Conditional Compilation Development Body
Fortran-like CoCo Scribe Notes

ISO/IEC JTC1/SC22/WG5 - N1266
X3J3/97-137r1

February 13, 1997
Page 1 of 2

Fortran-like CoCo Scribe Notes

Following are scribe notes from the technical portion of the discussion on the Fortran-like
Conditional Compilation (CoCo) facility. This discussion was held in the Courtyard Room at the
Sunrise Suites Hotel, 4575 Boulder Highway, Las Vegas, NV from 8:00 p.m. until 9:35 p.m. on
Wednesday, February 12, 1997.

References:
Michael Hennecke

Richard Bleikamp

Kurt Hirchert

Walt Brainerd

John Cuthbertson

Keith Bierman

Craig Dedo

Wolfgang Walter

Craig Dedo

Question

Kurt Hirchert

Tony Warnock

Michael Hennecke

X3J3/97-111, Part 3, Conditional Compilation

Would it be acceptable for a Fortran-like CoCo to have macro expansion?

A Fortran-like CoCo needs to have a simplistic, portable macro expansion
capability, at least one tenth as powerful as what is in cpp.

We need to have CoCo interpolate values into output lines. The Fortran-
like CoCo has a very powerful computational capability but we can't use it
in anything. We need to plug computed values into generated source code
and it is desirable to flag the lines of the input code where the interpolated
values are used.

CoCo should have the capability to get information off of the command line
and out of environmental variables. It does not have CHARACTER
variables right now. It should have CHARACTER variables.

Macro expansion is like statement functions. 1 find it strange that we want
to include a feature which is equivalent to a feature which is obsolescent.

Formerly, the straw votes indicated that we did not want macro expansion.
A while back, we went through some code from ISVs which were significant
commercial applications. We found out that almost all of this code was
based on the full capabilities of the cpp macro facility.

I would like the Fortran-like CoCo to have the Fortran PRINT and STOP
statements instead of the current ERROR statement.

Why did David use an ERROR statement instead of the Fortran PRINT and
STOP statements?

David wanted the absolute minimalist approach.

What does a macro expansion or interpolation capability give you that
symbolic constants do not?

This capability allows you to change the names of procedures in the source
code.

I want the absolute minimum tool that is necessary to get the job done. We
can always expand it later. We should put stuff into this version of CoCo
knowing that it is going to be added to. We should make it a really simple
facility that can get the job done.

I would use many different macro expansion capabilities beyond the simple
INTEGER and LOGICAL variables which are supported right now. This



ISO/IEC JTC1/SC22/WG5 - N1266
X3J3/97-137r1

Conditional Compilation Development Body February 13, 1997
Fortran-like CoCo Scribe Notes Page 2 of 2

should not be simple text replacement. Many complex codes use arbitrary
text.

Kurt Hirchert We considered a proposed requirement on TYPE aliasing. A CoCo
interpolation or macro expansion capability could be used to achieve TYPE
aliasing in a different way.

Reva Sacks While I like full macro expansion, judging by the help desk inquiries, our
customers are not using full macro expansion very much. From looking at
Larry Rolison's paper, | am impressed by how hard full macro expansion is.
I am very worried about the time delay in getting CoCo out if we include
full macro expansion.

Straw Vote Do we want macro expansion at all in a Fortran-like CoCo?
10 Yes 4 No 7 Undecided

Straw Vote Assuming a Fortran-like CoCo has some level of macro expansion capability, what
level of macro expansion do you want?

1 Full
9 Limited
8 Minimal
5 Undecided
Tony Warnock There are lots of reasons to want a CHARACTER data type. Right now, |

have a program which reads a parameter file and writes into a file. If | had
a CHARACTER data type in a pre-processor, | could have the pre-processor
read the parameter file and insert the CHARACTER data directly into the
source file. There are reasons why this is useful. For example, there are
different names for system calls on a PC than on a Sun. On different
systems, | use different names for scratch files.

Michael Hennecke With the way that CoCo is defined right now, we need to document the
meaning of INTEGER variables in comments. When a processor has
trouble with a variable, the programmer has trouble detecting its meaning.
The current examples of the use of INTEGER variables are very clumsy. |
do not want to have to use numbers to identify the different machines that
I am compiling for.

Walt Brainerd You could use various LOGICAL variables to specify the target platforms.

Michael Hennecke I am troubled by the definition of the scope of the CoCo variables. Right
now, the CoCo document defines the scope to be the program. This
contrasts with cpp defining the scope to be the source file. The current
CoCo definition could have some serious undesirable interactions.

Straw Vote: Do you want a CHARACTER data type in a Fortran-like CoCo facility?
15 Yes 1 No 7 Undecided



