
ISO/IEC JTC1/SC22/WG5 N1277

X3J3 / 97-154

International Organization for Standardization

Interoperability of Fortran and C

Technical Report de�ning extensions to
ISO/IEC 1539-1 : 1997

fFirst PDTR produced 1997{03{17g

THIS PAGE TO BE REPLACED BY ISO CS

THIS DOCUMENT IS A DRAFT CIRCULATED FOR COMMENT AND APPROVAL. IT IS

THEREFORE SUBJECT TO CHANGE AND MAY NOT BE REFERRED TO AS AN

INTERNATIONAL STANDARD UNTIL PUBLISHED AS SUCH.

Informal comments may be sent to the Project Editor,
Hennecke@RZ.UNI-KARLSRUHE.DE. Formal comments should be submitted to

ISO/IEC through the Fortran working groups of their National Member Bodies.

1997{03{17 Interoperability of Fortran and C i

Contents

Foreword ii

Introduction iii

1 General 1

1.1 Scope . 1

1.2 Organization of this Technical Report 1
1.3 Inclusions . 1

1.4 Exclusions . 2

1.5 Conformance . 2
1.6 Notation used in this Technical Report 2

1.7 Normative References . 3

2 Rationale 4

3 Technical Speci�cation 6

3.1 Intrinsic modules and C standard headers 6

3.2 The BIND attribute . 7
3.3 Datatype mapping . 9

3.3.1 Matching C basic types with Fortran intrinsic types 10

3.3.2 Numerical limits of the C environment 11
3.3.3 C enumerated types . 12

3.3.4 C structure types . 13
3.3.5 C union types . 16

3.3.6 C array types . 17

3.3.7 C pointer types . 18
3.3.8 C function types . 23

3.3.9 Handling of C typedef names 23
3.3.10 Type quali�ers . 24

3.3.11 Storage class speci�ers . 25

3.4 Memory layout inquiry functions 25
3.4.1 The size_t type de�nition 25

3.4.2 Support for the C sizeof operator 25
3.4.3 C common de�nitions <stddef.h>, and offsetof support . 26

3.5 Procedure calling conventions . 27

3.5.1 Procedure interface for BIND(C) binding 27
3.5.2 Procedure reference for BIND(C) binding 32

3.5.3 Support for C variable argument lists <stdarg.h> 34

3.6 Access to global C data objects . 36

ii First PDTR 1997{03{17

3.7 Program startup information . 38

4 Editorial changes to ISO/IEC 1539-1 : 1997 39

A Intrinsic module contents samples 45

1997{03{17 Interoperability of Fortran and C iii

Foreword

[This page to be provided by ISO CS]

iv First PDTR 1997{03{17

Introduction

This Technical Report de�nes extensions to the programming language Fortran to
permit Fortran programs to reference C functions and C data objects with external
linkage. The current Fortran language is de�ned by the International Standard
ISO/IEC 1539-1:1997, and the current C language is de�ned by the International
Standard ISO/IEC 9899:1990.

This Technical Report has been prepared by ISO/IEC JTC1/SC22/WG5, the
technical working group for the Fortran language. It is the intention of ISO/IEC
JTC1/SC22/WG5 that the semantics and syntax described in this Technical Re-
port shall be incorporated in the next revision of IS 1539-1 (Fortran) exactly
as they are speci�ed here, unless experience in the implementation and use of
these features has identi�ed any errors which need to be corrected, or changes are
required in order to achieve proper integration, in which case every reasonable
e�ort will be made to minimize the impact of such integration changes on existing
commercial implementations.

These extensions are being de�ned by means of a Type 2 Technical Report in
the �rst instance to allow early publication of the proposed speci�cation. This
is to encourage early implementations of important extended functionalities in a
consistent manner, and will allow extensive testing of the design of the extended
functionality prior to its incorporation into the Fortran language by way of the
revision of IS 1539-1 (Fortran).

1997{03{17 Interoperability of Fortran and C 1

Information Technology {

Programming Languages { Fortran

Technical Report:

Interoperability of Fortran and C

1 General

1.1 Scope

This Technical Report de�nes extensions to the programming language Fortran to
permit Fortran programs to reference C functions and C data objects with external
linkage. The current Fortran language is de�ned by the International Standard
ISO/IEC 1539-1:1997, and the current C language is de�ned by the International
Standard ISO/IEC 9899:1990. The enhancements de�ned in this Technical Report
cover three main areas. The �rst area provides general mechanisms to map data
types of C to Fortran. The second area addresses the calling conventions for a C
function referenced in a Fortran program, and the third area provides access to
global C data objects from within Fortran.

1.2 Organization of this Technical Report

This document is organized in four sections, covering general issues and the main
areas mentioned above. Section 2 provides a rationale which explains the need
to de�ne the features contained in this Technical Report in advance of the next
revision of IS 1539-1 (Fortran). Section 3 contains a full description of the syntax
and semantics of the features de�ned in this Technical Report, and section 4
contains a complete set of edits to ISO/IEC 1539-1:1997 that would be necessary
to incorporate these features in the Fortran standard.

1.3 Inclusions

This Technical Report speci�es:

1. The form that a Fortran interface to an external procedure de�ned by means
of C may take

2. The form that a Fortran speci�cation for a data object de�ned by means of
C may take

3. The rules for interpreting the meaning of a reference to an external procedure
or data object de�ned by means of C

2 First PDTR 1997{03{17

1.4 Exclusions

This Technical Report does not specify:

1. Mixed-Language Input and Output

2. Methods to automatically convert C headers to Fortran

3. Methods to access Fortran program units from C

4. A complete mapping of all C types to Fortran types. Notably, the C enu-
merated types, union types, and some pointer types are not supported.

1.5 Conformance

The language extensions de�ned in this Technical Report are implemented by
de�ning a small number of �rst-class language constructs, and some intrinsic mod-
ules which make various entities accessible to the Fortran program.

A program is conforming to this Technical Report if it uses only those forms and
relationships described in IS 1539-1 or in this Technical Report, and if the program
has an interpretation according to these two documents.

Note 1.1

Because this Technical Report de�nes extensions to the base Fortran lan-
guage, a program conforming to this Technical Report is, in general, not a
standard-conforming Fortran 95 program.
However, since it is the intention of WG5 to incorporate the semantics
and syntax described in this document into the next revision of IS 1539-1,
it is likely that a program conforming to this Technical Report will be a
standard-conforming Fortran 2000 program.

A processor is conforming to this Technical Report if it is a standard-conforming
processor as de�ned in section 1.5 of IS 1539-1, and makes all �rst-class language
constructs and all intrinsic modules de�ned in this Technical Report intrinsically
available.

Note 1.2

See the edit for subclause 2.5.7 for accessibility of entities de�ned in intrinsic
modules.

1.6 Notation used in this Technical Report

The notation used in this Technical Report is the notation de�ned in section 1.6
of IS 1539-1 (Fortran). However, deviations from these conventions are possible
in descriptions of C language elements. In such cases, the syntactic conventions
of IS 9899 (C) are followed.

1997{03{17 Interoperability of Fortran and C 3

1.7 Normative References

The following standards contain provisions which, through reference in this text,
constitute provisions of this Technical Report. At the time of publication, the
editions indicated were valid. All standards are subject to revision, and parties
to agreements based on this Technical Report are encouraged to investigate the
possibility of applying the most recent editions of the standards indicated be-
low. Members of ISO and IEC maintain registers of currently valid International
Standards.

ISO/IEC 646 : 1991 Information Technology { ISO 7-bit coded

character set for information interchange

ISO/IEC 1539-1 : 1997 Information Technology {

Programming Languages { Fortran

ISO/IEC 9899 : 1990 Information Technology {

Programming Languages { C

Note 1.3

Currently, ISO/IEC 1539-1:1997 means ISO/IEC DIS 1539-1:1996.

4 First PDTR 1997{03{17

2 Rationale

A signi�cant fraction of the standard (de-facto or de-jure) computing environment
comes with a programming interface for the C language, ISO/IEC 9899:1990.
Examples include

� the standard library of the ISO C language itself;

� the System Application Program Interface (API) of the Portable Operating
System Interface (POSIX), ISO/IEC 9945-1:1990;

� the X Window System of the X Consortium, including the X Library and X
Toolkit Intrinsics, and Motif;

� the Distributed Computing Environment (DCE) of the Open Software Foun-
dation (OSF), including among others the DCE remote procedure calls;

� visualization and graphics packages;

� low-level mechanisms for interprocess communication (IPC) like semaphores,
shared memory mechanisms, and TCP/IP sockets.

Many of these components do not have a Fortran programming interface, and the
Fortran programmer is currently unable to exploit this wealth of software in a
portable way. Recoding this existing technology in Fortran is often impossible for
technical as well as economical reasons.

This causes many problems for those programmers who wish or need to inter-
face their numerically intensive applications, written in Fortran, to the existing
computing environment: Many applications require access to operating system
facilities or C-style stream I/O, rely on client/server technologies, or need graphi-
cal user interfaces (GUIs) and visualization capabilities. Due to the di�culties of
providing a Fortran interface to C software in a standard fashion, many Fortran
users are turning to alternative languages for such applications, even if Fortran is
ideally suited to the \computational" component of their tasks. It is therefore very
important that a standard mechanism to access such C programming interfaces is
de�ned as soon as possible.

Although it cannot be expected that every single feature of the C language can
be made accessible to Fortran, the core requirement is that a Fortran program
should be able to portably reference any external C function whose return type
and parameter types have a general approximation to Fortran data types, and
should also be able to portably access external C data objects of such types.

1997{03{17 Interoperability of Fortran and C 5

Note 2.1

In cases where such type mapping is not easily achieved, it should be possible
to portably reference a series of external C functions and pass non-Fortran-
like arguments between them, or to write C stub functions that do the
mapping to types supported by the Fortran interface and reference these
stub functions in a portable way.

If this goal is achieved, a large portion of C code which is often separately compiled
and packaged in object code libraries should be accessible from Fortran.

Another factor very important to the usability of the Fortran interface is the abil-
ity to deal with C's concept of headers: most C packages have an API which
declares function prototypes, derived types, type names, macros, and external
variables that can be accessed by the application through the inclusion of C head-
ers. Although no attempt is made to automatically convert C headers to Fortran,
it should be possible that either the provider of the C package or the user creates
Fortran modules which contain the Fortran counterparts of the header contents
(explicit procedure interfaces, type de�nitions, type alias names, named constants
and module procedures corresponding to the C macros, and module variables
which bind to the external C variables).

