
ISO/IEC JTC1/SC22/WG5 – N1274

Information technology – Programming
languages – Fortran

TECHNICAL REPORT FOR FLOATING-POINT EXCEPTION HANDLING IN FORTRAN

It is the intention of ISO/IEC JTC1/SC22/WG5 that the semantics and syntax described in
this Technical Report shall be incorporated in the next revision of ISO/IEC 1539-1:1997
(Fortran) exactly as they are specified here unless experience in the implementation and use
of this feature has identified any errors which need to be corrected, or changes are required
in order to achieve proper integration, in which case every reasonable effort will be made to
minimise the impact of such integration changes on existing commercial implementations.

1 Rationale
Exception handling is required for the development of robust and efficient numerical software. In particular, it
is necessary in order to be able to write portable scientific libraries. In numerical Fortran programming, current
practice is to employ whatever exception handling mechanisms are provided by the system/vendor. This clearly
inhibits the production of fully portable numerical libraries and programs. It is particularly frustrating now that
IEEE arithmetic is so widely used, since built into it are the five conditions: overflow, invalid, divide-by-zero,
underflow, and inexact. Our aim is to provide support for these conditions.

We have taken the opportunity to provide support for other aspects of the IEEE standard through a set of
elemental functions that are applicable only to IEEE data types.

This proposal involves three standard modules:

1. IEEE_EXCEPTIONS contains a derived type, some named constants of this type, and some simple
procedures. They allow the flags to be tested, cleared, set, saved, or restored.

2. IEEE_ARITHMETIC behaves as if it contained a USE statement for all of IEEE_EXCEPTIONS and
provides support for other IEEE features through further derived types, named constants, and simple

17th March 1997 FLOATING-POINT EXCEPTION HANDLING

FLOATING-POINT EXCEPTION HANDLING

procedures.

3. IEEE_FEATURES contains some named constants that permit the user to indicate which IEEE features
are essential in the application. Some processors may execute more slowly when certain features are
requested.

To facilitate maximum performance, each of the proposed functions does very little processing of arguments.
In many cases, a processor may generate only a few inline machine code instructions rather than library calls.

In order to allow for the maximum number of processors to provide the maximum value to users, we do not
require IEEE conformance. A vendor with no IEEE hardware need not provide these modules and any request
by the user for any of them with a USE statement will give a compile-time diagnostic. A vendor whose
hardware does not fully conform with the IEEE standard may be unable to provide certain features. In this case,
a request for such a feature will give a compile-time diagnostic. Another possibility is that not all flags are
supported or that the extent of support varies according to the kind type parameter. The user must utilize an
inquiry function to determine if he or she can count on a specific feature of the IEEE standard.

Note that an implementor should avoid a macro implementation, as IEEE conformance is often controlled by
compiler switches. A processor which offers a switch to turn off a facility should adjust the values returned for
these inquiries. For example, a processor which allows gradual underflow to be turned off (replaced with flush
to zero) should return false for IEEE_SUPPORT_DENORMAL(X) when a source file is processed with that
option on. Naturally it should return true when that option is not in effect.

The most important use of a floating-point exception handling facility is to make possible the development of
2 2much more efficient software than is otherwise possible. The following ‘hypotenuse’ function, x + y ,

illustrates the use of the facility in developing efficient software.

REAL FUNCTION HYPOT(X, Y)
! In rare circumstances this may lead to the signaling of IEEE_OVERFLOW
 USE, INTRINSIC :: IEEE_ARITHMETIC
 REAL X, Y
 REAL SCALED_X, SCALED_Y, SCALED_RESULT
 LOGICAL, DIMENSION(2) :: FLAGS
 TYPE (IEEE_FLAG_TYPE), PARAMETER, DIMENSION(2) :: &
 OUT_OF_RANGE = (/ IEEE_OVERFLOW, IEEE_UNDERFLOW /)
 INTRINSIC SQRT, ABS, EXPONENT, MAX, DIGITS, SCALE
! The processor clears the flags on entry
! Try a fast algorithm first
 HYPOT = SQRT(X**2 + Y**2)
 CALL IEEE_GET_FLAG(OUT_OF_RANGE,FLAGS)
 IF (ANY(FLAGS)) THEN
 CALL IEEE_SET_FLAG(OUT_OF_RANGE,.FALSE.)
 IF (X==0.0 .OR. Y==0.0) THEN
 HYPOT = ABS(X) + ABS(Y)
 ELSE IF (2*ABS(EXPONENT(X)-EXPONENT(Y)) > DIGITS(X)+1) THEN
 HYPOT = MAX(ABS(X), ABS(Y))! one of X and Y can be ignored
 ELSE ! scale so that ABS(X) is near 1
 SCALED_X = SCALE(X, -EXPONENT(X))
 SCALED_Y = SCALE(Y, -EXPONENT(X))
 SCALED_RESULT = SQRT(SCALED_X**2 + SCALED_Y**2)
 HYPOT = SCALE(SCALED_RESULT, EXPONENT(X)) ! may cause overflow
 END IF
 END IF
! The processor resets any flag that was signaling on entry
END FUNCTION HYPOT

An attempt is made to evaluate this function directly in the fastest possible way. This will work almost every
time, but if an exception occurs during this fast computation, a safe but slower way evaluates the function. This

2 17th March 1997

FLOATING-POINT EXCEPTION HANDLING

slower evaluation may involve scaling and unscaling, and in (very rare) extreme cases this unscaling can cause
overflow (after all, the true result might overflow if X and Y are both near the overflow limit).

If the overflow or underflow flag is signaling on entry, it is reset on return by the processor, so that earlier
exceptions are not lost.

Can all this be accomplished without the help of an exception handling facility? Yes, it can – in fact, the
alternative code can do the job, but of course it is much less efficient. That’s the point. The HYPOT function is
special, in this respect, in that the normal and alternative codes try to accomplish the same task. This is not
always the case. In fact, it very often happens that the alternative code concentrates on handling the exceptional
cases and is not able to handle all of the non-exceptional cases. When this happens, a program which cannot
take advantage of hardware flags could have a structure like the following:

 if (in the first exceptional region) then
 handle this case
 else if (in the second exceptional region) then
 handle this case
 :
 else
 execute the normal code
 end

But this is not only inefficient, it also inverts the logic of the computation. For other examples, see Hull,
Fairgrieve and Tang (1994) and Demmel and Li (1994).

The code for the HYPOT function can be generalized in an obvious way to compute the Euclidean norm,
2 2 2x + x + ... + x of an n–vector; the generalization of the alternative code is not so obvious (though1 2 n

straightforward) and will be much slower relative to the normal code than is the case with the HYPOT function.

In connection with reliable computation, there is a need for intrinsic conditions further to those of the IEEE
floating-point standard. Examples are:

INSUFFICIENT_STORAGE for when the processor is unable to find sufficient storage to continue
execution.

INTEGER_OVERFLOW and INTEGER_DIVIDE_BY_ZERO for when an intrinsic integer operation has
a very large result or has a zero denominator.

INTRINSIC for when an intrinsic procedure has been unsuccessful.

SYSTEM_ERROR for when a system error occurs.

This proposal has been designed to allow such enhancements in the future.

References

Demmel, J.W. and Li, X. (1994). Faster Numerical Algorithms via Exception Handling. IEEE Transactions on
Computers, 43, no. 8, 983-992.

Hull, T.E., Fairgrieve, T.F., and Tang, T.P.T. (1994). Implementing complex elementary functions using
exception handling. ACM Trans. Math. Software 20, 215-244.

17th March 1997 3

FLOATING-POINT EXCEPTION HANDLING

2 Technical specification

2.1 The model

This proposal is based on the IEEE model with flags for the floating-point exceptions (invalid, overflow,
divide-by-zero, underflow, inexact), a flag for the rounding mode (nearest, up, down, to-zero), and flags for
whether halting occurs following exceptions. It is not necessary for the hardware to have any such flags (they
may be simulated by software) or for it to support all the modes. Inquiry procedures are available to allow a
program to determine the extent of support. Inquiries are in terms of reals, but the same level of support is
provided for the corresponding complex kind.

Some hardware may be able to provide no support of these features or only partial support. It may execute
faster with compiled code that does not support all the features. This proposal therefore involves three intrinsic
modules. IEEE_EXCEPTIONS is for the exceptions and the minimum requirement is for the support of
overflow and divide-by-zero for all kinds of real and complex data. IEEE_ARITHMETIC behaves as if it
contained a USE statement for all of IEEE_EXCEPTIONS and provides support for other IEEE features.
IEEE_FEATURES contains some named constants that permit the user to indicate which features are essential
in the application. A program is required to fail if a requested feature is not available. The modules contain five
derived types (section 2.3), named constants to control the level of support (section 2.4), and a collection of
procedures (sections 2.5 to 2.10). None of the procedures is permitted as an actual argument.

2.2 The USE statement for an intrinsic module

New syntax on the USE statement provides control over whether it is intended to access an intrinsic module:
 USE, INTRINSIC :: IEEE_ARITHMETIC
or not:
 USE, NON_INTRINSIC :: MY_IEEE_ARITHMETIC

The INTRINSIC statement is not extended. For the old form:

 USE IEEE_ARITHMETIC

the processor looks first for a non-intrinsic module.

2.3 The derived types and data objects

The module IEEE_EXCEPTIONS contains the derived types:

IEEE_FLAG_TYPE, for identifying a particular exception flag. Its only possible values are those of
named constants defined in the module: IEEE_INVALID, IEEE_OVERFLOW,
IEEE_DIVIDE_BY_ZERO, IEEE_UNDERFLOW, and IEEE_INEXACT. The modules also
contains the named array constants
 IEEE_USUAL = (/IEEE_OVERFLOW, IEEE_DIVIDE_BY_ZERO, IEEE_INVALID/)
and
 IEEE_ALL = (/IEEE_USUAL, IEEE_UNDERFLOW, IEEE_INEXACT/)

IEEE_STATUS_TYPE, for saving the current floating point status.

