Constraint: The <int-expr> nust be of type default integer and be
scal ar or have the sanme shape as the condition

The SI GNAL st atenent changes the value of the condition it nanes to

that of the expression it contains or to the default value -1 if the
expression is not present. The value shall be nonzero. Execution causes
a transfer of control. |If the statenent is in an enable block of an
enabl e construct that has a handler for a condition given a signaling
val ue, the transfer is to the handler of the innernost such enable
construct. Oherwise, it is as for areturnif in a subprogram or a
stop if in a main program

R835h <resignal -stnt> <<i s>> RES|I GNAL
Constraint: A <resignal-stnm> nust lie within a <handl e-bl ock>

The RESI GNAL statement causes a transfer of control w thout changing
the value of any condition. If the statenment is in an enable bl ock of
an enabl e construct that has a handler for a signaling condition, the
transfer is to the handler of the innernost such enable construct.

O herwise, it is as for a return if in a subprogram or a stop if in a

Sat urday, March 1, 1997 11:59: 48 am

mai n program
<<8.1.5.5 Exanpl es of ENABLE construct s>>
Exanpl e 1:

MODULE MATRI X
! Module for matrix multiplication of real arrays of rank 2.
USE CONDI Tl ONS
TYPE (CONDI TI ON) MATRI X_ERROR
| NTERFACE OPERATOR(. mul .)
MODULE PROCEDURE MULT
END | NTERFACE
CONTAI NS
FUNCTI ON MULT(A, B)
REAL, INTENT(IN) :: A(:,:),B(:,:)
REAL MULT(SI ZE(A, 1), SI ZE(B, 2))
ENABLE (I NTRI NSI C, OVERFLOW
MULT = MATMUL(A, B)
HANDLE
S| GNAL(MATRI X_ERROR)
END ENABLE
END FUNCTI ON MULT
END MODULE MATRI X

This nmodul e provides matrix multiplication for real arrays of rank 2.
Since the condition | NSUFFI Cl ENT_STORAGE i s al ways enabl ed when
accessible, if there is insufficient storage for the necessary

tenporary array, the nodule procedure will signal the condition
I NSUFFI Cl ENT_STORACGE. |If an INTRINSIC or OVERFLOW condi ti on occurs, the
modul e procedure will signal it together with the condition

MATRI X ERROR wi th val ue - 1.

Exanpl e 2:

USE CONDI TI ONS
| O CHECK: ENABLE (1O _ERROR, END OF FI LE)

READ (*, '(15)') |
READ (*, '(15)', END = 90) J

90 J=0
HANDLE
IF (END_OF_FILE/=0) WRITE (*, *) 'Unexpected &
&END- OF- FI LE when reading the real data for a finite el enent’
IF (1O ERROR /= QU ET) WRITE (*, *) &
"I/O error when reading the real data for a finite el enent’
STOP
END ENABLE | O CHECK

In this exanmple, if an input/output error occurs in either of the READ
statements or if an end-of-file is encountered in the first READ statenent,
the appropriate condition will be signaled and the handler will receive
control, print a nessage, and term nate the program However, if an
end-of-file is encountered in the second READ statenent, no condition will be
signaled and control will be transferred to the statenent indicated in the
END= specifier.

Sat urday, March 1, 1997 11:59: 48 am

Exanpl e 3:

USE CONDI Tl ONS
ENABLE (USUAL)
! First try the "fast" algorithmfor inverting a matrix:
MATRI X1 = FAST_I NV (MATRI X)
! MATRI X is not altered during execution of FAST_INV
HANDLE
I "Fast" algorithmfailed; try "slow' one:
USUAL = QU ET
ENABLE (USUAL)
MATRI X1 = SLOW.I NV (MATRI X)
HANDLE
WRITE (*, *) 'Cannot invert matrix
STOP
END ENABLE
END ENABLE

In this exanple, the function FAST_INV nmay cause a condition to signal. If it
does, another try is made with SLONINV. |If this still fails, a nmessage is
printed and the program stops. Note the use of nested enabl e constructs.
Note, also, that it is inportant to set the signals to 'quiet' before the
inner enable. If this is not done, a condition will still be signaling when
the inner ENABLE is encountered, which will cause an immedi ate transfer to an
outer handler (or a stop or return).