6 First PDTR 1997{03{17

3 Technical Speci�cation

This section describes the extensions to the base Fortran language that this Tech-
nical Report de�nes to facilitate interoperability with the ISO C language, more
precisely to allow a Fortran program to reference C functions and data objects
that have external linkage.

Note 3.1

The Edits of section 4 shall also be in e�ect.

3.1 Intrinsic modules and C standard headers

This Technical Report de�nes various named constants, derived type de�nitions,
operations on these derived types, and other procedures to support some features
of the ISO C language which are not an integral part of Fortran.

Access to all such entities de�ned in this Technical Report shall be provided by
an intrinsic module ISO C, with the following exceptions:

� The environmental limits speci�ed in the headers <limits.h> and <float.h>
shall be made accessible to the Fortran program through two intrinsic mod-
ules ISO C LIMITS H and ISO C FLOAT H, as described in section 3.3.2.

� An intrinsic module ISO C STDDEF H shall provide support for C common
de�nitions contained in <stddef.h>, as described in section 3.4.3.

� Support for C variable argument lists <stdarg.h> shall be provided through
an intrinsic module ISO C STDARG H, as described in section 3.5.3.

Note 3.2

These standard headers are also required by the C standard for a free-
standing implementation. Note, however, that not all entities contained in
<stddef.h> are required to be supported in ISO C STDDEF H.

Apart from these intrinsic modules, the Fortran processor is not required to sup-
port any of the C standard headers. However, if a Fortran processor does support
any C standard header, it shall provide access to those facilites by additional
intrinsic modules. The following module names shall be used:

1997{03{17 Interoperability of Fortran and C 7

C standard header Fortran intrinsic module

<errno.h> ISO C ERRNO H
<assert.h> ISO C ASSERT H
<ctype.h> ISO C CTYPE H
<locale.h> ISO C LOCALE H
<math.h> ISO C MATH H

<setjmp.h> ISO C SETJMP H
<signal.h> ISO C SIGNAL H
<stdio.h> ISO C STDIO H
<stdlib.h> ISO C STDLIB H
<string.h> ISO C STRING H
<time.h> ISO C TIME H

<iso646.h> ISO C ISO646 H
<wctype.h> ISO C WCTYPE H
<wchar.h> ISO C WCHAR H

Note 3.3

The last three standard headers are de�ned in Amendment 1: \C Integrity"
to the C standard, ISO/IEC 9899:1990/Amd.1:1995.

In each of these modules, an implementation may support all or parts of the
contents of the corresponding C standard header. The names of supported entities
shall be identical to the corresponding C names, except for Fortran's insensitivity
to alphabetic case. Since Fortran does not allow the �rst letter in a name to be an
underscore, the Fortran names for the three macros _IOFBF, _IOLBF and _IONBF

in <stdio.h> shall be IOFBF, IOLBF and IONBF.

Note 3.4

Note that these naming rules may cause some Fortran intrinsic procedures
to become inaccessible if these intrinsic modules are used. Notably, the
NULL macro in the standard headers <stddef.h>, <locale.h>, <stdio.h>,
<stdlib.h>, <string.h> and <time.h> will cause the Fortran NULL in-
trinsic function to become inaccessible. Other potential con
icts arise from
abs in <stdlib.h>, and frommost of the functions in <math.h>. All of these
name con
icts can be circumvented by rename or only-rename clauses on
the corresponding USE statement.

These modules may also provide access to additional entities not speci�ed in the
ISO C standard.

3.2 The BIND attribute

The Fortran standard does not specify the mechanisms by which programs are
transformed for use on computing systems (1.4). Additionally, a reference in a
Fortran program to a procedure de�ned by means other than Fortran is normally
made as though it were de�ned by an external subprogram (12.5.3).

8 First PDTR 1997{03{17

This Technical Report de�nes a BIND attribute, which may be employed to
adapt the behavior of the Fortran processor to the behavior of another processor,
possibly for another language, in a portable way. The corresponding bind-spec

speci�cation may be used in all places where it is necessary to inform the Fortran
processor that a change of processor dependent and language dependent conven-
tions is required for the interoperability of Fortran and C. This section speci�es
the general form of a bind-spec speci�cation.

R1601 bind-spec is BIND ([LANG=] lang-keyword
[, [NAME=] name-string]
[, PRAGMA=pragma-string] ...)

R1602 lang-keyword is FORTRAN
or C

R1603 name-string is scalar-default-char-init-expr

R1604 pragma-string is scalar-default-char-init-expr

Constraint: If name-string is present and lang-keyword is FORTRAN, the value
of name-string shall be a valid Fortran name.

Constraint: If name-string is present and lang-keyword is C, the value of name-

string shall be a valid C external name.

The term \BIND(lang-keyword) attribute" denotes the BIND attribute with the
given lang-keyword, this term does not imply presence or absence of a name-string

or pragma-strings.

BIND(FORTRAN) speci�es the default behavior of the Fortran processor. The
behavior for lang-keyword C is de�ned in this Technical Report. The interpretation
of pragma-strings is processor dependent. Any pragma that is not recognized by
the processor is ignored.

Note 3.5

Selecting the programming language C with the lang-keyword C alone does
not specify the implementation-de�ned and implementation-dependent be-
havior of the C processor, and specifying such information would in fact
make the program unportable. The Fortran processor should be accompa-
nied with documentation that states which C processor's conventions are
followed.
If multiple C processors are supported, selection of a speci�c C processor
should occur outside the Fortran program (e.g. by command-line arguments)
rather than by introducing new lang-keywords for nondefault C processors.

1997{03{17 Interoperability of Fortran and C 9

Note 3.6

Note that although names of C entities are normally case-sensitive, a C
processor may ignore the distinction of alphabetic case of external names.
This limitation is implementation-de�ned.
A strictly conforming C program shall not rely on implementation-de�ned
behavior, and a Fortran processor that does not support lowercase letters
still conforms to this Technical Report because it will be able to generate
bindings to all external names that are allowed in a strictly conforming C
program.

The bind-spec may appear in a derived-type-def, as a pre�x-spec within an inter-
face body for an external procedure, or as an attr-spec in the speci�cation of a
data object which is not a dummy argument. Since Fortran also provides speci�-
cation statements for attributes, the bind-spec for data objects may alternatively
be speci�ed by a BIND statement.

R1605 bind-stmt is bind-spec [::] extern-name

Constraint: A bind-stmt may only be speci�ed for variables which are not
dummy arguments.

Section 3.3.4 describes the use of a bind-spec to map C structure types to Fortran,
section 3.5 shows how to use a bind-spec in explicit procedure interfaces to map
C function prototypes to Fortran, and section 3.6 explains how to bind to C data
objects with external linkage by using a bind-spec.

3.3 Datatype mapping

This section describes the mapping of C object types to Fortran types. To specify
C's function types, a Fortran program shall use explicit procedure interfaces with
a BIND(C) attribute, as described in section 3.5. The only C incomplete types
which are supported are C function parameters of unknown size. These are either
converted to pointer types, or mapped to assumed size dummy arrays as described
in section 3.3.6.

Note 3.7

The incomplete type void is not supported (except when it denotes an
empty parameter-type-list). However, the types \pointer to void" and
\function returning void" derived from it are supported, see sections 3.3.7
and 3.5.

Both languages de�ne object types that are intrinsically available, these are called
intrinsic types in Fortran and basic types in C. Di�erent sorts of derived types can
be constructed from them.

10 First PDTR 1997{03{17

Note 3.8

The C enumerated types declared with the type speci�er enum are not spec-
i�ed to be basic types in the C standard (they are integral types, but not in-
teger types), but neither are they speci�ed to be derived types. Section 3.3.3
addresses C enumerated types.

Section 3.3.1 speci�es a complete mapping of C basic types to Fortran types,
access to the corresponding environmental limits is speci�ed in section 3.3.2. The
remaining sections deal with some of C's derived types. The mechanisms de�ned
in this Technical Report do not specify mappings for all possible C datatypes:
Derived type generation in C can be recursively applied, not all of the resulting
types have a general approximation in Fortran types.

3.3.1 Matching C basic types with Fortran intrinsic types

The basic types of C are the type char, and the integer types and
oating types.
This Technical Report utilizes the kind type parameters of Fortran's intrinsic types
to establish a one-to-one matching of C's basic types to Fortran character, integer
and real types: The intrinsic module ISO C shall de�ne a c-kind-param, which is a
default integer constant, for each basic type. Their names shall be as given in the
table below. If the processor supports a C basic type, the corresponding c-kind-

param shall be the suitable kind-param supported by the processor. Otherwise
it shall be a negative default integer constant. The following table shows the
correspondence of C basic types and Fortran intrinsic types of suitable c-kind-

param. The character length of the CHARACTER(KIND=C CHAR) type which
matches the C type char shall be one.

C basic type Fortran intrinsic type

char CHARACTER(KIND=C CHAR)
signed char INTEGER(C SCHAR)
short INTEGER(C SHRT)
int INTEGER(C INT)
long INTEGER(C LONG)
unsigned char INTEGER(C UCHAR)
unsigned short INTEGER(C USHRT)
unsigned int INTEGER(C UINT)
unsigned long INTEGER(C ULONG)
float REAL(C FLT)
double REAL(C DBL)
long double REAL(C LDBL)

Equivalent combinations of C type-speci�ers are all mapped to the same Fortran
type kind, e.g. long, long int, signed long and signed long int all corre-
spond to INTEGER(C LONG).

1997{03{17 Interoperability of Fortran and C 11

Note 3.9

The mnemonic names for the Fortran type kind parameters follow the same
naming conventions to identify the corresponding types that are used in the
C standard headers <limits.h> and <float.h>.

Note 3.10

In C, a char may be implemented as signed char or unsigned char, the
choice being implementation-de�ned. Only the types explicitly speci�ed as
signed or unsigned are integer types, the type char is not. Although all
three are character types, this Technical Report only maps the type char

to a Fortran character type.

Since Fortran does not support unsigned integer types and the unsigned integer C
types have the same size and alignment requirements as their signed counterparts,
the kind type parameters for unsigned integer types shall have the same value as
those for the corresponding signed types. The interpretation of negative values in
a context which requires unsigned integer C values is processor dependent.