The module IEEE_ARITHMETIC contains the derived types:

IEEE_CLASS_TYPE, for identifying a class of floating-point values. Its only possible values are those
of named constants defined in the module:
IEEE_SIGNALING_NAN, IEEE_QUIET_NAN, IEEE_NEGATIVE_INF,
IEEE_NEGATIVE_NORMAL, IEEE_NEGATIVE_DENORMAL, IEEE_NEGATIVE_ZERO,
IEEE_POSITIVE_ZERO, IEEE_POSITIVE_DENORMAL, IEEE_POSITIVE_NORMAL, and
IEEE_POSITIVE_INF.

4 17th March 1997

FLOATING-POINT EXCEPTION HANDLING

IEEE_ROUND_TYPE, for identifying a particular rounding mode. Its only possible values are those of
named constants defined in the module: IEEE_NEAREST, IEEE_TO_ZERO, IEEE_UP, and
IEEE_DOWN for the IEEE modes; and IEEE_OTHER for any other mode.

The module IEEE_FEATURES contains the derived type:

IEEE_FEATURES_TYPE, for expressing the need for particular IEEE features. Its only possible values
are those of named constants defined in the module: IEEE_DATATYPE, IEEE_DENORMAL,
IEEE_DIVIDE, IEEE_HALTING, IEEE_INEXACT_FLAG, IEEE_INF,
IEEE_INVALID_FLAG, IEEE_NAN, IEEE_ROUNDING, IEEE_SQRT, and
IEEE_UNDERFLOW_FLAG.

2.4 The level of support

When IEEE_EXCEPTIONS or IEEE_ARITHMETIC is accessible, IEEE_OVERFLOW and
IEEE_DIVIDE_BY_ZERO are supported in the scoping unit for all kinds of real and complex data. Which
other exceptions are supported may be determined by the function IEEE_SUPPORT_FLAG, see section 2.6.
Whether control of halting is supported may be determined by the function IEEE_SUPPORT_HALTING. The
extent of support of the other exceptions may be influenced by the accessibility of the named constants
IEEE_INEXACT_FLAG, IEEE_INVALID_FLAG, and IEEE_UNDERFLOW_FLAG of the module
IEEE_FEATURES. If a scoping unit has access to IEEE_UNDERFLOW_FLAG of IEEE_FEATURES, the
scoping unit must support underflow and return true from IEEE_SUPPORT_FLAG(IEEE_UNDERFLOW,X)
for at least one kind of real. Similarly, if IEEE_INEXACT_FLAG or IEEE_INVALID_FLAG is accessible,
the scoping unit must support the exception and return true from the corresponding inquiry for at least one kind
of real. Also, if IEEE_HALTING is accessible, the scoping unit must support control of halting and return true
from IEEE_SUPPORT_HALTING(FLAG) for the flag.

If a scoping unit does not access IEEE_EXCEPTIONS or IEEE_ARITHMETIC, the level of support is
processor dependent, and need not include support for any exceptions. If a flag is signaling on entry to such a
scoping unit, the processor ensures that it is signaling on exit. If a flag is quiet on entry to such a scoping unit,
whether it is signaling on exit is processor dependent.

For processors with IEEE arithmetic, further IEEE support is available through the module
IEEE_ARITHMETIC. The extent of support may be influenced by the accessibility of the named constants of
the module IEEE_FEATURES. If a scoping unit has access to IEEE_DATATYPE of IEEE_FEATURES, the
scoping unit must support IEEE arithmetic and return true from IEEE_SUPPORT_DATATYPE(X) (see
section 2.6) for at least one kind of real. Similarly, if IEEE_DENORMAL, IEEE_DIVIDE, IEEE_INF,
IEEE_NAN, IEEE_ROUNDING, or IEEE_SQRT is accessible, the scoping unit must support the feature and
return true from the corresponding inquiry function for at least one kind of real. In the case of
IEEE_ROUNDING, it must return true for all the rounding modes IEEE_NEAREST, IEEE_TO_ZERO,
IEEE_UP, and IEEE_DOWN.

Execution may be slowed on some processors by the support of some features. If IEEE_EXCEPTIONS or
IEEE_ARITHMETIC is accessed but IEEE_FEATURES is not accessed, the vendor is free to choose which
subset to support. The processor’s fullest support is provided when all of IEEE_FEATURES is accessed:

 USE IEEE_ARITHMETIC; USE IEEE_FEATURES

but execution may then be slowed by the presence of a feature that is not needed. In all cases, the extent of
support may be determined by the inquiry functions of section 2.6.

If a flag is signaling on entry to a procedure, the processor will set it to quiet on entry and restore it to signaling
on return.

If a flag is quiet on entry to a procedure with access to IEEE_EXCEPTIONS or IEEE_ARITHMETIC and is
signaling on return, the processor will not restore it to quiet.

17th March 1997 5

FLOATING-POINT EXCEPTION HANDLING

In a procedure, the processor ensures that the flags for halting have the same values on return as on entry.

In a procedure, the processor ensures that the flags for rounding have the same values on return as on entry.

2.5 The exception flags

The flags are initially quiet and signal when an exception occurs. The value of a flag is determined by the
elemental subroutine

 IEEE_GET_FLAG (FLAG,FLAG_VALUE)

where FLAG is of type IEEE_FLAG_TYPE and FLAG_VALUE is of type default LOGICAL. Being elemental
allows an array of flag values to be obtained at once and obviates the need for a list of flags.

Flag values may be assigned by the elemental subroutine

 IEEE_SET_FLAG (FLAG,FLAG_VALUE)

An exception must not signal if this could arise only during execution of a process further to those required or
permitted by the standard. For example, the statement

 IF (F(X)>0.0) Y = 1.0/Z

must not signal IEEE_DIVIDE_BY_ZERO when both F(X) and Z are zero and the statement

 WHERE(A>0.0) A = 1.0/A

must not signal IEEE_DIVIDE_BY_ZERO. On the other hand, when X has the value 1.0 and Y has the value
0.0, the expression

 X>0.00001 .OR. X/Y>0.00001

is permitted to cause the signaling of IEEE_DIVIDE_BY_ZERO.

2.6 Inquiry functions for the features supported

The module IEEE_EXCEPTIONS contains the following inquiry functions:

IEEE_SUPPORT_FLAG(FLAG[,X]) True if the processor supports an exception flag for all reals (X
absent) or for reals of the same kind type parameter as the argument X.

IEEE_SUPPORT_HALTING(FLAG) True if the processor supports the ability to control during
program execution whether to abort or continue execution after an exception.

The module IEEE_ARITHMETIC contains the following inquiry functions:

IEEE_SUPPORT_DATATYPE([X]) True if the processor supports IEEE arithmetic for all reals (X
absent) or for reals of the same kind type parameter as the argument X. Here support means
employing an IEEE data format and performing the operations of +, –, and * as in the IEEE
standard whenever the operands and result all have normal values.

IEEE_SUPPORT_DENORMAL([X]) True if the processor supports the IEEE denormalized numbers
for all reals (X absent) or for reals of the same kind type parameter as the argument X.

IEEE_SUPPORT_DIVIDE([X]) True if the processor supports divide with the accuracy specified by
the IEEE standard for all reals (X absent) or for reals of the same kind type parameter as the
argument X.

IEEE_SUPPORT_INF([X]) True if the processor supports the IEEE infinity facility for all reals (X
absent) or for reals of the same kind type parameter as the argument X.

IEEE_SUPPORT_NAN([X]) True if the processor supports the IEEE Not-A-Number facility for all
reals (X absent) or for reals of the same kind type parameter as the argument X.

6 17th March 1997

FLOATING-POINT EXCEPTION HANDLING

IEEE_SUPPORT_ROUNDING(ROUND_VALUE[,X]) True if the processor supports a particular
rounding mode for all reals (X absent) or for reals of the same kind type parameter as the
argument X. Here, support includes the ability to change the mode by

 CALL IEEE_SET_ROUNDING(ROUND_VALUE)

IEEE_SUPPORT_SQRT([X]) True if the processor supports IEEE square root for all reals (X absent)
or for reals of the same kind type parameter as the argument X.

IEEE_SUPPORT_STANDARD([X]) True if the processor supports all the IEEE facilities defined in
this standard for all reals (X absent) or for reals of the same kind type parameter as the argument
X.

2.7 Elemental functions

The module IEEE_ARITHMETIC contains the following elemental functions for reals X and Y for which
IEEE_SUPPORT_DATATYPE(X) and IEEE_SUPPORT_DATATYPE(Y) are true:

IEEE_CLASS(X) Returns the IEEE class (see section 2.3 for the possible values).

IEEE_COPY_SIGN(X,Y) IEEE copysign function, that is X with the sign of Y.

IEEE_IS_FINITE(X) IEEE finite function. True if IEEE_CLASS(X) has one of the values
IEEE_NEGATIVE_NORMAL, IEEE_NEGATIVE_DENORMAL, IEEE_NEGATIVE_ZERO,
IEEE_POSITIVE_ZERO, IEEE_POSITIVE_DENORMAL, IEEE_POSITIVE_NORMAL.

IEEE_IS_NAN(X) True if the value is IEEE Not-a-Number.

IEEE_IS_NEGATIVE(X) True if the value is negative (including negative zero).

IEEE_IS_NORMAL(X) True if the value is a normal number.

IEEE_LOGB(X) IEEE logb function, that is, the unbiased exponent of X.

IEEE_NEXT_AFTER(X,Y) Returns the next representable neighbor of X in the direction toward Y.

IEEE_RINT(X) Round to an integer value according to the current rounding mode.

IIEEE_SCALB (X,I) Returns 2 X.