Exanpl e 4:

USE CONDI Tl ONS
ENABLE (OVERFLOW
' First try a fast algorithmfor inverting a matrix.
: I Code that cannot signal overfl ow
DO K =1, N
ENABLE

END ENABLE
END DO
ENABLE

END ENABLE
HANDLE
I Alternative code which knows that K-1 steps have executed nornally.

END ENABLE

Here the code for matrix inversion is in line and the transfer is made nore
preci se by adding to the enabl e bl ock two enabl e constructs wi thout handl ers.

Exanpl e 5:
The follow ng subroutine finds a zero of <f(x)> on an interval [<a,b>]. It is
limted to take one second of real time as nmeasured by the systemclock. |If

it fails to obtain the requested accuracy after this time, the condition
SOLVER_ERROR signals with the value -1

SUBROUTI NE ZERO SCLVER (A, B, X, TOLERANCE, F, SCOLVER_ERROR)
USE CONDI TI ONS
TYPE(CONDI TI ON) SOLVER_ERROR

Sat urday, March 1, 1997 11:59: 48 am

REAL A, B, X, TOLERANCE
| NTERFACE; REAL FUNCTION F(X); REAL X; END | NTERFACE

| NTEGER COUNT, RATE, START ! Local vari abl es
CALL SYSTEM CLOCK(START, RATE)

! The followi ng code is executed every iteration
CALL SYSTEM CLOCK(COUNT)

' If time has run out, return, signaling condition SYSTEM ERROR
| F (COUNT > START+RATE) SI GNAL (SOLVER _ERROR, -1)

END SUBROUTI NE ZERO_SOLVER

The application code handl es the exception in a way that only it knows. An
exanple is:

ENABLE
CALL ZERO SOLVER (A, B, X, TOLERANCE, F, SOLVER ERROR)
HANDLE (SOLVER_ERROR)

! Exceeded tine Iimt. Fix up and go on.

END ENABLE

Exanpl e 6:

REAL FUNCTI ON HYPOT(X, Y)
USE CONDI Tl ONS
REAL X, Y
REAL SCALED X, SCALED Y, SCALED RESULT
I NTRI NSI C SQRT, ABS, EXPONENT, MAX, DIG TS, SCALE
qui ck: ENABLE(OVERFLOW UNDERFLOW ! try a fast algorithmfirst
HYPOT = SQRT(X**2 + Y**2)
HANDLE qui ck
IF (X==0.0 .OR Y==0.0) THEN
HYPOT = ABS(X) + ABS(Y)
ELSE I F (2* ABS(EXPONENT(X) - EXPONENT(Y)) > DIG TS(X)+1) THEN
HYPOT = MAX(ABS(X), ABS(Y))! one of X and Y can be ignored
ELSE ! scale so that ABS(X) is near 1
SCALED X = SCALE(X, -EXPONENT(X))
SCALED Y = SCALE(Y, -EXPONENT(X))
SCALED RESULT = SQRT(SCALED X**2 + SCALED Y**2)
OVERFLOW = QUI ET; UNDERFLOW = QUI ET
ENABLE(OVERFLOW | possibility of overflow in unscaling result
HYPOT = SCALE(SCALED RESULT, EXPONENT(X))
SI GNAL(OVERFLOW ! if overfl ow does occur here, it is
END ENABLE ! signaled to the caller
END | F
END ENABLE qui ck
END FUNCTI ON HYPOT

This illustrates the setting of a special condition value when the problem
really has a result that overflows. It also illustrates use of the constant

QUI ET.