Note 3.11

Passing unsigned integer values returned by a C function to another C
function is possible by using variables of the corresponding signed inte-
ger Fortran type. The result values of Fortran's bit manipulation intrinsic
procedures can be assigned to variables which match an unsigned integer C
type, since Fortran's bit model (13.5.7) matches C's unsigned integer model.
The range of non-negative values of a signed integer C type is a subset of
the values of the corresponding unsigned integer C type, and the representa-
tion of these values is identical. So all operations and assignments of values
which stay in the non-negative range of values of a signed integer type are
well-de�ned in a context which requires the corresponding unsigned integer
type.

Note 3.12

If the Fortran processor supports the non-standard C integer type
long long, the recommended name for the corresponding Fortran kind type
parameter is C LONG LONG.

3.3.2 Numerical limits of the C environment

The ISO C standard requires that a conforming C implementation shall docu-
ment all its numerical limits in the headers <limits.h> and <float.h>. The For-
tran processor shall provide twomodules ISO C LIMITS H and ISO C FLOAT H,
which shall make these limits available in Fortran through constants having the
same names as those de�ned in the C standard. The Fortran constants shall be
of type default integer, except for the constants given in the tables below.

12 First PDTR 1997{03{17

<limits.h> constant Fortran type

SCHAR MIN INTEGER(C SCHAR)
SCHAR MAX INTEGER(C SCHAR)
UCHAR MAX INTEGER(C UCHAR)
SHRT MIN INTEGER(C SHRT)
SHRT MAX INTEGER(C SHRT)
USHRT MAX INTEGER(C USHRT)
INT MIN INTEGER(C INT)
INT MAX INTEGER(C INT)
UINT MAX INTEGER(C UINT)
LONG MIN INTEGER(C LONG)
LONG MAX INTEGER(C LONG)
ULONG MAX INTEGER(C ULONG)

<float.h> constant Fortran type

FLT MAX REAL(C FLT)
DBL MAX REAL(C DBL)
LDBL MAX REAL(C LDBL)

FLT EPSILON REAL(C FLT)
DBL EPSILON REAL(C DBL)
LDBL EPSILON REAL(C LDBL)

FLT MIN REAL(C FLT)
DBL MIN REAL(C DBL)
LDBL MIN REAL(C LDBL)

If a c-kind-param de�ned in ISO C has a negative value, the processor need not
provide constants de�ned in ISO C LIMITS H and ISO C FLOAT H which use
that c-kind-param as a kind-param. In this case, it is processor-dependent whether
the names of such constants are accessible (with another kind type parameter
supported by the processor and an arbitrary value) or not.

Except for the unsigned integer types, the values made accessible by a Fortran
processor shall conform to the requirements of the C standard. For the unsigned
integer types, the Fortran type MAX constants shall have a value for which each
binary digit wk in the bit model of section 13.5.7 has the same value as the
corresponding bit in the corresponding C unsigned integer type MAX value.

3.3.3 C enumerated types

Fortran does not support enumerated types, and this Technical Report does not
provide features to map C enum types to Fortran. Although all C \enumera-
tors" (the enumeration constants) are of type int and can be mapped to con-
stants of type INTEGER(C INT), the type chosen for a given enumeration type

1997{03{17 Interoperability of Fortran and C 13

is implementation-de�ned: It need not be int but only conformable to any in-
teger type which is capable of representing the values of this enumeration type's
enumerators.

Note 3.13

The user is responsible for selecting the suitable implementation-de�ned
integer kind for a given enumerated type.

3.3.4 C structure types

A structure type in C with member objects which all have a type for which this
Technical Report establishes a corresponding Fortran type can be mapped to
Fortran by using a derived type de�nition. To ensure that the memory layout
of the Fortran derived type matches the layout of the C struct, the BIND(C)
attribute shall be speci�ed in the derived-type-def. In this case, SEQUENCE shall
not be speci�ed.

Note 3.14

A pragma-string may be used to provide additional, implementation depen-
dent information to the Fortran processor. For example, #pragma options

settings describing alignment of C structures may be given. However, the
interpretation of pragma-strings is completely processor dependent.

The order of the Fortran component-def-stmts shall be identical to the order of
the corresponding C struct-declaration-list. A component-initialization shall not
be speci�ed for derived types that have the BIND(C) attribute.

14 First PDTR 1997{03{17

Note 3.15

For example, the C structure type declaration

struct point f
int x;

int y;

g;

can be mapped to Fortran in the following way:

TYPE point

BIND(C)

INTEGER(c int) :: x, y

END TYPE point

Note that the Fortran type-name need not correspond to the tag of
the C struct because both are local to their respective scoping units.
Consequently, a NAME= clause in a BIND(C) speci�cation within a
derived type de�nition is not allowed. Similarly, the Fortran member
objects need not have the same names as the C structure members.
Nested structures can be treated in the same way: The C structure type
declaration

struct rect f
struct point pt1;

struct point pt2;

g;

can be mapped to a Fortran type

TYPE rect

BIND(C)

TYPE(point) :: pt1, pt2

END TYPE rect

using the above mapping for struct point for the member objects.

The POINTER component-attr-spec is not allowed because there is no C type
whose corresponding Fortran type has the POINTER attribute. C structs that
include bit-�elds cannot be mapped to Fortran because this Technical Report does
not specify mappings for bit-�elds.

All C structure member objects which are pointers to a structure have the same
representation, and the type TYPE(C STRUCT PTR) shall be speci�ed for all
such member objects. A structure type with member objects of pointer type
other than \pointer to void", \pointer to struct" or \pointer to char" cannot
be mapped to Fortran.

1997{03{17 Interoperability of Fortran and C 15

Note 3.16

For example, the self-referential C structure

struct tnode f
char *word;

int count;

struct tnode *left;

struct tnode *right;

g;

represents a binary tree with two data �elds and two pointers to
other nodes of the tree. It can be mapped to the Fortran data type

TYPE tnode

BIND(C)

TYPE(C CHAR PTR) :: word

INTEGER(C INT) :: count

TYPE(C STRUCT PTR) :: left, right

END TYPE tnode

because all pointers to structs have the same representation.

C structure member objects which are arrays of char shall be mapped to For-
tran arrays of type CHARACTER(LEN=1,KIND=C CHAR), as described in sec-
tion 3.3.6. Alternatively, one-dimensional C arrays of char with n elements may
be mapped to Fortran scalars of type CHARACTER(LEN=n,KIND=C CHAR).
In either case, the BIND(C) attribute in the derived-type-def ensures that no
Fortran character length information is stored in the structure.

Note 3.17

For example, in the C structure

struct dirent f

char d name[NAME MAX+1];

g;

the d_name member object declaration reserves space for NAME MAX+1
characters. It may be mapped to a Fortran type like

TYPE dirent

BIND(C)

CHARACTER(LEN=NAME MAX+1,KIND=C CHAR) :: d name

END TYPE dirent

since it may be more convenient to process D NAME as a Fortran
character string than as an array of characters.

16 First PDTR 1997{03{17

3.3.5 C union types

Fortran does not support union types, and this Technical Report does not provide
features to map C union types to Fortran.

Note 3.18

C objects of union type may be accessed by specifying separate BIND(C)
derived types for each union member (as if that member were the only
member of a struct), and using TRANSFER or EQUIVALENCE to
convert between these types. Note that the derived type used in the actual
binding to a C union must be big enough to hold the \widest" member
of the union and at the same time ful�l the most restrictive alignment
requirement of all union members: In

union u tag f

char name[13];

double val;

g u;

the member name probably is the widest member but the member
val probably has more restrictive alignment requirements. This means
that even if

TYPE u name

BIND(C)

CHARACTER(LEN=13,KIND=c char) :: name

END TYPE u name

TYPE u val

BIND(C)

REAL(c dbl) :: val

END TYPE u val

are suitable de�nitions for the union members, both are probably in-
su�cient to bind to the union object and it may be necessary to employ
an additional derived type like

TYPE u fits all

BIND(C)

REAL(c dbl) :: alignment

CHARACTER(LEN=1,KIND=c char) :: padding(5)

END TYPE u fits all

to ful�l both the size and alignment requirements.

1997{03{17 Interoperability of Fortran and C 17

3.3.6 C array types

An array type in C with an element type for which this Technical Report es-
tablishes a corresponding Fortran type can be mapped to Fortran by specifying
the DIMENSION attribute for that type. If the entity concerned is a C func-
tion parameter of unknown size, the array-spec of the dummy argument shall
be an assumed-size-spec. Otherwise, it shall be an explicit-shape-spec-list. One-
dimensional C arrays of char may alternatively be mapped to Fortran scalars of
type CHARACTER(KIND=C CHAR) with a character length parameter of n if
the C array has n elements, or * if the entity concerned is a C function parameter
of unknown size.

Note 3.19

This rule includes the common case of a C array of unknown size which is
initialized: the C declaration

extern int x[] = f 1, 3, 5 g;

de�nes x as a one-dimensional array of initially incomplete type, but
at the end of the initializer-list it has no longer incomplete type but a size
of three elements. The Fortran declaration for that array should speci�y
the DIMENSION(3) attribute. Note that the C declaration

extern char s[] = "I am a string";

results in s having the length 14 since a '\0' character gets auto-
matically added. Fortran should specify DIMENSION(14) or LEN=14
when binding to this C string.

Note 3.20

C guarantees a minimum of 12 array (or pointer or function) declarators,
whereas Fortran only supports 7 array dimensions. However, this limit will
be seldom reached for actual C code. For dummy arguments it can be
circumvented by the use of an assumed-size-spec and sequence association.

Because the array element ordering (6.2.2.2) of Fortran arrays is reverse to the
array subscripting of C arrays, the extents entering the Fortran array-spec shall
be speci�ed in the reverse order of the corresponding C array declarators.

Note 3.21

For one-dimensional arrays there is no di�erence between Fortran and C. If
required, conversion of two-dimensional arrays can be performed by the in-
trinsic procedure TRANSPOSE (13.14.111). For higher-dimensional arrays
this transposition must be done by the user.

Note that arrays and pointers are closely related in C, and in most situations
the C type \array of T" is implicitly converted to the C type \pointer to T".

18 First PDTR 1997{03{17

Notably, a C function parameter declared as \double a[]" is equivalent to a C
function parameter declared as \double *a". The Fortran binding to such a C
function parameter may build on any of these two declarations, regardless of which
is actually used in the C source.