IEEE_UNORDERED(X,Y) IEEE unordered function. True if X or Y is a NaN and false otherwise.

IEEE_VALUE(X,CLASS) Generate a value of a given IEEE class. The value of CLASS is permitted to
be

(a) IEEE_SIGNALING_NAN or IEEE_QUIET_NAN if IEEE_SUPPORT_NAN(X) has the
value true,

(b) IEEE_NEGATIVE_INF or IEEE_POSITIVE_INF if IEEE_SUPPORT_INF(X) has the
value true,

(c) IEEE_NEGATIVE_DENORMAL or IEEE_POSITIVE_DENORMAL if
IEEE_SUPPORT_DENORMAL(X) has the value true,

(d) IEEE_NEGATIVE_NORMAL, IEEE_NEGATIVE_ZERO, IEEE_POSITIVE_ZERO or
IEEE_POSITIVE_NORMAL.

Although in most cases the value is processor dependent, the value does not vary between
invocations for any particular X kind type parameter and CLASS value.

17th March 1997 7

FLOATING-POINT EXCEPTION HANDLING

2.8 Elemental subroutines

The module IEEE_EXCEPTIONS contains the following elemental subroutines:

IEEE_GET_FLAG(FLAG,FLAG_VALUE) Get an exception flag.

IEEE_GET_HALTING_MODE(FLAG,HALTING) Get halting mode for an exception. The initial
halting mode is processor dependent. Halting is not necessarily immediate, but normal processing
does not continue.

IEEE_SET_FLAG(FLAG,FLAG_VALUE) Set an exception flag.

IEEE_SET_HALTING_MODE(FLAG,HALTING) Controls continuation or halting on exceptions.

2.9 Non-elemental subroutines

The module IEEE_EXCEPTIONS contains the following non-elemental subroutines:

IEEE_GET_STATUS(STATUS_VALUE) Get the current values of the set of flags that define the
current state of the floating point environment. STATUS_VALUE is of type
IEEE_STATUS_TYPE.

IEEE_SET_STATUS(STATUS_VALUE) Restore the values of the set of flags that define the current
state of the floating point environment (usually the floating point status register).
STATUS_VALUE is of type IEEE_STATUS_TYPE and has been set by a call of
IEEE_GET_STATUS.

The module IEEE_ARITHMETIC contains the following non-elemental subroutines:

IEEE_GET_ROUNDING_MODE(ROUND_VALUE) Get the current IEEE rounding mode.
ROUND_VALUE is of type IEEE_ROUND_TYPE.

IEEE_SET_ROUNDING_MODE(ROUND_VALUE) Set the current IEEE rounding mode.
ROUND_VALUE is of type IEEE_ROUND_TYPE. If this is invoked,
IEEE_SUPPORT_ROUNDING(ROUND_VALUE,X) must be true for any X such that
IEEE_SUPPORT_DATATYPE(X) is true.

2.10 Transformational function

The module IEEE_ARITHMETIC contains the following transformational function:

IEEE_SELECTED_REAL_KIND([P,][R]) As for SELECTED_REAL_KIND but gives an IEEE
kind.

8 17th March 1997

FLOATING-POINT EXCEPTION HANDLING

3 Edits to the standard (ISO/IEC 1539-1:1997)
xvi/16. Add ‘A module may be intrinsic (defined by the standard) or nonintrinsic (defined by Fortran code).’

19/6. After ‘procedures,’ add ‘modules,’.

131/33. Add: ‘If any exception (15) is signaling, the processor shall issue a warning on the unit identified by *
in a WRITE statement, indicating which exceptions are signaling.’.

186/17. Add ‘An intrinsic module is defined by the standard. A nonintrinsic module is defined by Fortran
code.’

187/22-23. Change to

R1107 use-stmt is USE [[, module-nature] ::] module-name [, rename-list]
or USE [[, module-nature] ::] module-name, ONLY: [only-list]

R1107a module-nature is INTRINSIC
or NON_INTRINSIC

Constraint: If module-nature is INTRINSIC, module-name shall be the name of an intrinsic module.

Constraint: If module-nature is NON_INTRINSIC, module-name shall be the name of a nonintrinsic
module.

187/31+. Add ‘A use-stmt without a module-nature provides access either to an intrinsic or to a nonintrinsic
module. If the module-name is the name of both an intrinsic and a nonintrinsic module, the nonintrinsic
module is accessed.’

228/36. Change ‘.’ to ‘, unless the intrinsic module IEEE_ARITHMETIC (section 15) is accessible and there is
support for an infinite or a NaN result, as appropriate. If an infinite result is returned, the flag
IEEE_OVERFLOW or IEEE_DIVIDE_BY_ZERO shall signal; if a NaN result is returned, the flag
IEEE_INVALID shall signal. If all results are normal, these flags must have the same status as when the
intrinsic procedure was invoked.’

292+. Add

15. Intrinsic modules for support of exceptions and IEEE arithmetic
The modules IEEE_EXCEPTIONS, IEEE_ARITHMETIC, and IEEE_FEATURES provide support for
exceptions and IEEE arithmetic. Whether the modules are provided is processor dependent. If the module
IEEE_FEATURES is provided, which of the named constants defined by this standard are included is processor
dependent. The module IEEE_ARITHMETIC behaves as if it contained a USE statement for
IEEE_EXCEPTIONS.

When IEEE_EXCEPTIONS or IEEE_ARITHMETIC is accessible, IEEE_OVERFLOW and
IEEE_DIVIDE_BY_ZERO are supported in the scoping unit for all kinds of real and complex data. Which
other exceptions are supported may be determined by the function IEEE_SUPPORT_FLAG, see section 15.9,
and whether control of halting is supported may be determined by the function IEEE_SUPPORT_HALTING.
The extent of support of the other exceptions may be influenced by the accessibility of the named constants
IEEE_INEXACT_FLAG, IEEE_INVALID_FLAG, and IEEE_UNDERFLOW_FLAG of the module
IEEE_FEATURES. If a scoping unit has access to IEEE_UNDERFLOW_FLAG of IEEE_FEATURES, the
scoping unit must support underflow and return true from IEEE_SUPPORT_FLAG(IEEE_UNDERFLOW, X)
for at least one kind of real. Similarly, if IEEE_INEXACT_FLAG or IEEE_INVALID_FLAG is accessible, the
scoping unit must support the exception and return true from the corresponding inquiry for at least one kind of
real. Also, if IEEE_HALTING is accessible, the scoping unit must support control of halting and return true
from IEEE_SUPPORT_HALTING(FLAG) for the flag.

If a scoping unit does not access IEEE_EXCEPTIONS or IEEE_ARITHMETIC, the level of support is
processor dependent, and need not include support for any exceptions. If a flag is signaling on entry to such a

17th March 1997 9

FLOATING-POINT EXCEPTION HANDLING

scoping unit, the processor ensures that it is signaling on exit. If a flag is quiet on entry to such a scoping unit,
whether it is signaling on exit is processor dependent.

For processors with IEEE arithmetic, further IEEE support is available through the module
IEEE_ARITHMETIC. The extent of support may be influenced by the accessibility of the named constants of
the module IEEE_FEATURES. If a scoping unit has access to IEEE_DATATYPE of IEEE_FEATURES, the
scoping unit must support IEEE arithmetic and return true from IEEE_SUPPORT_DATATYPE(X) (see section
15.9) for at least one kind of real. Similarly, if IEEE_DENORMAL, IEEE_DIVIDE, IEEE_INF, IEEE_NAN,
IEEE_ROUNDING, or IEEE_SQRT is accessible, the scoping unit must support the feature and return true
from the corresponding inquiry function for at least one kind of real. In the case of IEEE_ROUNDING, it must
return true for all the rounding modes IEEE_NEAREST, IEEE_TO_ZERO, IEEE_UP, and IEEE_DOWN.

Execution may be slowed on some processors by the support of some features. If IEEE_EXCEPTIONS or
IEEE_ARITHMETIC is accessed but IEEE_FEATURES is not accessed, the vendor is free to choose which
subset to support. The processor’s fullest support is provided when all of IEEE_FEATURES is accessed:

 USE IEEE_ARITHMETIC; USE IEEE_FEATURES

but execution may then be slowed by the presence of a feature that is not needed. In all cases, the extent of
support may be determined by the inquiry functions.

15.1 Derived data types defined in the module

The modules IEEE_EXCEPTIONS, IEEE_ARITHMETIC, and IEEE_FEATURES contain five derived types,
whose components are private. No operation is defined for them and only intrinsic assignment is available for
them.

The module IEEE_EXCEPTIONS contains:

IEEE_FLAG_TYPE, for identifying a particular exception flag. Its only possible values are those of
named constants defined in the modules: IEEE_INVALID, IEEE_OVERFLOW,
IEEE_DIVIDE_BY_ZERO, IEEE_UNDERFLOW, and IEEE_INEXACT. The modules also
contains the array named constants
IEEE_USUAL = (/ IEEE_OVERFLOW, IEEE_DIVIDE_BY_ZERO, IEEE_INVALID /)
and IEEE_ALL = (/ IEEE_USUAL, IEEE_UNDERFLOW, IEEE_INEXACT /).

IEEE_STATUS_TYPE, for saving the current floating point status.

The module IEEE_ARITHMETIC contains:

IEEE_CLASS_TYPE, for identifying a class of floating-point values. Its only possible values are those of
named constants defined in the module: IEEE_SIGNALING_NAN, IEEE_QUIET_NAN,
IEEE_NEGATIVE_INF, IEEE_NEGATIVE_NORMAL, IEEE_NEGATIVE_DENORMAL,
IEEE_NEGATIVE_ZERO, IEEE_POSITIVE_ZERO, IEEE_POSITIVE_DENORMAL,
IEEE_POSITIVE_NORMAL, IEEE_POSITIVE_INF.