Sat urday, March 1, 1997 11:59: 48 am

Exampl e 7:

MODULE LI BRARY
USE CONDI TI ONS

CONTAI NS
SUBRQOUTI NE B

X =Y*Z(l) ! Neither OVERFLON nor BOUND ERROR i s enabl ed.
| F(X>10.) SI GNAL(OVERFLOW 1)

END SUBROUTI NE B
END MODULE LI BRARY

SUBROUTI NE A
USE LI BRARY
ENABLE
CALL B
HANDLE (OVERFLOW

END ENABLE
END SUBROUTI NE A

This illustrates the use of a library nmodule that may signal the condition
OVERFLOW The signal statenent causes a transfer to the handler in the
cal ling subroutine A

This also illustrates the effect of an intrinsic condition that is not
enabled. An overflowin Y*Z(l) may cause OVERFLOWto signal and hence a
transfer to the handler in the calling subroutine A. An out-of-range
subscript value | might or mght not signal BOUND ERROR, but it would not be
handl ed by subroutine A

Exanpl e 8:

USE CONDI Tl ONS
ENABLE, | MVEDI ATE (OVERFLOW
A= B*C
VHERE(RAI NI NG)
X(:) = X(:)*A

EL SEWHERE
Y(:) = Y(:)*A
END WHERE
HANDLE
END ENABLE
This illustrates the use of | MVEDI ATE. The enabl e construct is equivalent to

ENABLE (OVERFLOW
A = BC
ENABLE; END ENABLE
WHERE(RAINING) X(:) = X(:)*A
ENABLE; END ENABLE
WHERE(. NOT. RAINING) Y(:) = Y(:)*A
ENABLE; END ENABLE

HANDLE

END ENABLE

Sat urday, March 1, 1997 11:59: 48 am

Exanpl e 9:

SUBROUTI NE LONG
USE CONDI Tl ONS
REAL, ALLOCATABLE :: A(:), B(:,:)
I Other specifications
ENABLE

! Lots of code, including nany procedure calls

HANDLE (ALL_CONDI TI ONS)
! Fix-up, including deallocation of any allocated arrays
| F(ALLOCATED(A)) DEALLOCATE (A)
| F(ALLOCATED(B)) DEALLOCATE (B)

END ENABLE
END SUBROUTI NE LONG

This illustrates the use of a handle statenent with additional conditions.
Here the enabl e bl ock enabl es no conditions because fast execution is desired,
but if anything goes wong (for exanple, in one of the procedures invoked),
fix-ups are performed, including deallocation of any | ocal allocated arrays.

129/ 7. After '<end-do-stnt,> add 'an <enable-stnt>,"'.

130/11. Add: 'If any condition is signaling, the processor must issue a
warning on the unit identified by * in a WRITE statenent, indicating
whi ch conditions are signaling and their val ues.'.

145/ 2-3. Repl ace sentence by
If an error condition (9.4.3) occurs during execution of an input/output
statenment that contains an ERR= specifier or lies in an enable block for
the I O ERROR condition:

145/ 10. After 'specifier' add ', or with the handler (or a return or stop)
when there is no ERR= specifier'.

145/ 12-13. Repl ace sentence by
If an end-of-file condition (9.4.3) occurs and no error condition (9.4.3)
occurs during execution of an input/output statenent that contains an
END= specifier or lies in an enable block for the END OF FILE condition:

145/19. After 'specifier' add ', or with the handler (or a return or
stop) when there is no END= specifier'

145/ 21-22. Repl ace sentence by
If an end-of-record condition (9.4.3) occurs and no error condition
(9.4.3) occurs during condition of an input/output statenent that
contains an EOR= specifier or lies in an enable block for the
END OF RECORD condition:

145/ 32. After 'specifier' add ', or with the handler (or a return or stop) when

Sat urday, March 1, 1997 11:59: 48 am

there is no EOR= specifier'

148/ 20. Before 'contains' add 'is not in a enable block for the | O ERROR
condition and

148/ 21. Before 'contains' add 'is not in a enable block for the END OF FILE
condition and

148/ 23. Before 'contains' add 'is not in a enable block for the END O RECORD
condition and

211/ 4. After 'for' add 'conditions (15) or for'.