3.3.7 C pointer types

In C, the pointer type \pointer to T" derived from a referenced type T is di�erent
from the referenced type T, and is also di�erent from pointer types derived from
other types. Like all C derived type constructions, this pointer type derivation
may be applied recursively.

This Technical Report does not provide features to map general C pointers to
Fortran because Fortran cannot generally express C's pointer types. However,
some special cases are supported: The C type \pointer to void" shall be mapped
to a Fortran derived type with type-name C VOID PTR, all C types of the form
\pointer to struct" shall be mapped to a Fortran derived type with type-name

C STRUCT PTR, and the C type \pointer to char" shall be mapped to a For-
tran derived type with type-name C CHAR PTR. These types shall have the
BIND(C) attribute and PRIVATE components. A named constant C NULL of
type TYPE(C VOID PTR) shall be provided. This constant denotes a C null

pointer, its value shall be distinct from all values denoting C pointers that com-
pare unequal to the C macro NULL.

C allows assignment of pointers without an explicit type cast if they have the same
pointer type or if one is a pointer to void. Therefore, the ISO C module shall
provide de�ned elemental assignment for the following combinations of variable
and expr :

Type of variable Type of expr

TYPE(C VOID PTR) TYPE(C VOID PTR)
TYPE(C VOID PTR) TYPE(C STRUCT PTR)

TYPE(C STRUCT PTR) TYPE(C VOID PTR)
TYPE(C STRUCT PTR) TYPE(C STRUCT PTR)
TYPE(C VOID PTR) TYPE(C CHAR PTR)
TYPE(C CHAR PTR) TYPE(C VOID PTR)
TYPE(C CHAR PTR) TYPE(C CHAR PTR)

Execution of these assignments shall result in the de�nition of variable with the
value of expr, as if the corresponding C assignment had taken place.

All C pointers may be compared to zero, denoted by the C macro NULL. To
support this comparison, the following function shall be provided:

C ISNULL (PTR)

1997{03{17 Interoperability of Fortran and C 19

Description. Compares PTR to zero, denoted by the C macro NULL.

Class. Transformational function.

Argument.

PTR shall be a scalar of type TYPE(C VOID PTR), TYPE(C STRUCT PTR)
or TYPE(C CHAR PTR). It is an INTENT(IN) argument.

Result Characteristics. The result is of type default logical.

Result value. The result value is .TRUE. if PTR denotes a C null pointer,
and .FALSE. if PTR does not denote a C null pointer.

Example. The value of C ISNULL(C NULL) is .TRUE..

Note 3.22

Comparing two pointers to members of the same array is not supported,
as well as subtracting such pointers. Pointer comparison to the integer
constant zero or to the C macro NULL by means of OPERATOR(==) or
OPERATOR(/=) is not supported.

The following two functions provide functionality similar to the C address operator
& and C indirection (dereference) operator * :

C ADDRESS (OBJ)

Description. Return the C-style address of a variable, converted to the type
\pointer to void".

Class. Transformational function.

Argument.

OBJ may be of any type. It is an INTENT(IN) argument. The actual argu-
ment shall be a variable. It shall not be an array section, an assumed
shape dummy argument, an allocatable array which is not allocated, or
have the POINTER attribute.

Result Characteristics. The result is of type TYPE(C VOID PTR).

Result value. If OBJ is a scalar, the result has the value of the C expression
(void *) &OBJ , where OBJ is the object associated with dummy argu-
ment OBJ. If OBJ is an array, the result value is (void *) &OBJ[0]. The
result value is unde�ned if OBJ is a scalar of type TYPE(C VOID PTR),
TYPE(C STRUCT PTR) or TYPE(C CHAR PTR) and C ISNULL(OBJ)
is true.

20 First PDTR 1997{03{17

Example. If a C translation unit contains the external declaration

extern int cdata;

and the Fortran program accesses this object by a variable declared

INTEGER(c_int), BIND(C,"cdata") :: fdata

the result value of C ADDRESS(FDATA) is the C address of cdata cast to
\pointer to void". This is the value of the C expression (void *) &cdata.
If FSTRING is a rank-1 variable of type CHARACTER(KIND=C CHAR),
C ADDRESS(FSTRING) returns a C pointer to the �rst character in that
array, cast to \pointer to void". This result value may be assigned to
an object of type TYPE(C CHAR PTR), using the extension of ASSIGN-
MENT(=) described above.

Note 3.23

Note that although OBJ is an INTENT(IN) argument and thus is not mod-
i�ed by a reference of C ADDRESS, the value of the actual argument asso-
ciated with OBJ may be changed later by C-style operations that modify
the object \pointed to" by the result value of C ADDRESS. The Fortran
processor is not required to guard such behaviour.

Note 3.24

Note that if OBJ is an automatic object, the value returned by C ADDRESS
is probably meaningless when OBJ has gone out of scope. It is the respon-
sibility of the programmer to take care of such e�ects.

C DEREFERENCE (PTR [, MOLD])

Description. Dereference a C-style pointer.

Class. Transformational function.

Argument.

PTR shall be a scalar of type TYPE(C VOID PTR), TYPE(C STRUCT PTR),
or TYPE(C CHAR PTR). It is an INTENT(IN) argument.

Optional Argument.

MOLD shall be a scalar. It is an INTENT(IN) argument. It shall not be
present if PTR is of type TYPE(C CHAR PTR). If PTR is of type
TYPE(C STRUCT PTR), MOLD shall be present and shall be of a
derived type which has the BIND(C) attribute. If PTR is of type
TYPE(C VOID PTR), MOLD shall be present and may be of any type.

1997{03{17 Interoperability of Fortran and C 21

Result Characteristics. The result is a scalar. If PTR is of type TYPE(C VOID PTR)
or of type TYPE(C STRUCT PTR), the result is of the same type and type
parameters as MOLD. If PTR is of type TYPE(C CHAR PTR), the result
is of type CHARACTER(LEN=*,KIND=C CHAR).

Result value.

Case (i): If PTR is of type TYPE(C VOID PTR), the result has the value of
the C expression *((MOLD *)PTR) where PTR is the object associated
with dummy argument PTR.

Case (ii): If PTR is of type TYPE(C STRUCT PTR), the result has the
value of the C expression *(PTR) where PTR is the object associated
with dummy argument PTR.

Case (iii): If PTR is of type TYPE(C CHAR PTR), the result value is the
C character string pointed to by PTR, up to and including the �rst
ASCII NUL character.

If C ISNULL(PTR) is true, the result value is unde�ned.

Example.

Case (i): If a C translation unit contains the external de�nitions

double x = 1.2; void *px = &x;

and the Fortran program accesses the pointer by a variable declared as

TYPE(C_VOID_PTR), BIND(C,"px") :: PTR

the value of C DEREFERENCE(PTR,MOLD=0.0 C DBL) is 1.2 C DBL.

Case (iii): If a C translation unit contains the external de�nition

char *cmessage = "hello";

and the Fortran program accesses this pointer to a C string constant
by a variable declared as

TYPE(C_CHAR_PTR), BIND(C,"cmessage") :: PTR

then C DEREFERENCE(PTR) is a character string of length 5 and has
the value C_CHAR_"hello" concatenated with an ASCII NUL character.

Note 3.25

The argument MOLD is necessary for the case of void pointers to
ensure that the pointer is converted to a pointer to the type of
MOLD before it is dereferenced. Objects of type TYPE(C VOID PTR),
TYPE(C STRUCT PTR) and TYPE(C CHAR PTR) are allowed as
MOLD arguments. For void and struct pointers, MOLD also speci�es
the referenced type which becomes the function result type.

22 First PDTR 1997{03{17

C pointer arithmetic is supported by the function C INCREMENT, which sup-
ports both incrementing (positive N) and decrementing (negative N) a C pointer:

Note 3.26

This Technical Report does not support pointer arithmetic by means
of adding or subtracting an integer to or from an object of e.g. type
TYPE(C VOID PTR) using OPERATOR(+) or OPERATOR({):
All pointer types (except pointers to char and structs) are explicitly cast to
\pointer to void" by the facilities speci�ed in this Technical Report. How-
ever, pointer arithmetic needs the size of the original referenced type, which
cannot be provided when using the operator form. The argument MOLD
of the C INCREMENT function can be used to provide this information
about the referenced type.

C INCREMENT (PTR [, MOLD] [, N])

Description. Increment a C-style pointer.

Class. Transformational function.

Argument.

PTR shall be a scalar of type TYPE(C VOID PTR), TYPE(C STRUCT PTR),
or TYPE(C CHAR PTR). It is an INTENT(IN) argument.

Optional Arguments.

MOLD shall be a scalar. It is an INTENT(IN) argument. It may be of any
type.

N shall be scalar and of type integer. It is an INTENT(IN) argument.

Result Characteristics. The result has the same type as the actual argument
associated with PTR.

Result value. The result has the value of the C expression

(PTR *)((MOLD *)PTR + N)

where PTR is the object associated with dummy argument PTR. The cast to
\pointer to MOLD" only happens if MOLD is present, and if N is not present
a default of one is used. The result value is unde�ned if C ISNULL(PTR)
is true.

Example. If PTR is a pointer to the �rst element of an array of 10 elements of
type long double which has been converted to \pointer to void", the result
of the function reference C INCREMENT(PTR,MOLD=0.0 C LDBL,N=2)
is a pointer to the third element of that array, converted to the type \pointer
to void".

1997{03{17 Interoperability of Fortran and C 23

Note 3.27

Pointer arithmetic is needed to be able to deal with C's pointers to null-
terminated arrays whose size is not known to the application. For example,
POSIX.1 speci�es that the values of environment variables are accessible
through an external variable declared

extern char **environ;

This is a pointer to a null-terminated array of character strings. This type is
not supported, but if the representation of \pointer to pointer to char" and
\pointer to void" is identical, Fortran may access this external C variable
by a module variable declared

TYPE(C_VOID_PTR), BIND(C,"environ") :: f_environ

F ENVIRON can be incremented by C INCREMENT using an argument
MOLD of type TYPE(C CHAR PTR), for N=1 the resulting value of
type TYPE(C VOID PTR) points to the second \pointer to char" in
the list. Dereferencing this value by C DEREFERENCE using an ar-
gument MOLD of type TYPE(C CHAR PTR) results in a value of type
TYPE(C CHAR PTR). This points to the second character string, or com-
pares equal to NULL if there is no second character string. Dereferencing a
second time (without MOLD) returns the actual string.