IEEE_ROUND_TYPE, for identifying a particular rounding mode. Its only possible values are those of
named constants defined in the module: IEEE_NEAREST, IEEE_TO_ZERO, IEEE_UP, and
IEEE_DOWN for the IEEE modes; and IEEE_OTHER for any other mode.

The module IEEE_FEATURES contains:

IEEE_FEATURES_TYPE, for expressing the need for particular IEEE features. Its only possible values
are those of named constants defined in the module: IEEE_DATATYPE, IEEE_DENORMAL,
IEEE_DIVIDE, IEEE_HALTING, IEEE_INEXACT_FLAG, IEEE_INF,
IEEE_INVALID_FLAG, IEEE_NAN, IEEE_ROUNDING, IEEE_SQRT, and
IEEE_UNDERFLOW_FLAG.

10 17th March 1997

FLOATING-POINT EXCEPTION HANDLING

15.2 The exceptions
The exceptions are:

IEEE_OVERFLOW
This exception occurs when the result for an intrinsic real operation or assignment has an absolute value
greater than a processor-dependent limit, or the real or imaginary part of the result for an intrinsic
complex operation or assignment has an absolute value greater than a processor-dependent limit.

IEEE_DIVIDE_BY_ZERO
This exception occurs when a real or complex division has a nonzero numerator and a zero denominator.

IEEE_INVALID
This exception occurs when a real or complex operation or assignment is invalid; examples are SQRT(X)
when X is real and has a nonzero negative value, and conversion to an integer (by assignment or an
intrinsic procedure) when the result is too large to be representable.

IEEE_UNDERFLOW
This exception occurs when the result for an intrinsic real operation or assignment has an absolute value
less than a processor-dependent limit and loss of accuracy is detected, or the real or imaginary part of the
result for an intrinsic complex operation or assignment has an absolute value less than a
processor-dependent limit and loss of accuracy is detected.

IEEE_INEXACT
This exception occurs when the result of a real or complex operation or assignment is not exact.

Each exception has a flag whose value is either quiet or signaling. The value may be determined by the function
IEEE_GET_FLAG. Its initial value is quiet and it signals when the associated exception occurs. Its status may
also be changed by the subroutine IEEE_SET_FLAG or the subroutine IEEE_SET_STATUS. Once signaling,
it remains signaling unless set quiet by an invocation of the subroutine IEEE_SET_FLAG or the subroutine
IEEE_SET_STATUS. If any exception is signaling when the program terminates, the processor shall issue a
warning on the unit identified by * in a WRITE statement, indicating which conditions are signaling.

If a flag is signaling on entry to a procedure, the processor will set it to quiet on entry and restore it to signaling
on return.

In a scoping unit that has access to IEEE_EXCEPTIONS or IEEE_ARITHMETIC, if an intrinsic procedure
executes normally, the values of the flags IEEE_OVERFLOW, IEEE_DIVIDE_BY_ZERO, and
IEEE_INVALID shall be as on entry to the procedure, even if one or more signals during the calculation. If a
real or complex result is too large for the intrinsic to handle, IEEE_OVERFLOW may signal. If a real or
complex result is a NaN because of an invalid operation (for example, LOG(–1.0)), IEEE_INVALID may
signal. Similar rules apply to the evaluation of specification expressions on entry to a procedure, to format
processing, and to intrinsic operations: no signaling flag shall be set quiet and no quiet flag shall be signal
because of an intermediate calculation that does not affect the result.

Note: An implementation may provide alternative versions of an intrinsic procedure; a practical example
of such alternatives might be one version suitable for a call from a scoping unit with access to
IEEE_EXCEPTIONS or IEEE_ARITHMETIC and one for other cases.

In a sequence of statements that contains no invocations of IEEE_GET_FLAG, IEEE_SET_FLAG,
IEEE_GET_STATUS, IEEE_SET_HALTING, or IEEE_SET_STATUS, if the execution of a process would
cause an exception to signal but after execution of the sequence no value of a variable depends on the process,
whether the exception is signaling is processor dependent. For example, when Y has the value zero, whether
the code

 X = 1.0/Y
 X = 3.0

signals IEEE_DIVIDE_BY_ZERO is processor dependent. Another example is the following:

17th March 1997 11

FLOATING-POINT EXCEPTION HANDLING

 REAL, PARAMETER :: X=0.0, Y=6.0
 :
 IF (1.0/X == Y) PRINT *,'Hello world'

where the processor is permitted to discard the IF statement since the logical expression can never be true and
no value of a variable depends on it.

An exception must not signal if this could arise only during execution of a process further to those required or
permitted by the standard. For example, the statement

 IF (F(X)>0.0) Y = 1.0/Z

must not signal IEEE_DIVIDE_BY_ZERO when both F(X) and Z are zero and the statement

 WHERE(A>0.0) A = 1.0/A

must not signal IEEE_DIVIDE_BY_ZERO. On the other hand, when X has the value 1.0 and Y has the value
0.0, the expression

 X>0.00001 .OR. X/Y>0.00001

is permitted to cause the signaling of IEEE_DIVIDE_BY_ZERO.

The processor need not support IEEE_INVALID, IEEE_UNDERFLOW, and IEEE_INEXACT. If an
exception is not supported, its flag is always quiet. The function IEEE_SUPPORT_FLAG may be used to
inquire whether a particular flag is supported. If IEEE_INVALID is supported, it signals in the case of
conversion to an integer (by assignment or an intrinsic procedure) if the result is too large to be representable.

15.3 The rounding modes
IEEE 754-1985 (also IEC 559:1989) specifies four rounding modes:

IEEE_NEAREST rounds the exact result to the nearest representable value.

IEEE_TO_ZERO rounds the exact result towards zero to the next representable value.

IEEE_UP rounds the exact result towards +infinity to the next representable value.

IEEE_DOWN rounds the exact result towards –infinity to the next representable value.

The function IEEE_GET_ROUNDING_MODE may be used to inquire which rounding mode is in operation.
Its value is one of the above four or IEEE_OTHER if the rounding mode does not conform to IEEE 754-1985.

If the processor supports the alteration of the rounding mode during execution, the subroutine
IEEE_SET_ROUNDING_MODE may be used to alter it. The function IEEE_SUPPORT_ROUNDING may
be used to inquire whether this facility is available for a particular mode.

In a procedure other than IEEE_SET_ROUNDING_MODE, the processor shall not change the rounding mode
on entry, and on return shall ensure that the rounding mode is the same as it was on entry.

Note. Within a program, all literal constants that have the same form have the same value (4.1.2). Therefore,
the value of a literal constant is not affected by the rounding mode.

15.4 Halting
Some processors allow control during program execution of whether to abort or continue execution after an
exception. Such control is exercised by invocation of the subroutine IEEE_SET_HALTING_MODE. Halting is
not precise and may occur any time after the exception has occurred. The function
IEEE_SUPPORT_HALTING may be used to inquire whether this facility is available. The initial halting mode
is processor dependent.

12 17th March 1997

FLOATING-POINT EXCEPTION HANDLING

In a procedure other than IEEE_SET_HALTING_MODE, the processor shall not change the halting mode on
entry, and on return shall ensure that the halting mode is the same as it was on entry.

15.5 The floating point status

The values of all the supported flags for exceptions, rounding mode, and halting may be saved in a scalar
variable of type TYPE(IEEE_STATUS_TYPE) with the function IEEE_GET_STATUS and restored with the
subroutine IEEE_SET_STATUS. There are no facilities for finding the values of particular flags held within
such a variable.

Note. Some processors hold all these flags in a floating point status register that can be saved and restored
as a whole much faster than all individual flags can be saved and restored. These procedures are provided
to exploit this feature.

15.6 Exceptional values

IEEE 754-1985 specifies the following exceptional floating point values:

Denormalized values have very small absolute values and lowered precision.

Infinite values (+Inf and –Inf) are created by overflow or division by zero.

Not-a-Number (NaN) values are undefined values or values created by an invalid operation.

The functions IEEE_IS_FINITE, IEEE_IS_NAN, IEEE_IS_NEGATIVE, and IEEE_IS_NORMAL are
provided to test whether a value is finite, NaN, negative, or normal. The function IEEE_VALUE is provided to
generate an IEEE number of any class, including an infinity or a NaN. The functions
IEEE_SUPPORT_DENORMAL, IEEE_SUPPORT_DIVIDE, IEEE_SUPPORT_INF, and
IEEE_SUPPORT_NAN may be used to inquire whether this facility is available for a particular kind of real.

15.7 IEEE arithmetic

The function IEEE_SUPPORT_DATATYPE may be used to inquire whether IEEE arithmetic is available for a
particular kind of real. Complete conformance with the IEEE standard is not required, but the normalized
numbers must be exactly those of IEEE single or IEEE double; the arithmetic operators must be implemented
with at least one of the IEEE rounding modes; and the functions copysign, scalb, logb, nextafter, and unordered
must be provided by the functions IEEE_COPY_SIGN, IEEE_SCALB, IEEE_LOGB, IEEE_NEXT_AFTER,
and IEEE_UNORDERED. The inquiry function IEEE_SUPPORT_DIVIDE is provided to inquire whether the
processor supports divide with the accuracy specified by the IEEE standard.

IEEE 754-1985 specifies a square root function that returns –0.0 for the square root of –0.0. The function
IEEE_SUPPORT_SQRT may be used to inquire whether SQRT is implemented in this way for a particular
kind of real.

The inquiry function IEEE_SUPPORT_STANDARD is provided to inquire whether the processor supports all
the IEEE facilities defined in this standard for a particular kind of real.

17th March 1997 13

FLOATING-POINT EXCEPTION HANDLING

15.8 Tables of the procedures
In this section, the procedures are tabulated with the names of their arguments and a short description.