288+. Add
<<15. CONDI TI ONS>>

In this section, the intrinsic nodule CONDI TIONS and the intrinsic
conditions supported by the standard are specified. The nodule is

MODULE CONDI Tl ONS
TYPE CONDI TI ON
SEQUENCE
PRI VATE
I NTEGER VALUE = 0 ! Al conditions are initially quiet.
END TYPE CONDI TI ON

TYPE(CONDI TI ON), PARAMETER :: QUIET = CONDI TION(O), &
DEFAULT_SI GNALI NG = CONDI Tl ON(- 1)

TYPE(CONDI TI ON) STORAGE(3)

TYPE(CONDI TI ON) ALLOCATI ON_ERROR, DEALLOCATI ON_ERROR, | NSUFFI Cl ENT_STORAGE
EQUI VALENCE (STORAGE(1), ALLOCATI ON_ERROR)
EQUI VALENCE (STORAGE(2), DEALLOCATI ON_ERROR)
EQUI VALENCE (STORAGE(3), | NSUFFI Cl ENT_STORAGE)

TYPE(CONDI TION) 1 Q(3)

TYPE(CONDI TION) | O ERROR, END_OF FILE, END_OF RECORD
EQUI VALENCE (1 (1), |0 _ERROR)
EQUI VALENCE (1 Q(2), END OF FILE)
EQUI VALENCE (1 Q(3), END_OF RECORD)

TYPE(CONDI TI ON) FLOATI NG(3)

TYPE(CONDI TI ON) OVERFLOW | NVALI D, Di VI DE_BY_ZERO
EQUI VALENCE (FLOATI NG(1), OVERFLOW
EQUI VALENCE (FLOATI NG(2), | NVALI D)
EQUI VALENCE (FLOATI NG(3), DI VI DE_BY_ZERO)

TYPE(CONDI TI ON) | NTEGER(2)

TYPE(CONDI TI ON) | NTEGER_OVERFLOW | NTEGER DI VI DE_BY_ZERO
EQUI VALENCE (I NTEGER(1), | NTEGER OVERFLOW
EQUI VALENCE (I NTEGER(2), | NTEGER DI VI DE_BY_ZERO)

TYPE(CONDI TI ON) USUAL(10)
TYPE(CONDI TI ON) | NTRI NSI C

Sat urday, March 1, 1997 11:59: 48 am

EQUI VALENCE (USUAL(1), STORAGE(1))
EQUI VALENCE (USUAL(4), 10(1))

EQUI VALENCE (USUAL(7), FLOATING 1))
EQUI VALENCE (USUAL(10), | NTRINSIC)

TYPE(CONDI TI ON) ALL_CONDI TI ONS(20)

TYPE(CONDI TI ON) BOUND_ERROR, SHAPE, MANY_ONE, NOT_PRESENT, UNDEFI NED

TYPE(CONDI TI ON) UNDERFLOW | NEXACT

TYPE(CONDI TI ON) SYSTEM ERROR
EQUI VALENCE (ALL_CONDI TI ONS(1), USUAL(1))
EQUI VALENCE (ALL_CONDI TI ONS(11), BOUND_ERROR)
EQUI VALENCE (ALL_CONDI TI ONS(12), SHAPE)
EQUI VALENCE (ALL_CONDI TI ONS(13), MANY_ONE)
EQUI VALENCE (ALL_CONDI TI ONS(14), NOT_PRESENT)
EQUI VALENCE (ALL_CONDI TI ONS(15), UNDEFI NED)
EQUI VALENCE (ALL_CONDI TI ONS(16), UNDERFLOW
EQUI VALENCE (ALL_CONDI TI ONS(17), | NEXACT)
EQUI VALENCE (ALL_CONDI TI ONS(18), SYSTEM ERROR)
EQUI VALENCE (ALL_CONDI TI ONS(19), | NTEGER(1))

| NTERFACE OPERATOR (==

MODULE PRCCEDURE EQ CI, EQ_IC
END | NTERFACE
PRI VATE EQ C, EQIC

| NTERFACE OPERATOR (/ =)