In addition to the C pointer types \pointer to void", \pointer to struct" and
\pointer to char" described above, section 3.5.1 describes how explicit procedure
interfaces that have the BIND(C) attribute can be used to specify function pro-
totypes of the form \pointer to function returning T" (or equivalently \function
returning T"), and how the PASS BY attribute can be used to specify additional C
pointer declarators for dummy arguments. Other pointer types are not supported
by this Technical Report.

3.3.8 C function types

C function types whose declarator does not contain a parameter-type-list are not
supported by this Technical Report. The speci�cation of a C function prototype
by means of an explicit interface with the BIND(C) attribute is described in
section 3.5.1.

3.3.9 Handling of C typedef names

In C, a declaration whose storage-class-speci�er is typedef can be used to de�ne
identi�ers that name types. These typedef-names do not introduce new types,
only synonyms for types that could be speci�ed in another way. They may be
used as type-speci�ers. This Technical Report introduces a type-alias-stmt, which
is a declaration-construct, to allow similar type name aliasing in Fortran.

24 First PDTR 1997{03{17

R1606 type-alias-stmt is TYPE [[, access-spec] ::]
type-alias-name => type-spec

Constraint: An access-spec is only allowed if the type-alias-stmt is within the
speci�cation-part of a module.

Constraint: A type-alias-name shall not be the same as the name of any intrinsic
type de�ned in IS 1539 nor the same as any accessible type-name

or type-alias-name.

The type-alias-name declared in a type-alias-stmt can be used interchangeable
with the corresponding type-spec: entities declared with TYPE(type-alias-name)
have the same type as if they were declared with the corresponding type-spec.

Note 3.28

For derived type type-names, this is similar to a rename of the name in a
USE statement. The type-alias-stmt is more general in that it also allows
aliasing intrinsic types, and is not limited to the USE statement.

If the aliased type-spec is a derived type, the expr-list in a structure-constructor for
type-alias-name shall be a valid expr-list for a structure-constructor for that de-
rived type. If the aliased type-spec is an intrinsic type, a structure-constructor for
type-alias-name shall contain a single expr, which shall be assignment compatible
with that intrinsic type.

Note 3.29

Example:
The Xlib application programming interface includes a type Window. It is
de�ned in <X11/Xlib.h>, by the following typedef statements:

typedef unsigned long XID;

typedef XID Window;

Rather than directly using an INTEGER(C ULONG) type-spec in
the application program, these details may be hidded by declaring type
aliases

TYPE XID => INTEGER(c ulong)

TYPE Window => TYPE(XID)

for the above typedefs and using TYPE(Window) as the type-spec.

3.3.10 Type quali�ers

This Technical Report does not provide facilities to specify C's type-quali�ers
const or volatile. When mapping to a quali�ed type, the Fortran program
shall use the corresponding unquali�ed type. This is possible since quali�ed types
have the same representation as the corresponding unquali�ed types.

1997{03{17 Interoperability of Fortran and C 25

If objects of a const-quali�ed type are used from within the Fortran program in
ways that violate the rules of the C standard for such objects, their value be-
comes unde�ned. The Fortran processor is not required to detect such violations.
The value of a volatile-quali�ed C data object is unspeci�ed within the Fortran
program.

3.3.11 Storage class speci�ers

With the exception of typedef which is described in section 3.3.9, this Technical
Report does not provide facilities to specify C's storage-class-speci�ers.

Note 3.30

Since only C objects and functions with external linkage are addressed by
this Technical Report, it is assumed that all C entities accessed from Fortran
have the extern storage-class-speci�er (or behave as if they had). Entities
which have the static storage-class-speci�er are either local variables, or
have �le scope (which is comparable to Fortran PRIVATE entities). They
are all inaccessible from Fortran, as well as local variables declared auto or
register.

If a C function's parameter has the register storage-class-speci�er, the behavior
when referencing that function from Fortran is unde�ned.

3.4 Memory layout inquiry functions

This section provides support for the C operator sizeof, the C macro offsetof,
and the size_t type de�nition.

3.4.1 The size_t type de�nition

The module ISO C shall make available the type-alias-name SIZE T, which shall
be a type alias for the implementation-de�ned integer type denoted by the C
typedef name size_t.

Note 3.31

This type alias denotes the result type of C SIZEOF and OFFSETOF.

3.4.2 Support for the C sizeof operator

The module ISO C shall make available the following inquiry function:

C SIZEOF (EXPR)

Description. Return the size (in bytes) of its operand.

Class. Inquiry function.

Argument.

26 First PDTR 1997{03{17

EXPR may be of any type. It is an INTENT(IN) argument. It may be
scalar or array valued. If it is a pointer, it shall be associated. If it is
allocatable, it shall be allocated.

Result Characteristics. The result is a scalar of an implementation-de�ned
integer type. The type alias TYPE(SIZE T) denotes this type.

Result value. The result value is the size of EXPR in bytes, where byte is
de�ned in section 3.4 of the C standard. If the actual argument is a pointer,
the size of its target is returned. If EXPR is of derived type, the result is
the total number of bytes in such an object, including internal and trailing
padding. If EXPR is an array, the result is the total number of bytes in the
array.

Example. The result of C SIZEOF(C CHAR 'A') is one.

3.4.3 C common de�nitions <stddef.h>, and offsetof support

The intrinsic module ISO C STDDEF H shall make available a constant NULL of
type TYPE(C VOID PTR) having the value C NULL, and the type alias name
SIZE T as de�ned in the intrinsic module ISO C.

In addition, the follwing inquiry function shall also be made available by the
module ISO C STDDEF H.

OFFSETOF (TYPE, MEMBER)

Description. Return the o�set (in bytes) to the strucure member designated
by MEMBER, from the beginning of its structure, designated by TYPE.

Class. Inquiry function.

Arguments.

TYPE shall be a scalar of derived type. It is an INTENT(IN) argument.

MEMBER shall be a structure component of the actual argument associated
with dummy argument TYPE. It is an INTENT(IN) argument.

Result Characteristics. The result is a scalar of an imlementation-de�ned
integer type. The type alias TYPE(SIZE T) denotes this type.

Result value. The result value is the o�set in bytes (where byte is de�ned
in section 3.4 of the C standard), to the structure member designated by
MEMBER, from the beginning of its structure, designated by TYPE.

Example. Given the declarations of Note 3.16 and a Fortran variable TREE of
type TYPE(TNODE), the result value of OFFSETOF(TREE,TREE%LEFT)
has the same value as the C expression offsetof(tnode,left).

1997{03{17 Interoperability of Fortran and C 27

Note 3.32

Note that the C macro offsetof takes the name of the type and a member
designator, whereas the Fortran function OFFSETOF takes the name of a
variable of the corresponding derived type and a structure component of
that variable, referenced by a subobject designator.

3.5 Procedure calling conventions

This section de�nes mechanisms to instruct the Fortran processor to follow the
calling conventions of the processor designated by the lang-keyword C when an
external procedure de�ned by means of C is referenced. An explicit interface
for that procedure shall be accessible in all scoping units containing a procedure
reference that should follow these modi�ed calling conventions. The function-stmt

or subroutine-stmt in the corresponding interface-body shall contain a bind-spec

speci�cation with lang-keyword C.

Section 3.5.1 contains the rules for the speci�cation of a Fortran explicit interface
corresponding to a C function prototype. Section 3.5.2 describes the procedure
reference to such a procedure, including the modi�ed process of argument associ-
ation. Support for C varying length argument lists is provided in section 3.5.3.

3.5.1 Procedure interface for BIND(C) binding

This Technical Report does not support old-style C function declarators which
do not contain a parameter-type-list. An explicit interface with the BIND(C)
attribute corresponds to a C function prototype inluding a parameter-type-list.

Note 3.33

This restriction is imposed to avoid the complicated rules of C for mixed
old-style and new-style function declarations and de�nitions.
When binding to a C function whose de�nition is old-style (an optional
identi�er-list is enclosed in the function's parantheses), an explicit interface
should be speci�ed which corresponds to the C function prototype which
would result from C's default argument promotion of the old-style C function
de�nition.

3.5.1.1 Pre�x speci�cations

The pre�x of a function-stmt or subroutine-stmt in an interface-body that cor-
responds to a C function prototype shall contain a bind-spec speci�cation with
lang-keyword C. Specifying RECURSIVE in the interface body is allowed and
has no e�ect. Since a pure procedure must be a subprogram (that is, de�ned by
means of Fortran), the PURE or ELEMENTAL pre�x shall not be present in the
interface body.

28 First PDTR 1997{03{17

If the Fortran entity is a dummy procedure, no name-string shall be present. If the
Fortran entity is an external procedure and no name-string is present, the function-
name or subroutine-name is used to generate an external entry for the procedure,
using the Fortran processor's conventions. This implies ignoring alphabetic case
of the name. If the Fortran entity is an external procedure and a name-string is
speci�ed, the external entry is generated using the C processor's conventions, as
if the value of the name-string were a C external name.

3.5.1.2 Mapping the C function's return type

If the C function's return type is void, the Fortran interface shall specify a sub-
routine. Otherwise, the Fortran interface shall specify a function with a scalar
result.

Note 3.34

The ISO C standard requires that the return type of a C function shall
not be a function type or array type (6.5.4.3). This implies that a Fortran
interface for a C function must not specify an array-valued function result.

The declaration of the function result variable shall be as follows: If the return
type of the C function is

� a basic type or a structure type, the function result variable shall have the
type speci�ed for that C type in section 3.3 of this Technical Report.

� an enumeration type or union type, this is not supported.

� \pointer to void", \pointer to struct" or \pointer to char", the function re-
sult variable shall have the type TYPE(C VOID PTR), TYPE(C STRUCT PTR)
or TYPE(C CHAR PTR), respectively.

All other C pointer types are not supported.

3.5.1.3 The PASS BY attribute

The PASS BY attribute speci�es C pointer declarators for dummy data objects.
It can be declared by a pass-by-spec inside an interface-body whose function-stmt

or subroutine-stmt has the BIND(C) pre�x.

R1607 pass-by-spec is PASS BY (pass-by-string
[, PRAGMA=pragma-string] ...)

R1608 pass-by-string is scalar-default-char-init-expr

Constraint: The pass-by-string shall have length zero, or the value "*".

The term \PASS BY(pass-by-string) attribute" denotes the PASS BY attribute
with the given pass-by-string, this term does not imply presence or absence of
pragma-strings.