15.8.1 Inquiry functions

The module IEEE_EXCEPTIONS contains the following inquiry functions:

IEEE_SUPPORT_FLAG(FLAG [, X]) Inquire if the processor supports an exception.

IEEE_SUPPORT_HALTING(FLAG) Inquire if the processor supports control of halting after an
exception.

The module IEEE_ARITHMETIC contains the following inquiry functions:

IEEE_SUPPORT_DATATYPE([X]) Inquire if the processor supports IEEE arithmetic.

IEEE_SUPPORT_DENORMAL([X]) Inquire if the processor supports denormalized numbers.

IEEE_SUPPORT_DIVIDE([X]) Inquire if the processor supports divide with the accuracy specified by
the IEEE standard.

IEEE_SUPPORT_INF([X]) Inquire if processor supports the IEEE infinity.

IEEE_SUPPORT_NAN([X]) Inquire if processor supports the IEEE Not-A-Number.

IEEE_SUPPORT_ROUNDING(ROUND_VALUE [, X]) Inquire if processor supports a particular
rounding mode.

IEEE_SUPPORT_SQRT([X]) Inquire if the processor supports IEEE square root.

IEEE_SUPPORT_STANDARD([X]) Inquire if processor supports all IEEE facilities.

15.8.2 Elemental functions

The module IEEE_ARITHMETIC contains the following elemental functions for reals X and Y for which
IEEE_SUPPORT_DATATYPE(X) and IEEE_SUPPORT_DATATYPE(Y) are true:

IEEE_CLASS(X) IEEE class.

IEEE_COPY_SIGN(X,Y) IEEE copysign function.

IEEE_IS_FINITE(X) Determine if value is finite.

IEEE_IS_NAN(X) Determine if value is IEEE Not-a-Number.

IEEE_IS_NORMAL(X) Whether a value is normal, that is, neither an Infinity, a NaN, nor denormalized.

IEEE_LOGB(X) Unbiased exponent in the IEEE floating point format.

IEEE_NEXT_AFTER(X,Y) Returns the next representable neighbor of X in the direction toward Y.

IEEE_RINT(X) Round to an integer value according to the current rounding mode.
IIEEE_SCALB(X,I) Returns 2 X.

IEEE_UNORDERED(X,Y) IEEE unordered function. True if X or Y is a NaN and false otherwise.

IEEE_VALUE(X, CLASS) Generate an IEEE value.

15.8.3 Kind function

The module IEEE_ARITHMETIC contains the following transformational function:

IEEE_SELECTED_REAL_KIND ([P,][R]) Kind type parameter value for an IEEE real with given

14 17th March 1997

FLOATING-POINT EXCEPTION HANDLING

precision and range.

15.8.4 Elemental subroutines

The module IEEE_EXCEPTIONS contains the following elemental subroutines:

IEEE_GET_FLAG(FLAG,FLAG_VALUE) Get an exception flag.

IEEE_GET_HALTING_MODE(FLAG, HALTING) Get halting mode for an exception.

IEEE_SET_FLAG(FLAG,FLAG_VALUE) Set an exception flag.

IEEE_SET_HALTING_MODE(FLAG,HALTING) Controls continuation or halting on exceptions.

15.8.5 Non-elemental subroutines

The module IEEE_EXCEPTIONS contains the following non-elemental subroutines:

IEEE_GET_STATUS(STATUS_VALUE) Get the current state of the floating point environment.

IEEE_SET_STATUS(STATUS_VALUE) Restore the state of the floating point environment.

The module IEEE_ARITHMETIC contains the following non-elemental subroutines:

IEEE_GET_ROUNDING_MODE(ROUND_VALUE) Get the current IEEE rounding mode.

IEEE_SET_ROUNDING_MODE(ROUND_VALUE) Set the current IEEE rounding mode.

15.9 Specifications of the procedures

15.9.1 IEEE_CLASS (X)

Description. IEEE class function.

Class. Elemental function.

Argument. X shall be of type real and such that IEEE_SUPPORT_DATATYPE(X) has the value true.

Result Characteristics. TYPE(IEEE_CLASS_TYPE).

Result Value. The result value is one of: IEEE_SIGNALING_NAN, IEEE_QUIET_NAN,
IEEE_NEGATIVE_INF, IEEE_NEGATIVE_NORMAL, IEEE_NEGATIVE_DENORMAL,
IEEE_NEGATIVE_ZERO, IEEE_POSITIVE_ZERO, IEEE_POSITIVE_DENORMAL,
IEEE_POSITIVE_NORMAL, IEEE_POSITIVE_INF. Neither of the values IEEE_SIGNALING_NAN
and IEEE_QUIET_NAN shall be returned unless IEEE_SUPPORT_NAN(X) has the value true.
Neither of the values IEEE_NEGATIVE_INF and IEEE_POSITIVE_INF shall be returned unless
IEEE_SUPPORT_INF(X) has the value true. Neither of the values IEEE_NEGATIVE_DENORMAL
and IEEE_POSITIVE_DENORMAL shall be returned unless IEEE_SUPPORT_DENORMAL(X) has
the value true.

Example. IEEE_CLASS(–1.0) has the value IEEE_NEGATIVE_NORMAL.

15.9.2 IEEE_COPY_SIGN (X, Y)

Description. IEEE copysign function.

Class. Elemental function.

Arguments. The arguments shall be of type real and such that both IEEE_SUPPORT_DATATYPE(X)

17th March 1997 15

FLOATING-POINT EXCEPTION HANDLING

and IEEE_SUPPORT_DATATYPE(Y) have the value true.

Result Characteristics. Same as X.

Result Value. The result has the value of X with the sign of Y. This is true even for IEEE special values,
such as NaN and Inf (on processors supporting such values).

Examples. The value of IEEE_COPY_SIGN(X,1.0) is ABS(X) even when X is NaN. The value of
IEEE_COPY_SIGN(–X,1.0) is X copied with its sign reversed, not 0-x; the distinction is germane when
X is +0, –0, or NaN.

15.9.3 IEEE_GET_FLAG (FLAG, FLAG_VALUE)

Description. Get an exception flag.

Class. Elemental subroutine.

Arguments.

FLAG shall be of type TYPE(IEEE_FLAG_TYPE). It is an INTENT(IN) argument and specifies the
IEEE flag to be obtained.

FLAG_VALUE shall be of type default logical. It is an INTENT(OUT) argument. If the value of FLAG is
IEEE_INVALID, IEEE_OVERFLOW, IEEE_DIVIDE_BY_ZERO, IEEE_UNDERFLOW, or
IEEE_INEXACT, the result value is true if the corresponding exception flag is signaling and is
false otherwise.

Example. Following CALL IEEE_GET_FLAG(IEEE_OVERFLOW,FLAG_VALUE), FLAG_VALUE
is true if the overflow flag is signaling and is false if it is quiet.

15.9.4 IEEE_GET_HALTING_MODE (FLAG, HALTING)

Description. Get halting mode for an exception.

Class. Elemental subroutine.

Arguments.

FLAG shall be of type TYPE(IEEE_FLAG_TYPE). It is an INTENT(IN) argument and specifies the
IEEE flag. It shall have one of the values IEEE_INVALID, IEEE_OVERFLOW,
IEEE_DIVIDE_BY_ZERO, IEEE_UNDERFLOW, and IEEE_INEXACT.

HALTING shall be scalar and of type default logical. It is of INTENT(OUT). The value is true if the
exception specified by FLAG will cause halting. Otherwise, the value is false.

Example. To store the halting mode for overflow, do a calculation without halting, and restore the halting
mode later:

 USE, INTRINSIC :: IEEE_ARITHMETIC
 LOGICAL HALTING
 :
 CALL IEEE_GET_HALTING_MODE(IEEE_OVERFLOW,HALTING) ! Store halting mode
 CALL IEEE_SET_HALTING_MODE(IEEE_OVERFLOW,.FALSE.) ! No halting
 : ! calculation without halting
 CALL IEEE_SET_HALTING_MODE(IEEE_OVERFLOW,HALTING) ! Restore halting mode

Notes: The initial halting mode is processor dependent. Halting is not precise and may occur some
time after the exception has occurred.

16 17th March 1997

FLOATING-POINT EXCEPTION HANDLING

15.9.5 IEEE_GET_ROUNDING_MODE (ROUND_VALUE)

Description. Get the current IEEE rounding mode.

Class. Subroutine.

Argument. ROUND_VALUE shall be scalar of type TYPE(IEEE_ROUND_TYPE). It is an
INTENT(OUT) argument and returns the floating point rounding mode, with value IEEE_NEAREST,
IEEE_TO_ZERO, IEEE_UP, or IEEE_DOWN if one of the IEEE modes is in operation and
IEEE_OTHER otherwise.

Example. To store the rounding mode, do a calculation with round to nearest, and restore the rounding
mode later:

 USE, INTRINSIC :: IEEE_ARITHMETIC
 TYPE(IEEE_ROUND_TYPE) ROUND_VALUE
 :
 CALL IEEE_GET_ROUNDING_MODE(ROUND_VALUE) ! Store the rounding mode
 CALL IEEE_SET_ROUNDING_MODE(IEEE_NEAREST)
 : ! calculation with round to nearest
 CALL IEEE_SET_ROUNDING_MODE(ROUND_VALUE) ! Restore the rounding mode

Note. The result can legally be used only in an IEEE_SET_ROUNDING_MODE invocation.

15.9.6 IEEE_GET_STATUS (STATUS_VALUE)

Description. Get the current values of the set of flags that define the current floating point status,
including all the exception flags.

Class. Subroutine.

Arguments. STATUS_VALUE shall be scalar of type TYPE(IEEE_STATUS_TYPE). It is an
INTENT(OUT) argument and returns the floating point status.

