It is proposed that for polymorphic dummyargument to be a “disambiguator”, its type must
be “completely incompatible” with itsorresponding disambiguator. That the two types
mustnot beextension types that are extendiesn the same original base tyfeotheyare in
different inheritance trees).

This retains static resolution of generic references and avoids complication.

Tagging, or Typed Pointers

Tagging isonly necessary or useftbr entities whose type isot static,i.e. polymorphic

entities. In a traditional OO system, tagging performs two main functions

1. theprovision tothe user of typénformation; that is, a language capabifity checking the
actual type of a polymorphic object (e.g. via an intrinsic function).

2. theprovision tothe runtime system of type information; this can then be used to allow type
checking (of polymorphic assignments).

3. a hook for attaching implementation details that vary according to the type, e.g. the method
table, layout information (used by a garbage collector), etc.

Tagging neeadhot beexpensive; dag needonly bestored foreachset of objects of theame
type. Essentially, this means including the type information in a polymorphic pointer.

Cost/Benefit Summary:

1. polymorphic pointers are larger than non-polymorphic pointers (typically 4 bytes larger).

2. Intrinsic function SAME_TYPE_AS(A,B) becomes possible (and efficient).

Type-wide method tables could be added with no additional cost (per-object method tables are
already possible via the procedure pointer requirement).



This should beead agleclaring that “p” can contain an objectarfy type fromthe “class” of
types extended from “point_2d”. Access to componeiatsp” only provides access to those
in “point_2d".

The possible types of polymorphic variables are as follows:

1. Polymorphic dummwrguments. The actual argument can bangttype derived from the
dummy argument’s class. Access to a polymorphic dummy argument is not more expensive
that access to normal dummy arguments.

2. Polymorphic (local) variables.

3. Polymorphic function results.

4. Polymorphic components.

Access to polymorphic variablesplies reference semantic&.g. consider polymorphic
components - the space requiketies according tthe actual type of the componewntich
varies at runtime - therefotbe space fothis component must be allocated separdtein
the rest of the derived type). Therefore, we require plotmorphic variables have the
POINTER attribute except fodummy arguments. Nte thatFortran’s auto-dereference
property of pointers is ideal for this situation.

e.g. (polymorphic dummy arguments)

REAL FUNCTION ARGUMENT(P)
OBJECT(POINT_2D) P
ARGUMENT = ATAN2(P%Y,P%X)
END FUNCTION
I No need to redefine ARGUMENT for POINT_3D objects
REAL FUNCTION AZIMUTH(P)
OBJECT(POINT_3D) P
AZIMUTH = ATAN2(P%Z,ARGUMENT(P))
END FUNCTION
I' P is polymorphic so it will work with any later
I extension of point_3d, e.g. a point_4d.

e.g. (polymorphic variables)

OBJECT(point_2d),POINTER :: P2
OBJECT(point_3d),POINTER :: P3
TYPE(point_2d), TARGET :: T2
TYPE(point_3d), TARGET :: T3

P2 =>T2; P2 =>T3; P2=>P3 ' All legal
P3=>T2 I'lllegal, T2 not extended from point_3d
P3=>T3 I Legal

P3 =>P2 I Legal provided P2 is NULL() or is

I pointing at a TYPE(point_3d) object or
I something extended therefrom.

Note that athis point, by construction, arrays of “objects’® homogeneous. However, non-
homogeneous array-like collectionare possible usingthe same (slightly clumsy)
circumlocution which allows arrays of pointers.

Generic Resolution and Polymorphic Dummy Arguments



Single Inheritance Model for Fortran 2000 X3J3/97-131
WG5MN1272

This paper discusses the single-inheritance model of 96-149, 96-172 and 97-106.

The goals of the single inheritance model proposed are as follows:

1. as storage-efficient as normal derived types

2. as execution-time efficient as normal derived types

3. as convenient as possible for the user

4. type extension does not require modifying code using the original type

These goals are satisfied by the model in the previous papers. For convenieriteisethe
illustrative syntax of the following example:

TYPE point_2d
REAL x, y

END TYPE

TYPE point_3d, EXTENDS TYPE(point_2d)
REAL z

END TYPE

At this point we can declaneariables of eithetype, and thosgariablesare statically typed -
so thecompiler can allocatéhe correct amount of) storaged resolve generic references at
compile time.

TYPE(point_2d) p2d
TYPE(point_3d) p3d

With component selection possibilities of p3d being
p3d%point_2d, p3d%x, p3d%y and p3d%z
(p3d%point_2d%x andp3d%point_2d%y are possible but redundant).

Sincethe declaration and use wbn-polymorphic entities of extended derived typesxactly
thesame as that of normal derived types, aretjisally efficient, we shouldse the keyword
TYPE for declaring such entities.

Polymorphic Variables

Polymorphic variablesre essentially different téhose of static (determined edmpile-time)
type. They usuallyalso cost more to use (sometimes theyply an extra indirection, and
optimisation opportunitieare often lost); therefore it is proposed ttiegty are differentiated
by being declared with a different keyword, e.qg.

OBJECT((point_2d) p