MODULE PROCEDURE NE_Cl, NE_IC
END | NTERFACE
PRI VATE NE_Cl, NE_IC

| NTERFACE ASSI GNMENT (=)

MODULE PROCEDURE ASSI GN_ClI, ASSIG_IC
END | NTERFACE
PRI VATE ASSI GN_CI, ASSIGN IC

CONTAI NS

LOG CAL ELEMENTAL FUNCTI ON EQ CI (C, 1)
TYPE(CONDI TION), INTENT(IN) :: C
I NTEGER, INTENT(IN) :: |
EQ C = CWALUE==
END FUNCTI ON EQ Cl

LOG CAL ELEMENTAL FUNCTI ON EQ | C(1, Q)

I NTEGER, INTENT(IN) :: |

TYPE(CONDI TION), INTENT(IN) :: C
EQ | C = CWALUE==

END FUNCTI ON EQ | C

LOG CAL ELEMENTAL FUNCTI ON NE_CI (C, 1)
TYPE(CONDI TION), INTENT(IN) :: C
I NTEGER, INTENT(IN) :: |
NE C = CWALUE =|
END FUNCTI ON NE_Cl

LOG CAL ELEMENTAL FUNCTI ON NE_I C(1, ©)

I NTEGER, INTENT(IN) :: |

TYPE(CONDI TION), INTENT(IN) :: C
NE_| C = CWALUE/ =|

END FUNCTI ON NE_| C

Sat urday, March 1, 1997 11:59: 48 am

ELEMENTAL SUBROUTI NE ASSI GN CI (G, 1)
TYPE(CONDI TION), | NTENT(QUT) :: C
I NTEGER, INTENT(IN) :: |

CW/ALUE = |
END SUBROUTI NE ASSI GN_Cl

ELEMENTAL SUBROUTI NE ASSI GN_| (1, C)
I NTEGER, | NTENT(OUT) :: |
TYPE(CONDI TION), INTENT(IN) :: C

| = CWALUE
END SUBROUTI NE ASSI GN | C

END MODULE CONDI Tl ONS

<<15.1 Storage and addressing conditions>>

ALLOCATI ON_ERROR

This occurs when the processor is unable to performan allocation requested by
an ALLOCATE statenent (6.3.1) containing no STAT= specifier. It is not
signal ed by an ALLOCATE statenent containing a STAT= specifier. The signaling
val ues are the sane as the STAT val ues.

DEALLCOCATI ON_ERROR

This occurs when the processor detects an error when executing a DEALLOCATE
statement (6.3.1) containing no STAT= specifier. It is not signaled when
executing a DEALLOCATE st at enment containing a STAT= specifier. The signaling
val ues are the sane as the STAT val ues.

| NSUFFI CI ENT_STORAGE

This indicates that the processor is unable to find sufficient storage
to continue execution. It may occur prior to the execution of the
first executable statenment of a nmain programor procedure and it may
occur during the execution of an executable statement. 1t need not
signal if ALLOCATI ON ERROR signals. It is always enabl ed when
accessible. Insufficient storage occurring prior to execution of the
first executable statement of a procedure may cause SYSTEM ERROR to

si gnal .

BOUND_ERROR

This occurs when an array subscript, array section subscript, or substring
range violates its bounds. This does not include violations of the
requirenents derived fromthe size of an assuned-size array.

SHAPE
This occurs when an array operation or assignnent does not conformin shape.

MANY_ONE
This occurs when a nmany-one array section (6.2.2.3.2) appears on the left of
the equal s in an assignnment statement or as an input itemin a READ statenent.

NOT_PRESENT
This occurs when a dummy argunent that is not present is accessed as if it
were present; that is, when one of the restrictions of 12.5.2.8 is violated.

UNDEFI NED
This occurs when a value that is required for an operation is detected by the
processor to be undefi ned.