Example. To store all the exception flags, do a calculation involving exception handling, and restore
them later:

 USE, INTRINSIC :: IEEE_ARITHMETIC
 TYPE(IEEE_STATUS_TYPE) STATUS_VALUE
 :
 CALL IEEE_GET_STATUS(STATUS_VALUE) ! Get the flags
 CALL IEEE_SET_FLAG(IEEE_ALL,.FALSE.) ! Set the flags quiet.
 : ! calculation involving exception handling
 CALL IEEE_SET_STATUS(STATUS_VALUE) ! Restore the flags

Note. The result can be used only in an IEEE_SET_STATUS invocation.

15.9.7 IEEE_IS_FINITE (X)

Description. Whether a value is finite.

Class. Elemental function.

Argument. X shall be of type real and such that IEEE_SUPPORT_DATATYPE(X) has the value true.

Result Characteristics. Default logical scalar.

Result Value. The result has the value true if the value of X is finite, that is, IEEE_CLASS(X) has one of
the values IEEE_NEGATIVE_NORMAL, IEEE_NEGATIVE_DENORMAL,
IEEE_NEGATIVE_ZERO, IEEE_POSITIVE_ZERO, IEEE_POSITIVE_DENORMAL, and
IEEE_POSITIVE_NORMAL; otherwise, the result has the value false.

17th March 1997 17

FLOATING-POINT EXCEPTION HANDLING

Example. IEEE_IS_FINITE(1.0) has the value true.

15.9.8 IEEE_IS_NAN (X)

Description. Whether a value is IEEE Not-a-Number.

Class. Elemental function.

Argument. X shall be of type real and such that IEEE_SUPPORT_NAN(X) has the value true.

Result Characteristics. Default logical scalar.

Result Value. The result has the value true if the value of X is an IEEE NaN; otherwise, it has the value
false.

Example. IEEE_IS_NAN(SQRT(–1.0)) has the value true if IEEE_SUPPORT_SQRT(1.0) has the value
true.

15.9.9 IEEE_IS_NEGATIVE (X)

Description. Whether a value is negative.

Class. Elemental function.

Argument. X shall be of type real and such that IEEE_SUPPORT_DATATYPE(X) has the value true.

Result Characteristics. Default logical scalar.

Result Value. The result has the value true if IEEE_CLASS(X) has one of the values
IEEE_NEGATIVE_NORMAL, IEEE_NEGATIVE_DENORMAL, IEEE_NEGATIVE_ZERO and
IEEE_NEGATIVE_INF; otherwise, the result has the value false.

Example. IEEE_IS_NEGATIVE(0.0)) has the value false.

15.9.10 IEEE_IS_NORMAL (X)

Description. Whether a value is normal, that is, neither an Infinity, a NaN, nor denormalized.

Class. Elemental function.

Argument. X shall be of type real and such that IEEE_SUPPORT_DATATYPE(X) has the value true.

Result Characteristics. Default logical scalar.

Result Value. The result has the value true if IEEE_CLASS(X) has one of the values
IEEE_NEGATIVE_NORMAL, IEEE_NEGATIVE_ZERO, IEEE_POSITIVE_ZERO and
IEEE_POSITIVE_NORMAL; otherwise, the result has the value false.

Example. IEEE_IS_NORMAL(SQRT(–1.0)) has the value false if IEEE_SUPPORT_SQRT(1.0) has the
value true.

15.9.11 IEEE_LOGB (X)

Description. Unbiased exponent in the IEEE floating point format.

Class. Elemental function.

Argument. X shall be of type real and such that IEEE_SUPPORT_DATATYPE(X) has the value true.

Result Characteristics. Same as X.

18 17th March 1997

FLOATING-POINT EXCEPTION HANDLING

Result Value.

Case (i): If the value of X is neither zero, infinity, nor NaN, the result has the value of the unbiased
exponent of X.

Case (ii): If X==0, IEEE_DIVIDE_BY_ZERO signals and the result is –Inf if IEEE_SUPPORT_INF(X)
is true and –HUGE(X) otherwise.

Case (iii): If X has an infinite value, the result is +Inf.

Case (iv): If X has a quiet NaN value, the result is the same NaN.

Case (v): If X has a signaling NaN value, the result is a quiet NaN.

Note: Cases (iii) and (iv) cannot occur on processors that lack Inf and NaN values.

Example. IEEE_LOGB(–1.1) has the value 0.0.

15.9.12 IEEE_NEXT_AFTER (X, Y)

Description. Returns the next representable neighbor of X in the direction toward Y.

Class. Elemental function.

Arguments. The arguments shall be of type real and such that IEEE_SUPPORT_DATATYPE(X) and
IEEE_SUPPORT_DATATYPE(Y) have the value true.

Result Characteristics. Same as X.

Result Value.

Case (i): If X == Y, the result is X without any exception ever being signaled.

Case (ii): If X /= Y, the result has the value of the next representable neighbor of X in the direction of Y.
The neighbors of zero (of either sign) are both nonzero. If either X or Y is a NaN, the result is one
or the other of the input NaNs. Overflow is signaled when X is finite but
IEEE_NEXT_AFTER(X,Y) is infinite; underflow is signaled when IEEE_NEXT_AFTER(X,Y)
is denormalized; in both cases, IEEE_INEXACT signals.

Example. The value of IEEE_NEXT_AFTER(1.0,2.0) is 1.0+EPSILON(X).

15.9.13 IEEE_RINT (X)

Description. Round to an integer value according to the current rounding mode.

Class. Elemental function.

Argument. X shall be of type real and such that IEEE_SUPPORT_DATATYPE(X) has the value true.

Result Characteristics. Same as X.

Result Value. The value of the result is the value of X rounded to an integer according to the current
rounding mode. If the result has the value zero, the sign is that of X.

Examples. If the current rounding mode is round-to-nearest, the value of IEEE_RINT(1.1) is 1.0. If the
current rounding mode is round-up, the value of IEEE_RINT(1.1) is 2.0.

15.9.14 IEEE_SCALB (X, I)
IDescription. Returns 2 X.

Class. Elemental function.

17th March 1997 19

FLOATING-POINT EXCEPTION HANDLING

Arguments.

X shall be of type real and such that IEEE_SUPPORT_DATATYPE(X) has the value true.

I shall be of type integer.

Result Characteristics. Same as X.

Result Value.
ICase (i): If 2 X is within the range of normalized numbers, the result has this value.
ICase (ii): If 2 X is too large, the overflow exception shall occur. If IEEE_SUPPORT_INF(X) is true, the

result value is infinity with the sign of X; otherwise, the result value is SIGN(HUGE(X),X).
ICase (iii): If 2 X is too small, the underflow exception shall occur. The result is the nearest representable

number with the sign of X.

Example. The value of IEEE_SCALB(1.0,2) is 4.0.

15.9.15 IEEE_SELECTED_REAL_KIND ([P, R])

Description. Returns a value of the kind type parameter of a IEEE real data type with decimal precision
of at least P digits and a decimal exponent range of at least R. For data objects of such a type,
IEEE_SUPPORT_DATATYPE(X) has the value true.

Class. Transformational function.

Arguments. At least one argument shall be present.

P (optional) shall be scalar and of type integer.

R (optional) shall be scalar and of type integer.

Result Characteristics. Default integer scalar.

Result Value. The result has a value equal to a value of the kind type parameter of a IEEE real data type
with decimal precision, as returned by the function PRECISION, of at least P digits and a decimal
exponent range, as returned by the function RANGE, of at least R, or if no such kind type parameter is
available on the processor, the result is –1 if the precision is not available, –2 if the exponent range is not
available, and –3 if neither is available. If more than one kind type parameter value meets the criteria, the
value returned is the one with the smallest decimal precision, unless there are several such values, in
which case the smallest of these kind values is returned.

Example. IEEE_SELECTED_REAL_KIND(6,70) has the value KIND(0.0) on a machine that supports
IEEE single precision arithmetic for its default real approximation method.

15.9.16 IEEE_SET_FLAG (FLAG, FLAG_VALUE)

Description. Assign a value to an exception flag.

Class. Elemental subroutine.

Arguments.

FLAG shall be of type TYPE(IEEE_FLAG_TYPE). It is an INTENT(IN) argument. If the value of
FLAG is IEEE_INVALID, IEEE_OVERFLOW, IEEE_DIVIDE_BY_ZERO,
IEEE_UNDERFLOW, or IEEE_INEXACT, the corresponding exception flag is assigned a value.

FLAG_VALUE shall be of type default logical. It is an INTENT(IN) argument. If it has the value true,
the flag is set to be signaling; otherwise, the flag to set to be quiet.

Example. CALL IEEE_SET_FLAG(IEEE_OVERFLOW,.TRUE.) sets the overflow flag to be signaling.

20 17th March 1997

FLOATING-POINT EXCEPTION HANDLING

15.9.17 IEEE_SET_HALTING_MODE (FLAG, HALTING)

Description. Controls continuation or halting after an exception.

Class. Elemental subroutine.

Arguments.

FLAG shall be scalar and of type TYPE(IEEE_FLAG_TYPE). It is of INTENT(IN) and shall have one of
the values: IEEE_INVALID, IEEE_OVERFLOW, IEEE_DIVIDE_BY_ZERO,
IEEE_UNDERFLOW, and IEEE_INEXACT.

HALTING shall be scalar and of type default logical. It is of INTENT(IN). If the value is true, the
exception specified by FLAG will cause halting. Otherwise, execution will continue after this
exception. The processor must either already be treating this exception in this way or be capable
of changing the mode so that it does.

Example. CALL IEEE_SET_HALTING_MODE(IEEE_DIVIDE_BY_ZERO,.TRUE.) causes halting
after a divide_by_zero exception.

Notes: The initial halting mode is processor dependent. Halting is not precise and may occur some
time after the exception has occurred.

15.9.18 IEEE_SET_ROUNDING_MODE (ROUND_VALUE)

Description. Set the current IEEE rounding mode.