1997{03{17 Interoperability of Fortran and C 29

A "*" character in the pass-by-string is interpreted as a C pointer declarator, and
changes the type T of the dummy argument as speci�ed without that pointer
declarator to the type \pointer to T". The interpretation of pragma-strings is
processor dependent. Any pragma that is not recognized by the processor is
ignored.

Note 3.35

A pragma-string may be used to provide additional, implementation de-
pendent information to the Fortran processor. For example, information
about near or far addressing may be given (on architectures with a seg-
mented memory model). However, the interpretation of pragma-strings is
completely processor dependent.

Since Fortran also provides speci�cation statements for attributes, the pass-by-spec
may alternatively be speci�ed by a PASS BY statement.

R1609 pass-by-stmt is pass-by-spec [::] dummy-arg-name-list

Constraint: A pass-by-stmt shall only occur inside an interface-body whose
function-stmt or subroutine-stmt has the BIND(C) pre�x.

Constraint: Each dummy-arg shall be a dummy data object.

The pass-by-spec is used in the following section to map C function parameters to
Fortran dummy arguments.

3.5.1.4 Mapping C function parameters to dummy arguments

The interface-body that speci�es a Fortran interface to a C function shall specify
dummy arguments that correspond by position with the C function parameters
in the parameter-type-list. If the list consists solely of void, no dummy argument
shall be speci�ed. Section 3.5.3 deals with the case that the list terminates with
an ellipsis.

The Fortran declaration for these dummy arguments shall be as follows: If the
type of the C function parameter is

� a basic type or a structure type, the dummy argument shall be scalar and
have the type speci�ed for that C type in section 3.3 of this Technical Report.
No pass-by-spec with a pointer declarator shall be present.

� an enumeration type or union type, this is not supported.

� a type \function returning T", this type is adapted by the C processor to
the type \pointer to function returning T" and the rules for that type shall
be followed.

30 First PDTR 1997{03{17

� a type \array of T", this type is adapted by the C processor to the type
\pointer to T". The Fortran interface shall either use a declaration corre-
sponding to \pointer to T", or shall declare the type corresponding to the C
type T, a DIMENSION attribute corresponding to the C array declarator,
and no pass-by-spec with a pointer declarator.
One-dimensional C arrays of char may alternatively be mapped to Fortran
scalars of type CHARACTER(KIND=C CHAR) with a character length
parameter of n if the C array has n elements, or * if the C function param-
eter has unknown size. No pass-by-spec with a pointer declarator shall be
speci�ed.

Note 3.36

Note that the BIND(C) attribute in the pre�x of the procedure ensures that
no Fortran character length information is passed for dummy arguments of
type character.

Note 3.37

Note that all information about the shape of the argument is lost when the
adapted type \pointer to T" is used in the mapping.

If the type of the C function parameter is \pointer to T", the rules for the dummy
argument depend on the referenced type: If the type T is

� the incomplete type void, the dummy argument shall be a scalar of type
TYPE(C VOID PTR) and no pass-by-spec with a pointer declarator shall
be present.

� a structure type, the dummy argument shall be a scalar of the derived type
corresponding to the C type T, and the PASS BY("*") attribute shall be
speci�ed for that dummy argument. Alternatively, the dummy argument
may be a scalar of type TYPE(C STRUCT PTR) for which no pass-by-spec

with a pointer declarator is speci�ed.

Note 3.38

Using the type TYPE(C STRUCT PTR) to bind to a dummy argument of
type \pointer to struct" is discouraged, because all information about the
struct is lost and the processor will not be able to detect type mismatches
between di�erent structs at a call.

� char, the dummy argument shall be a scalar of type TYPE(C CHAR PTR)
and no pass-by-spec with a pointer declarator shall be present. Alternatively,
the dummy argument may be a scalar of type CHARACTER(KIND=C CHAR)
and character length one for which the PASS BY("*") attribute is speci�ed.

1997{03{17 Interoperability of Fortran and C 31

� an integer type,
oating type, or structure type, the dummy argument shall
be a scalar which has the type corresponding to the C type T, and the
PASS BY("*") attribute shall be present.

� an enumeration type or union type, this is not supported.

� a type \function returning T1", a dummy procedure shall be declared. There
shall be an explicit interface for the dummy procedure in the speci�cation-

part of the interface-body, and that interface shall specify the BIND(C) at-
tribute without a name-string. The explicit interface of the dummy proce-
dure shall correspond to the function prototype of the C funtion parameter,
as speci�ed in this section.

� \pointer to void", \pointer to struct" or \pointer to char", the dummy ar-
gument shall be a scalar of type TYPE(C VOID PTR), TYPE(C STRUCT PTR)
or TYPE(C CHAR PTR), respectively, and the PASS BY("*") attribute
shall be present.

All other C pointer types are not supported.

3.5.1.5 Further restrictions on BIND(C) interfaces

Regardless of the form of the C function prototype to which an explicit interface
with the BIND(C) attribute might correspond, the following restrictions apply
within an interface body which has the BIND(C) attribute:

� OPTIONAL shall not be speci�ed.

� POINTER or TARGET shall not be speci�ed for dummy arguments or func-
tion result variables.

� INTENT other than IN shall not be speci�ed for scalar dummy arguments
which do not have a pass-by-spec with a pointer declarator.

� A dummy argument or function result variable shall not be an assumed
shape array.

� A dummy argument or function result variable shall not have the type COM-
PLEX or LOGICAL.

� A function result variable shall not have the type CHARACTER with a
character length di�erent from one. In particular, the character length shall
not be assumed.

� If a dummy argument or function result variable has derived type, that type
shall have the BIND(C) attribute.

� All dummy procedures shall have an explicit interface, and that interface
shall specify the BIND(C) attribute.

32 First PDTR 1997{03{17

Note 3.39

The BIND(FORTRAN) attribute is redundant, and places no restrictions
(other than those speci�ed in IS 1539) on the contents of an interface body
having that attribute.

3.5.2 Procedure reference for BIND(C) binding

The C standard speci�es that in preparing for the call to a C function, the argu-
ments are evaluated, and each parameter is assigned the value of the corresponding
argument (6.3.2.2). A C function may change the values of its parameters, but
these changes cannot a�ect the value of the arguments. On the other hand, it is
possible to pass the pointer to an object, and the function may change the value
of the object pointed to (6.3.2.2, footnote 39).

The BIND(C) attribute in an interface-body instructs the Fortran processor to
adapt its rules concerning actual arguments, dummy arguments, and argument
association accordingly when referencing such a procedure. This section describes
these modi�ed semantics.

3.5.2.1 Actual arguments associated with dummy data objects

If the dummy argument is an array, the actual argument shall be an array of
the same type and type parameters. It shall be a variable, it shall not have
the POINTER attribute, and shall not be an array section, an assumed shape
dummy argument, or an allocatable array which is not allocated. The C function
parameter is assigned the function result value of C ADDRESS applied to the
actual argument.

Note 3.40

Note that because a C pointer is passed, the C function may modify the
actual argument.

If the dummy argument is a scalar of type TYPE(VA LIST), the behavior is
speci�ed in section 3.5.3.

If the dummy argument is a scalar of intrinsic type or of a derived type which has
the BIND(C) attribute, and does not have a pass-by-spec with a pointer declara-
tor, the actual argument shall be a scalar expression or a scalar data object. It
shall have a type and type parameters for which assignment to a variable of the
type and type parameters of the dummy argument is de�ned by IS 1539-1 or this
Technical Report. The C function parameter is assigned the value of the actual
argument, converted as if by such assignment to the type and type parameters of
the dummy argument. ASSIGNMENT(=) for the types TYPE(C VOID PTR),
TYPE(C STRUCT PTR) and TYPE(C CHAR PTR) is accessible for this con-
version, even if the caller does not contain a module reference to the intrinsic
module ISO C.

1997{03{17 Interoperability of Fortran and C 33

Note 3.41

The conversion (as if by assignment) of the actual argument to the type of
the dummy argument corresponds to the conversion which occurs within C
when referencing a C function with a prototype declaration visible.

Note 3.42

Note that because a copy of the (possibly converted) value of the actual
argument is passed, the C function cannot modify the actual argument.

If the dummy argument is a scalar of intrinsic type or of a derived type which
has the BIND(C) attribute, and the PASS BY("*") attribute is present, the ac-
tual argument shall be scalar. It shall be a variable whose type and type pa-
rameters agree with those of the dummy argument, or it shall be an expression
of type TYPE(C VOID PTR) which compares equal to NULL. If it is of type
TYPE(C VOID PTR), TYPE(C STRUCT PTR) or TYPE(C CHAR PTR) and
its value compares equal to NULL, the C function parameter is assigned the value of
the C macro NULL. Otherwise, the C function parameter is assigned the function
result value of C ADDRESS applied to the actual argument. In this case, the ac-
tual argument has to obey the same restrictions as an argument to C ADDRESS
in an explicit invocation of C ADDRESS.

Note 3.43

Note that because a C pointer is passed, the C function may modify the
actual argument. Also note that if the actual argument denotes a C null
pointer and the C function dereferences the corresponding C function pa-
rameter, the behavior is unde�ned.

3.5.2.2 Actual arguments associated with dummy procedures

If a dummy argument is a dummy procedure, it shall have an explicit interface,
and the corresponding function-stmt or subroutine-stmt shall have the BIND(C)
pre�x. The associated actual argument shall be the speci�c name of an external
or dummy procedure, that procedure shall have an explicit interface, and the
corresponding function-stmt or subroutine-stmt shall have the BIND(C) pre�x.

The characteristics of the associated actual procedure shall agree with those of
the dummy procedure.

3.5.2.3 Function results of C pointer types

34 First PDTR 1997{03{17

Note 3.44

Note that if the result variable has type TYPE(C VOID PTR),
TYPE(C STRUCT PTR) or TYPE(C CHAR PTR), the C function may
return a pointer to storage which was allocated in the C function (by calloc,
malloc or realloc). It may be necessary to free that storage later on.
If the value of the function result is used in an expression, its value may
be inaccessible after the evaluation of that expression. This means that it
will be impossible to later call free with that pointer, which will probably
cause memory leaks. It is the responsibility of the programmer to take care
about such situations.

3.5.3 Support for C variable argument lists <stdarg.h>

C functions may be called with a variable number of arguments of varying type.
The argument list in the function prototype of such a function must contain one or
more parameters followed by an ellipsis (...). The called function may access the
varying number of actual arguments by facilities de�ned in the standard header
<stdarg.h>. Fortran does not support this kind of procedure interfaces.