Sat urday, March 1, 1997 11:59: 48 am

[Note: This wording is intended to allow the processor to be as thorough
as it chooses with respect to the detection of undefined val ues.]

<<15. 2 I nput/out put conditions>>

| O_ERROR
This occurs when an input/output error (9.4.3) is encountered in an
i nput/out put statenment containing no | OSTAT= or ERR= specifier. It is not

si gnal ed when executing an input/output statenment containing an | OSTAT= or
ERR= specifier. The signaling values are the sane as the | OSTAT val ues.

END _OF_FI LE
This occurs when an end-of-file condition (9.4.3) is encountered in an input
statement containing no | OSTAT= or END= specifier. It is not signaled when

executing an input statenment containing an | OSTAT= or END= specifier.

END_OF_RECORD

This occurs when an end-of-record condition (9.4.3) is encountered in an input
statenment containing no | OSTAT= or EOR= specifier. It is not signaled when
executing an input statenment containing an | OSTAT= or ECR= specifier.

<<15. 3 Fl oati ng-poi nt conditi ons>>

OVERFLOW

This condition occurs when the result for an intrinsic real operation
has a very |l arge processor-dependent absolute value, or the real or

i magi nary part of the result for an intrinsic conplex operation has a
very | arge processor-dependent absol ute val ue.

UNDERFLOW

This condition occurs when the result for an intrinsic real operation
has a very small processor-dependent absolute value, or the real or

i magi nary part of the result for an intrinsic conplex operation has a
very small processor-dependent absolute value. A processor

that does not conformto | EEE 754-1985 is not required to detect this
condition in an intrinsic operation or procedure.

Dl VI DE_BY_ZERO
This condition occurs when a real or conplex division has a nonzero nunerator
and a zero denoni nator.

| NEXACT

This condition occurs when the result of a real or conplex operation is not
exact. A processor that does not conformto | EEE 754-1985 is not

required to detect this condition in an intrinsic operation or

pr ocedur e.

| NVALI D

This condition occurs when a real or conplex operation is invalid. A
processor that does not conformto | EEE 754-1985 is not required to
detect this condition in an intrinsic operation or procedure.

[Note: It is expected that by default the conditions UNDERFLOW and | NEXACT
wi Il not signal except when enabl ed.]

<<15.4 Integer conditions>>
| NTEGER_OVERFLOW

This condition occurs when the result for an intrinsic integer operation has a
very | arge processor-dependent absol ute val ue.

Sat urday, March 1, 1997 11:59: 48 am

| NTEGER_DI VI DE_BY_ZERO
This condition occurs when an integer division has a zero denomi nator.

<<15.5 Intrinsic procedure condition>>

| NTRI NSI C
This condition indicates that an intrinsic procedure or operation has been
unsuccessful. An unsuccessful intrinsic procedure may signal other conditions

instead of INTRINSIC. If an intrinsic procedure is an actual argunent
in a procedure call within an enable block for the INTRINSIC condition
the condition nust signal if the procedure is invoked through the
argunent associ ati on.

[Note: If an exceptional event occurs during the execution of an
intrinsic procedure, the associated condition should not be signaling
on return if the event is known to be harmess to the results of the
procedure.]

<<15.6 Systemerror conditions>>

SYSTEM _ERROR
This condition occurs as a result of a systemerror.

<<15.7 Array-val ued conditions>>
The array-val ued conditions and the equival ences of their elenents to

the scalar conditions allow lists of conditions to be specified
conveniently on a use, enable, handle, or signal statenent.

6. | DEAS CONCERNI NG DESI RABLE MODI FI CATI ONS OF THE CURRENT ENABLE TR

(by Christian Wber, 2.2.1997)

1.) Establish a USE EXCEPTI ONS: any new keyword is intrduced only in a
scoping unit which USE's this nodule (to prevent keyword pollution).