Class. Subroutine.

Argument. ROUND_VALUE shall be scalar and of type TYPE(IEEE_ROUND_TYPE). It is an
INTENT(IN) argument and specifies the mode to be set. IEEE_SUPPORT_ROUNDING
(ROUND_VALUE,X) shall be true for any X such that IEEE_SUPPORT_DATATYPE(X) is true.

Example. To store the rounding mode, do a calculation with round to nearest, and restore the rounding
mode later:

 USE, INTRINSIC :: IEEE_ARITHMETIC
 TYPE(IEEE_ROUND_TYPE) ROUND_VALUE
 :
 CALL IEEE_GET_ROUNDING_MODE(ROUND_VALUE) ! Store the rounding mode
 CALL IEEE_SET_ROUNDING_MODE(IEEE_NEAREST)
 : ! calculation with round to nearest
 CALL IEEE_SET_ROUNDING_MODE(ROUND_VALUE) ! Restore the rounding mode

15.9.19 IEEE_SET_STATUS (STATUS_VALUE)

Description. Restore the values of the set of flags that define the the floating point status.

Class. Subroutine.

Argument. STATUS_VALUE shall be scalar and of type TYPE(IEEE_STATUS_TYPE). It is an
INTENT(IN) argument. Its value shall have been set in a previous invocation of IEEE_GET_STATUS.

Example. To store all the exceptions flags, do a calculation involving exception handling, and restore
them later:

 USE, INTRINSIC :: IEEE_ARITHMETIC
 TYPE(IEEE_STATUS_TYPE) STATUS_VALUE
 :
 CALL IEEE_GET_STATUS(STATUS_VALUE) ! Store the flags

17th March 1997 21

FLOATING-POINT EXCEPTION HANDLING

 CALL IEEE_SET_FLAGS(IEEE_ALL,.FALSE.) ! Set them quiet
 : ! calculation involving exception handling
 CALL IEEE_SET_STATUS(STATUS_VALUE) ! Restore the flags

Note: Getting and setting may be expensive operations. It is the programmer’s responsibility to do
it when necessary to assure correct results.

15.9.20 IEEE_SUPPORT_DATATYPE ([X])

Description. Inquire if the processor supports IEEE arithmetic.

Class. Inquiry function.

Argument. X (optional) shall be scalar and of type real.

Result Characteristics. Default logical scalar.

Result Value. The result has the value true if the processor supports IEEE arithmetic for all reals (X
absent) or for real variables of the same kind type parameter as X; otherwise, it has the value false. Here,
support means employing an IEEE data format and performing the operations of +, –, and * as in the
IEEE standard whenever the operands and result all have normal values.

Example. IEEE_SUPPORT_DATATYPE(1.0) has the value true if default reals are implemented as in
the IEEE standard except that underflowed values flush to zero instead of being denormal.

15.9.21 IEEE_SUPPORT_DENORMAL ([X])

Description. Inquire if the processor supports IEEE denormalized numbers.

Class. Inquiry function.

Argument. X (optional) shall of type real and such that IEEE_SUPPORT_DATATYPE(X) has the value
true. It may be scalar or array valued.

Result Characteristics. Default logical scalar.

Result Value. The result has the value true if the processor supports arithmetic operations and
assignments with denormalized numbers (biased exponent e = 0 and fraction f ≠ 0, see section 3.2 of the
IEEE standard) for all reals (X absent) or for real variables of the same kind type parameter as X;
otherwise, it has the value false.

Example. IEEE_SUPPORT_DENORMAL(X) has the value true if the processor supports denormalized
numbers for X.

Notes: The denormalized numbers are not included in the 13.7.1 model for real numbers and all
satisfy the inequality ABS(X) < TINY(X). They usually occur as a result of an arithmetic
operation whose exact result is less than TINY(X). Such an operation causes underflow to signal
unless the result is exact. IEEE_SUPPORT_DATATYPE(X) is false if the processor never returns
a denormalized number as the result of an arithmetic operation.

15.9.22 IEEE_SUPPORT_DIVIDE ([X])

Description. Inquire if the processor supports divide with the accuracy specified by the IEEE standard.

Class. Inquiry function.

Argument. X (optional) shall of type real and such that IEEE_SUPPORT_DATATYPE(X) has the value
true. It may be scalar or array valued.

Result Characteristics. Default logical scalar.

22 17th March 1997

FLOATING-POINT EXCEPTION HANDLING

Result Value. The result has the value true if the processor supports divide with the accuracy specified by
the IEEE standard for all reals (X absent) or for real variables of the same kind type parameter as X;
otherwise, it has the value false.

Example. IEEE_SUPPORT_DIVIDE(X) has the value true if the processor supports IEEE divide for X.

15.9.23 IEEE_SUPPORT_FLAG (FLAG [, X])

Description. Inquire if the processor supports an exception.

Class. Inquiry function.

Arguments.

FLAG shall be scalar and of type TYPE(IEEE_FLAG_TYPE). Its value shall be one of IEEE_INVALID,
IEEE_OVERFLOW, IEEE_DIVIDE_BY_ZERO, IEEE_UNDERFLOW, and IEEE_INEXACT.

X (optional) shall of type real. It may be scalar or array valued.

Result Characteristics. Default logical scalar.

Result Value. The result has the value true if the processor supports detection of the specified exception
for all reals (X absent) or for real variables of the same kind type parameter as X; otherwise, it has the
value false.

Example. ALL(IEEE_SUPPORT_FLAG(IEEE_ALL)) has the value true if the processor supports all
the exceptions.

15.9.24 IEEE_SUPPORT_HALTING (FLAG)

Description. Inquire if the processor supports the ability to control during program execution whether to
abort or continue execution after an exception.

Class. Inquiry function.

Argument. FLAG shall be of type TYPE(IEEE_FLAG_TYPE). It is an INTENT(IN) argument. Its value
shall be one of IEEE_INVALID, IEEE_OVERFLOW, IEEE_DIVIDE_BY_ZERO,
IEEE_UNDERFLOW, and IEEE_INEXACT.

Result Characteristics. Default logical scalar.

Result Value. The result has the value true if the processor supports the ability to control during program
execution whether to abort or continue execution after the exception specified by FLAG; otherwise, it has
the value false.

Example. IEEE_SUPPORT_HALTING(IEEE_OVERFLOW) has the value true if the processor
supports control of halting after an overflow.

15.9.25 IEEE_SUPPORT_INF ([X])

Description. Inquire if processor supports the IEEE infinity facility.

Class. Inquiry function.

Argument. X (optional) shall of type real and such that IEEE_SUPPORT_DATATYPE(X) has the value
true. It may be scalar or array valued.

Result Characteristics. Default logical scalar.

Result Value. The result has the value true if the processor supports IEEE infinities (positive and
negative) for all reals (X absent) or for real variables of the same kind type parameter as X; otherwise, it

17th March 1997 23

FLOATING-POINT EXCEPTION HANDLING

has the value false.

Example. IEEE_SUPPORT_INF(X) has the value true if the processor supports IEEE infinities for X.

15.9.26 IEEE_SUPPORT_NAN ([X])

Description. Inquire if processor supports the IEEE Not-A-Number facility.

Class. Inquiry function.

Argument. X (optional) shall of type real and such that IEEE_SUPPORT_DATATYPE(X) has the value
true. It may be scalar or array valued.

Result Characteristics. Default logical scalar.

Result Value. The result has the value true if the processor supports IEEE NaNs for all reals (X absent) of
for real variables of the same kind type parameter as X; otherwise, it has the value false.

Example. IEEE_SUPPORT_NAN(X) has the value true if the processor supports IEEE NaNs for X.

15.9.27 IEEE_SUPPORT_ROUNDING (ROUND_VALUE [,X])

Description. Inquire if processor supports a particular rounding mode for IEEE kinds of reals.

Class. Inquiry function.

Arguments.

ROUND_VALUE shall be of type TYPE(IEEE_ROUND_TYPE).

X (optional) shall of type real. It may be scalar or array valued.

Result Characteristics. Default logical scalar.

Result Value. The result has the value true if the processor supports the rounding mode defined by
ROUND_VALUE for all reals (X absent) or for real variables of the same kind type parameter as X;
otherwise, it has the value false. Here, support shall include the ability to change the mode by
CALL IEEE_SET_ROUNDING(ROUND_VALUE).

Example. IEEE_SUPPORT_ROUNDING(IEEE_TO_ZERO) has the value true if the processor supports
rounding to zero for all reals.

15.9.28 IEEE_SUPPORT_SQRT ([X])

Description. Inquire if the processor supports IEEE square root.

Class. Inquiry function.

Argument. X (optional) shall of type real and such that IEEE_SUPPORT_DATATYPE(X) has the value
true. It may be scalar or array valued.

Result Characteristics. Default logical scalar.

Result Value. The result has the value true if the processor supports IEEE square root for all reals (X
absent) of for real variables of the same kind type parameter as X; otherwise, it has the value false.

Example. IEEE_SUPPORT_SQRT(X) has the value true if the processor supports IEEE square root for
X.

24 17th March 1997

FLOATING-POINT EXCEPTION HANDLING

15.9.29 IEEE_SUPPORT_STANDARD ([X])

Description. Inquire if processor supports all the IEEE facilities defined in this standard.

Class. Inquiry function.

Argument. X (optional) shall of type real. It may be scalar or array valued.

Result Characteristics. Default logical scalar.

Result Value.

Case (i): If X is absent, the result has the value true if the results of all the functions
IEEE_SUPPORT_DATATYPE(), IEEE_SUPPORT_DENORMAL(),
IEEE_SUPPORT_DIVIDE(), IEEE_SUPPORT_FLAG(FLAG) for valid FLAG,
IEEE_SUPPORT_HALTING(FLAG) for valid FLAG, IEEE_SUPPORT_INF(),
IEEE_SUPPORT_NAN(), IEEE_SUPPORT_ROUNDING(ROUND_VALUE) for valid
ROUND_VALUE, and IEEE_SUPPORT_SQRT() are all true; otherwise, the result has the
value false.