Note 3.45

The Fortran concept of OPTIONAL arguments is less
exible. It requires
the speci�cation of all possible combinations of arguments at compile time,
including their types.

To provide a Fortran interface to an external C function which contains an ellipsis,
an intrinsic module ISO C STDARG H shall be provided. This module shall
provide access to the following:

� A derived type de�nition with type-name VA LIST. This type has the BIND(C)
attribute and PRIVATE components.

Note 3.46

The type TYPE(VA LIST) de�ned in the Fortran binding is used by the
Fortran processor to build up the variable length argument list and pass it
to the C function. It is not necessarily a translation of the C type va_list
de�ned in <stdarg.h>. This latter type and the associated macros are only
used in the de�nition of the callee, and are not required on the Fortran side.

� A named constant VA EMPTY of type TYPE(VA LIST). The value of this
constant shall be distinct from any value that may result from an argument
list construction by means of OPERATOR(//).

� De�ned elemental assignment shall be provided for variables and expressions
of type TYPE(VA LIST). Execution of this assignment causes the de�nition
of variable with a copy of the value of expression.

1997{03{17 Interoperability of Fortran and C 35

� An extension of OPERATOR(//) to operands x1 of type TYPE(VA LIST).
Both x1 and x2 shall be scalar. x2 may be of any type corresponding to
a C data type other than char, as speci�ed in section 3.3 of this Tech-
nical Report, or it may be of type TYPE(VA LIST). The result type is
TYPE(VA LIST). The result value is a copy of x1 concatenated with the
value resulting from C's default argument promotion of x2. The following
table shows the type conversions that take place for x2, for all other types
the value of x2 is used without any conversion.

Type of x2 Value resulting from promotion

INTEGER(C SCHAR) INT(x2, KIND=C INT)
INTEGER(C SHRT) INT(x2, KIND=C INT)
INTEGER(C UCHAR) INT(x2, KIND=C INT)
INTEGER(C USHRT) INT(x2, KIND=C INT)
REAL(C FLT) REAL(x2, KIND=C DBL)

Note 3.47

If an array A is to be passed as a varying argument, the only way to achieve
this is to pass the result value of C ADDRESS(A), which is a scalar of type
TYPE(C VOID PTR).

Note 3.48

Default argument promotion takes place when constructing the varying ar-
gument list rather than at the time of argument association for a procedure
reference. This is motivated by the fact that an explicit interface with
the BIND(C) attribute represents a C function prototype (new-style func-
tion declarator). In this case no default argument promotion takes place.
Varying arguments always su�er default argument promotion, so to avoid
complicated argument association rules this promotion is done when con-
structing the varying argument list.

Note 3.49

Integral promotion of the C type char is not supported because this Techni-
cal Report does not match that type with a Fortran integer type. If required,
one of its signed or unsigned variants may be used. Integral promotion of C
bit-�elds or enumeration types is not required because these types are not
supported in Fortran.

The interface-body that speci�es a Fortran interface to a C function containing an
ellipsis shall specify the dummy arguments as described in 3.5.1, and shall specify
an additional scalar dummy argument of type TYPE(VA LIST) in the position of
the ellipsis. INTENT other than IN shall not be speci�ed for this argument. A
pass-by-spec with a pointer declarator shall not be speci�ed for this argument.

36 First PDTR 1997{03{17

The actual argument associated with this dummy argument shall be a scalar ex-
pression of type TYPE(VA LIST). To indicate an empty varying argument list,
its value shall be VA EMPTY. To pass a non-empty list of varying arguments, its
value shall be VA EMPTY concatenated by the OPERATOR(//) with the list of
required arguments. VA EMPTY shall be the leftmost operand of this concatena-
tion, all other operands shall be speci�ed from left to right corresponding to their
respective position in a C function reference. The Fortran processor translates the
values stored in the TYPE(VA LIST) argument into the representation expected
by the C processor for a C function reference.

Note 3.50

For example, the POSIX.1 function fcntl() has the prototype

int fcntl (int fildes, int cmd, ...);

If the parameter cmd has the value of the named constant F DUPFD,
fcntl() expects a third argument arg of type int, and returns a new �le
descriptor that is the lowest numbered available �le descriptor greater than
or equal to arg. If cmd has the value of the named constant F GETFD,
fcntl() expects no third parameter and returns the �le descriptor
ags
associated with the �le descriptor �ldes. A Fortran interface for this
function prototype may be

BIND(C,NAME="fcntl") FUNCTION fcntl (fildes, cmd, va)

USE iso_c, ONLY: c_int

USE iso_c_stdarg_h, ONLY: va_list

INTEGER(c_int), INTENT(IN) :: fildes, cmd

TYPE(va_list), INTENT(IN) :: va

INTEGER(c_int) :: fcntl

END FUNCTION fcntl

With this explicit interface accessible, the function references

I = FCNTL (FD, F_DUPFD, VA_EMPTY // 10_C_INT)

J = FCNTL (FD, F_GETFD, VA_EMPTY)

return the lowest numbered available �le descriptor greater than or
equal to 10 in I and the �le descriptor
ags associated with FD in J.

3.6 Access to global C data objects

This section de�nes mechanisms to reference global data objects that are de�ned
in C translation units from within a Fortran program.

To access a C data object of type T with external linkage from within Fortran, a
Fortran variable with Fortran type corresponding to T (as speci�ed in section 3.3

1997{03{17 Interoperability of Fortran and C 37

of this Technical Report) shall be declared. To indicate that the storage for the
Fortran variable is reserved by the C translation unit containing the de�nition of
that C external variable, the BIND(C) attribute shall be speci�ed with a name-

string whose value is the identi�er of the C extern data object. Because that
data object is a global data object, the BIND(C) attribute for a variable implies
the SAVE attribute for that variable.

Note 3.51

For example, POSIX.1 requires that the standard header <errno.h>

contains a declaration

extern int errno;

This is only a declaration, not a de�nition: storage for this variable
is reserved somewhere else. The value of errno is set by various functions
of the C standard library and POSIX.1. A declaration like

INTEGER(c_int), BIND(C,NAME="errno") :: errno

might be used in scoping units that need to access errno.

The following additonal restrictions apply for variables having the BIND(C) at-
tribute:

� No initialization shall appear in the entity-decl.

� ALLOCATABLE, PARAMETER or POINTER shall not be speci�ed.

� If the object has derived type, that type shall have the BIND(C) attribute.

� The object shall not have type COMPLEX, LOGICAL, or CHARACTER
with an assumed character length.

� The variable shall not appear as an equivalence-object or as the variable-

name in a common-block-object.

If two or more variables with the BIND(C) attribute and the same name-string

are accessible in a scoping unit, they shall have the same type, type parameters,
and shape. They all refer to the same storage.

Note 3.52

Note that Fortran prohibits the appearance of a module variable as the
variable-name in a common-block-object or as an equivalence-object, so mod-
ule variables cannot be equivalenced or be members of a common block.
However, the C extern variable is a global variable; binding di�erent For-
tran module variables to the same C object by the BIND(C) attribute ef-
fectively EQUIVALENCEs them.

38 First PDTR 1997{03{17

The value of a variable having the BIND(C) attribute may be changed by the
execution of C functions which have an external declaration of the identi�er in the
corresponding name-string in scope, or by the execution of Fortran procedures
which declare a variable which has the same BIND(C) attribute. The Fortran
processor shall not assume that the value of such a variable remains unchanged
after a procedure reference.

Note 3.53

For example, if a function reference to FCNTL in Note 3.50 returns a value
of �1, the value of the variable in Note 3.51 after that function reference
will be set to the corresponding error number.

The value of a variable having the BIND(C) attribute may also be changed by other
means invisible to the Fortran program. The Fortran processor is not required to
guard such behavior.

3.7 Program startup information

This section provides support for the function parameters of the C function main,
which is called at program startup in a hosted C environment.

If the Fortran processor has access to the program startup information of the
hosted C environment, this information shall be made available through two mod-
ule variables ARGC and ARGV in the intrinsic module ISO C. These variables
shall obey the following constraints:

� ARGC shall be a scalar of type INTEGER(C INT), and ARGV shall be a
scalar of type TYPE(C VOID PTR). Both shall have the SAVE attribute,
and shall be modi�able by the program.

� At program startup, ARGC shall be initialized with the nonnegative value
which corresponds to the value of the �rst argument of the C function main.

� At program startup, ARGV shall be initialized with the value of the second
argument of the C function main, cast to \pointer to void".

If the Fortran processor does not have access to the program startup information,
or if the C environment is a freestanding environment, ARGC shall be initialized
with the value zero and ARGV shall point to a C null pointer. That is, the
result of C DEREFERENCE(ARGV,MOLD) with an MOLD argument of type
TYPE(C CHAR PTR) shall compare equal to NULL.

Note 3.54

Access to argc and argv is required because many applications use them
for customization purposes during their initialization process. For exam-
ple, the X Window System allows to load X resources from command line
arguments by the XrmParseCommand() function, which is also called by
XtAppInitialize(). Both functions take &argc and argv as arguments.

1997{03{17 Interoperability of Fortran and C 39

4 Editorial changes to ISO/IEC 1539-1 : 1997

This section contains the editorial changes to ISO/IEC 1539-1:1997 required to
include the extensions de�ned in this Technical Report in a revised version of the
International Standard for the Fortran language.

Page xiv

Line 24

Update the \Organization of this International Standard" subclause.

Page xvi

Line 16

Add

A module may be intrinsic (de�ned by the standard) or nonintrinsic
(de�ned by Fortran code).

Page 7

Subclause 1.9

At the end of the references, add

ISO/IEC 9899:1990, Information technology { Programming languages
{ C (also ANSI X3.159-1989, American National Standard for Infor-
mation Systems { Programming Language { C)

Page 10

Subclause 2.1

In
R207 declaration-construct is derived-type-def

or interface-block

: : :

add after line 7:

or type-alias-stmt

Page 10

Subclause 2.1

In
R214 speci�cation-stmt is access-stmt

or allocatable-stmt

: : :

add after line 32 and 41:
or bind-stmt

or pass-by-stmt

40 First PDTR 1997{03{17

Page 19

Subclause 2.5.7

In line 6, change \procedures" to \procedures, modules".
After line 8, add

Entities de�ned in an intrinsic module may be used without further
de�nition or speci�cation in those scoping units that contain a module
reference for that intrinsic module, subject to the rules of use associa-
tion (11.3.2).