2.) Establish the syntax:

ENABLE [(condition-nane-1,-2,...)]
Fortran code

[HANDLE [(condition-nanme-a,-b....)]
handl i ng code]

END ENABLE

with simlar syntax / semantics as in the current draft TR, but
the foll ow ng changes:

(1) it should be made clear that the ENABLE block - with or wthout
condition-list - is there primarily to designate a piece of code for
exception control

(2) it should be made clear (the current text is a bit hard to
understand in this) that the set of conditions in ENABLE has *not hi ng*
to do with the set in HANDLE

Sat urday, March 1, 1997 11:59: 48 am

- the set in ENABLE sinply specifies the mnimmset of conditions which
must be detected by the processor; the processor may - however - be
able to detect far nore than the conditions specified. | would be in
favor to demand that certain exceptions (STORAGE, IEEE if halting is
active, | NTEGER DI VIDE, exceptions explicitly raised by SIGNAL) are

al ways "enabl ed". (The nane "ENABLE" sonmewhat blurs that the real purpose
of this statenment is to designate exception control: the stating of some
m ni mum exception set is only an additional purpose).

- the set in HANDLE denotes the conditions which the handl er block wants
to handl e,

- | woul d decouple both sets entirely to enhance the clarity of the
concept,

- an enpty condition list in ENABLE neans that no additional conditions
(than are "enabled" all the tine anyway) are enabl ed.

3.) Establish the follow ng condition nanes:

FLOAT_OVERFLOW (may be changed to the | EEE-name if people w sh),
FLOAT_DI VI DE_BY_ZERO, FLQOAT_I| NVALI D, | NTEGER OVERFLOW

| NTEGER_DI VI DE_BY_ZERO, | NTRINSI C, | NSUFFI Cl ENT_STORAGE, SYSTEM ERROR
per haps (debat abl e): UNDEFINED (since this is the only debuggi ng
exception which cannot be replaced by explicit Fortran code), and
USER ERROR (to have one exception which is *never* signalled by the
system and which may be used for entirely user-specific errors).

These conditi on names may be used:

- in ENABLE / HANDLE
- in a new S| GNAL statenent:
SIGNAL (condition),
- inanewinquiry intrinsic
SI GNALLI NG (condi tion) => TRUE/ FALSE

I would *not* define a concept for condition values etc.: this can be
left to be processor-specific (since there wasn't much specified
anyway) .

If there is strong objection to a particular exception, let's do the
trick fromthe I EEE TR and introduce the inquiry intrinsic:

- SUPPORT_EXCEPTI ON (debat abl e-condi ti on-nane) => TRUE/ FALSE

If the answer is "false", then the user knows that the correspondi ng
exception may never be detected nor signalled by the processor (the
corrspondi ng ENABLE. .. syntax will always be accepted, though).

I would *not* want to all ow SUPPORT..=false for all exceptions, but at
nost for FLOAT_I NVALI D, | NTEGER OVERFLOW | NTRI NSI C, UNDEFI NED

4.) The rules when a condition is set to quiet / signalling could stay
as present; | would make clear, though, that the transfer of control (to
the handl er, or RETURN STOP) is always *i medi ate*, although the point
where the exception is actually caused and therefore detected nmay be

i ndetermi nate due to optim zations (with the obvious rule that ENABLE
HANDLE, SIGNAL, calls of SIGNALLING and END ENABLE are barriers to
optini zation).

5.) Exception-supportive subprograns:

Sat urday, March 1, 1997 11:59: 48 am

A sinmple USE EXCEPTI ONS wi t hout additional use of ENABLE... stuff causes a
subprogramto becone "exception-supportive" in the foll owing sense:

any exception which is detected within the subprogram (because it's

al ways enabled) or within a routine called fromthe subprogramw || be
transferred to the nearest appropriate exception handler further up the
call chain, or will cause a programhalt with error nmessage if

- no such handl er exists, or
- the caller is not "exception-supportive".

A USE EXCEPTIONS is therefore equivalent to a ENABLE / END ENABLE ar ound
t he whol e code body.

That's it, essentially.