Case (ii): If X is present, the result has the value true if the results of all the functions
IEEE_SUPPORT_DATATYPE(X), IEEE_SUPPORT_DENORMAL(X),
IEEE_SUPPORT_DIVIDE(X), IEEE_SUPPORT_FLAG(FLAG,X) for valid FLAG,
IEEE_SUPPORT_HALTING(FLAG) for valid FLAG, IEEE_SUPPORT_INF(X),
IEEE_SUPPORT_NAN(X), IEEE_SUPPORT_ROUNDING(ROUND_VALUE,X) for valid
ROUND_VALUE, and IEEE_SUPPORT_SQRT(X) are all true; otherwise, the result has the
value false.

Example. IEEE_SUPPORT_STANDARD() has the value false if the processor supports both IEEE and
non-IEEE kinds of reals.

15.9.30 IEEE_UNORDERED (X, Y)

Description. IEEE unordered function. True if X or Y is a NaN, and false otherwise.

Class. Elemental function.

Arguments. The arguments shall be of type real and such that IEEE_SUPPORT_DATATYPE(X) and
IEEE_SUPPORT_DATATYPE(Y) have the value true.

Result Characteristics. Same as X.

Result Value. The result has the value true if X or Y is a NaN or both are NaNs; otherwise, it has the
value false.

Example. IEEE_UNORDERED(0.0,SQRT(–1.0)) has the value true if IEEE_SUPPORT_SQRT(1.0)
has the value true.

15.9.31 IEEE_VALUE (X, CLASS)

Description. Generate an IEEE value.

Class. Elemental function.

Arguments.

X shall be of type real and such that IEEE_SUPPORT_DATATYPE(X) has the value true.

CLASS shall be of type TYPE(IEEE_CLASS_TYPE). The value of is permitted to be:

(a) IEEE_SIGNALING_NAN or IEEE_QUIET_NAN if IEEE_SUPPORT_NAN(X) has the
value true,

17th March 1997 25

FLOATING-POINT EXCEPTION HANDLING

(b) IEEE_NEGATIVE_INF or IEEE_POSITIVE_INF if IEEE_SUPPORT_INF(X) has the value
true,

(c) IEEE_NEGATIVE_DENORMAL or IEEE_POSITIVE_DENORMAL if
IEEE_SUPPORT_DENORMAL(X) has the value true,

(d) IEEE_NEGATIVE_NORMAL, IEEE_NEGATIVE_ZERO, IEEE_POSITIVE_ZERO or
IEEE_POSITIVE_NORMAL.

Result Characteristics. Same as X.

Result Value. The result value is an IEEE value as specified by CLASS. Although in most cases the
value is processor dependent, the value shall not vary between invocations for any particular X kind type
parameter and CLASS value.

Example. IEEE_VALUE(1.0,IEEE_NEGATIVE_INF) has the value –Infinity.

15.10 Examples

Example 1:

 MODULE DOT
 ! Module for dot product of two real arrays of rank 1.
 ! The caller must ensure that exceptions do not cause halting.
 USE, INTRINSIC :: IEEE_EXCEPTIONS
 LOGICAL MATRIX_ERROR
 INTERFACE OPERATOR(.dot.)
 MODULE PROCEDURE MULT
 END INTERFACE
 CONTAINS
 REAL FUNCTION MULT(A,B)
 REAL, INTENT(IN) :: A(:),B(:)
 INTEGER I
 LOGICAL OVERFLOW
 IF (SIZE(A)/=SIZE(B)) THEN
 MATRIX_ERROR = .TRUE.
 RETURN
 END IF
 ! The processor ensures that IEEE_OVERFLOW is quiet
 MULT = 0.0
 DO I = 1, SIZE(A)
 MULT = MULT + A(I)*B(I)
 END DO
 CALL IEEE_GET_FLAG(IEEE_OVERFLOW,OVERFLOW)
 IF (OVERFLOW) MATRIX_ERROR = .TRUE.
 END FUNCTION MULT
 END MODULE DOT

This module provides the dot product of two real arrays of rank 1. If the sizes of the arrays are different, an
immediate return occurs with MATRIX ERROR true. If overflow occurs during the actual calculation, the
overflow flag will signal and MATRIX_ERROR will be true.

26 17th March 1997

FLOATING-POINT EXCEPTION HANDLING

Example 2:

 USE, INTRINSIC :: IEEE_EXCEPTIONS
 USE, INTRINSIC :: IEEE_FEATURES, ONLY: IEEE_INVALID_FLAG
 ! The other exceptions of IEEE_USUAL (IEEE_OVERFLOW and
 ! IEEE_DIVIDE_BY_ZERO) are always available with IEEE_EXCEPTIONS
 TYPE(IEEE_STATUS_TYPE) STATUS_VALUE
 LOGICAL, DIMENSION(3) :: FLAG_VALUE
 :
 CALL IEEE_GET_STATUS(STATUS_VALUE)
 CALL IEEE_SET_HALTING_MODE(IEEE_USUAL,.FALSE.) ! Needed in case the
 ! default on the processor is to halt on exceptions
 CALL IEEE_SET_FLAG(IEEE_USUAL,.FALSE.)
 ! First try the "fast" algorithm for inverting a matrix:
 MATRIX1 = FAST_INV(MATRIX) ! This must not alter MATRIX.
 CALL IEEE_GET_FLAG(IEEE_USUAL,FLAG_VALUE)
 IF (ANY(FLAG_VALUE)) THEN
 ! "Fast" algorithm failed; try "slow" one:
 CALL IEEE_SET_FLAG(IEEE_USUAL,.FALSE.)
 MATRIX1 = SLOW_INV(MATRIX)
 CALL IEEE_GET_FLAG(IEEE_USUAL,FLAG_VALUE)
 IF (ANY(FLAG_VALUE)) THEN
 WRITE (*, *) 'Cannot invert matrix'
 STOP
 END IF
 END IF
 CALL IEEE_SET_STATUS(STATUS_VALUE)

In this example, the function FAST_INV may cause a condition to signal. If it does, another try is made with
SLOW_INV. If this still fails, a message is printed and the program stops. Note, also, that it is important to set
the flags quiet before the second try. The state of all the flags is stored and restored.

Example 3:

 USE, INTRINSIC :: IEEE_EXCEPTIONS
 LOGICAL FLAG_VALUE
 :
 CALL IEEE_SET_HALTING_MODE(IEEE_OVERFLOW,.FALSE.)
 ! First try a fast algorithm for inverting a matrix.
 CALL IEEE_SET_FLAG(IEEE_OVERFLOW,.FALSE.)
 DO K = 1, N
 :
 CALL IEEE_GET_FLAG(IEEE_OVERFLOW,FLAG_VALUE)
 IF (FLAG_VALUE) EXIT
 END DO
 IF (FLAG_VALUE) THEN
 ! Alternative code which knows that K-1 steps have executed normally.
 :
 END IF

Here the code for matrix inversion is in line and the transfer is made more precise by adding extra tests of the
flag.

17th March 1997 27

FLOATING-POINT EXCEPTION HANDLING

Example 4:

 REAL FUNCTION HYPOT(X, Y)
! In rare circumstances this may lead to the signaling of IEEE_OVERFLOW
! The caller must ensure that exceptions do not cause halting.
 USE, INTRINSIC :: IEEE_ARITHMETIC
 USE, INTRINSIC :: IEEE_FEATURES, ONLY: IEEE_UNDERFLOW_FLAG
! IEEE_OVERFLOW is always available with IEEE_ARITHMETIC
 REAL X, Y
 REAL SCALED_X, SCALED_Y, SCALED_RESULT
 LOGICAL, DIMENSION(2) :: FLAGS
 TYPE(IEEE_FLAG_TYPE), PARAMETER, DIMENSION(2) :: &
 OUT_OF_RANGE = (/ IEEE_OVERFLOW, IEEE_UNDERFLOW /)
 INTRINSIC SQRT, ABS, EXPONENT, MAX, DIGITS, SCALE
! The processor clears the flags on entry
! Try a fast algorithm first
 HYPOT = SQRT(X**2 + Y**2)
 CALL IEEE_GET_FLAG(OUT_OF_RANGE,FLAGS)
 IF (ANY(FLAGS)) THEN
 CALL IEEE_SET_FLAG(OUT_OF_RANGE,.FALSE.)
 IF (X==0.0 .OR. Y==0.0) THEN
 HYPOT = ABS(X) + ABS(Y)
 ELSE IF (2*ABS(EXPONENT(X)-EXPONENT(Y)) > DIGITS(X)+1) THEN
 HYPOT = MAX(ABS(X), ABS(Y))! one of X and Y can be ignored
 ELSE ! scale so that ABS(X) is near 1
 SCALED_X = SCALE(X, -EXPONENT(X))
 SCALED_Y = SCALE(Y, -EXPONENT(X))
 SCALED_RESULT = SQRT(SCALED_X**2 + SCALED_Y**2)
 HYPOT = SCALE(SCALED_RESULT, EXPONENT(X)) ! may cause overflow
 END IF
 END IF
! The processor resets any flag that was signaling on entry
END FUNCTION HYPOT

An attempt is made to evaluate this function directly in the fastest possible way. This will work almost every
time, but if an exception occurs during this fast computation, a safe but slower way evaluates the function. This
slower evaluation may involve scaling and unscaling, and in (very rare) extreme cases this unscaling can cause
overflow (after all, the true result might overflow if X and Y are both near the overflow limit). If the overflow
or underflow flag is signaling on entry, it is reset on return by the processor, so that earlier exceptions are not
lost.

28 17th March 1997