Page 38

Subclause 4.4.1

In
R424 private-sequence-stmt is PRIVATE

or SEQUENCE

add after line 31:

or bind-spec

Note 4.1

Also do a global rename of private-sequence-stmt to derived-type-body-stmt.

Page 38

Subclause 4.4.1

In the Constraints list, add after line 37:

Constraint: If a bind-spec is present, it shall not contain a name-string.

Constraint: If a bind-spec is present, all derived types speci�ed in component
de�nitions shall have a bind-spec with the same name-string.

Constraint: If a bind-spec is present, SEQUENCE shall not be speci�ed.

Page 39

Subclause 4.4.1

In the Constraints list, add after line 29:

Constraint: component-initialization shall not appear if a bind-spec is present
in the derived type de�nition.

1997{03{17 Interoperability of Fortran and C 41

Page 47

Subclause 5.1

In
R503 attr-spec is PARAMETER

or access-spec

: : :

add after line 27:
or bind-spec

or pass-by-spec

Page 48

Subclause 5.1

In the Constraints list, add after line 18:

Constraint: A bind-spec may only be speci�ed for a variable which is not a
dummy argument.

Constraint: A pass-by-spec may only be speci�ed for a dummy data object
within an interface-body whose function-stmt or subroutine-stmt

has the BIND(C) pre�x.

Page 48

Subclause 5.1

After the Constraints list, add after line 41:

If a bind-spec is present, the additional constraints of sections 16.5 and
16.6 apply.

Page 53

Subclause 5.1.2

After section 5.1.2.2, insert a new section after line 5:

5.1.2.2a BIND attribute

The BIND attribute speci�es that mechanisms for interoper-
ability with other languages are used. Binding to entities that are
de�ned by means of ISO C and have external linkage is described
in section 16. For variables which are not dummy arguments, this
attribute may also be declared via the BIND statement (16.2).

Note 4.2

Maybe add a note explaining that there is another usage of BIND: in
derived-type-def s.

42 First PDTR 1997{03{17

Page 57

Subclause 5.2

At line 41, change

This also applies to EXTERNAL and INTRINSIC statements.

to

This also applies to BIND, EXTERNAL and INTRINSIC statements.

Page 186

Subclause 11.3

After line 17, add

An intrinsic module is de�ned by the standard. A nonintrinsic

module is de�ned by Fortran code.

Page 187

Subclause 11.3.2

Replace R1107 by

R1107 use-stmt is USE [[, module-nature] ::]
module-name [, rename-list]

or USE [[, module-nature] ::]
module-name, ONLY: [only-list]

R1107a module-nature is INTRINSIC
or NON INTRINSIC

Constraint: If module-nature is INTRINSIC, module-name shall be the name
of an intrinsic module.

Constraint: If module-nature is NON INTRINSIC, module-name shall be the
name of a nonintrinsic module.

Page 187

Subclause 11.3.2

After the Contraints, add

A use-stmt without a module-nature provides access either to an in-
trinsic or to a nonintrinsic module. If the module-name is the name of
both an intrinsic and a nonintrinsic module, the nonintrinsic module
is accessed.

Page 192

Subclause 12.2

At line 6, add at the end of the paragraph:

If the procedure has a bind-spec pre�x, this is a characteristic.

1997{03{17 Interoperability of Fortran and C 43

Page 192

Subclause 12.2.1.1

At line 17, add at the end of the paragraph:

If the dummy data object has a pass-by-spec attribute, this is a char-
acteristic.

Page 193

Subclause 12.3.1.1

After line 15, add a new clause to the list (1):

(f) That should follow other than the processor's default calling con-
ventions (16.5).

Page 207

Subclause 12.5.2.2

In
R1219 pre�x-spec is type-spec

or RECURSIVE
or PURE
or ELEMENTAL

add after line 1:

or bind-spec

Page 207

Subclause 12.5.2.2

In the Constraints list following R1219, add after line 5:

Constraint: A bind-spec may only be speci�ed in an interface-body.

Constraint: A bind-spec for a dummy procedure shall not have a name-string.

Constraint: If a bind-spec with a lang-keyword other than FORTRAN is present,
PURE or ELEMENTAL shall not be present.

Page 208

Subclause 12.5.2.2

Add after line 4:

If a bind-spec with lang-keyword C is present in the pre�x of the func-
tion, the additional constraints of section 16.5 apply.

Page 208

Subclause 12.5.2.3

After R1123 at line 34, add:

Constraint: If a bind-spec with lang-keyword C is present in the pre�x of the
subroutine, * shall not appear as dummy-arg.

44 First PDTR 1997{03{17

Page 209

Subclause 12.5.2.3

Add after line 3:

If a bind-spec with lang-keyword C is present in the pre�x of the sub-
routine, the additional constraints of section 16.5 apply.

Page 211

Subclause 12.5.3

After \external subprogram" on line 14, add \, except when the binding mecha-
nisms described in section 16.5 are used".

Page 292

New clause 16

Introduce a new section \Section 16: Interoperability with ISO C":
Take section 3 of this Technical Report, replace all occurences of \Technical Re-
port" by \International Standard", renumber the sectioning and notes, and include
the result as section 16 into IS 1539-1.

Page 293

Annex A

Update the Glossary:
After 293:39, add the term binding with a de�nition.

Note 4.3

Annex C.9.2 \Procedures de�ned by means other than Fortran (12.5.3) "
and C.9.3 \Procedure interfaces (12.3)" on pages 334+ may be a�ected.

Page 347

Annex D

Update the Index :-)

1997{03{17 Interoperability of Fortran and C 45

Annex A: Intrinsic module contents samples

(informative)

The material in this informative annex serves as an index to which entities should
be made accessible by the �ve intrinsic modules required by this Technical Report.
This is only an index, and any con
icts with the normative part of this Technical
Report shall be resolved in favor of the normative part. Note that it may be
impossible to de�ne some of the facilities made accessible by the intrinsic modules
by Fortran source code.

The intrinsic module ISO C provides access to the following:

MODULE iso_c

IMPLICIT NONE

INTEGER, PARAMETER :: c_char = ...

INTEGER, PARAMETER :: c_schar = ...

INTEGER, PARAMETER :: c_shrt = ...

INTEGER, PARAMETER :: c_int = ...

INTEGER, PARAMETER :: c_long = ...

INTEGER, PARAMETER :: c_uchar = c_schar

INTEGER, PARAMETER :: c_ushrt = c_shrt

INTEGER, PARAMETER :: c_uint = c_int

INTEGER, PARAMETER :: c_ulong = c_long

INTEGER, PARAMETER :: c_flt = ...

INTEGER, PARAMETER :: c_dbl = ...

INTEGER, PARAMETER :: c_ldbl = ...

TYPE c_void_ptr ; BIND(C) ; PRIVATE ; ...

TYPE c_struct_ptr ; BIND(C) ; PRIVATE ; ...

TYPE c_char_ptr ; BIND(C) ; PRIVATE ; ...

TYPE size_t => INTEGER(...)

TYPE(c_void_ptr), PARAMETER :: c_null = ...

INTEGER(c_int), SAVE :: argc = ...

TYPE(c_void_ptr), SAVE :: argv = ...

INTERFACE ASSIGNMENT(=) ; ...

INTERFACE c_isnull ; ...

INTERFACE c_address ; ...

INTERFACE c_dereference ; ...

INTERFACE c_increment ; ...

INTERFACE c_sizeof ; ...

CONTAINS

...

END MODULE iso_c

46 First PDTR 1997{03{17

The intrinsic module ISO C STDDEF H must contain at least the following en-
tities, additional type aliases WCHAR T and PTRDIFF T may but need not be
provided:

MODULE iso_c_stddef_h

USE iso_c, ONLY: size_t, null => c_null

IMPLICIT NONE

INTERFACE offsetof ; ...

CONTAINS

...

END MODULE iso_c_stddef_h

The intrinsic module ISO C STDARG H has the following contents:

MODULE iso_c_stdarg_h

IMPLICIT NONE

TYPE va_list ; BIND(C) ; PRIVATE ; ...

TYPE(va_list), PARAMETER :: va_empty = ...

INTERFACE ASSIGNMENT(=) ; ...

INTERFACE OPERATOR(//) ; ...

CONTAINS

...

END MODULE iso_c_stdarg_h

A model implementation of the module ISO C LIMITS H could be (on a two's
complement machine and with char being implemented as signed char):

MODULE iso_c_limits_h

USE iso_c, ONLY: c_schar, c_uchar, c_shrt, c_ushrt, &

c_int, c_uint, c_long, c_ulong

IMPLICIT NONE

INTEGER, PARAMETER :: CHAR_BIT = 8

INTEGER(c_schar), PARAMETER :: SCHAR_MIN = -128_c_schar

INTEGER(c_schar), PARAMETER :: SCHAR_MAX = 127_c_schar

INTEGER(c_uchar), PARAMETER :: UCHAR_MAX = SCHAR_MIN

INTEGER, PARAMETER :: CHAR_MIN = SCHAR_MIN

INTEGER, PARAMETER :: CHAR_MAX = SCHAR_MAX

INTEGER, PARAMETER :: MB_LEN_MAX = 1

INTEGER(c_shrt), PARAMETER :: SHRT_MIN = -32768_c_shrt

INTEGER(c_shrt), PARAMETER :: SHRT_MAX = 32767_c_shrt

INTEGER(c_ushrt), PARAMETER : USHRT_MAX = SHRT_MIN

INTEGER(c_int), PARAMETER :: INT_MIN = -32768_c_int

INTEGER(c_int), PARAMETER :: INT_MAX = 32767_c_int

INTEGER(c_uint), PARAMETER :: UINT_MAX = INT_MIN

INTEGER(c_long), PARAMETER :: LONG_MIN = -2147483648_c_long

INTEGER(c_long), PARAMETER :: LONG_MAX = 2147483647_c_long

INTEGER(c_ulong), PARAMETER :: ULONG_MAX = LONG_MIN

END MODULE iso_c_limits_h

1997{03{17 Interoperability of Fortran and C 47

A possible implementation of the module ISO C FLOAT H could be:

MODULE iso_c_float_h

USE iso_c, ONLY: c_flt, c_dbl, c_ldbl

IMPLICIT NONE

INTEGER, PARAMETER :: FLT_ROUNDS = -1 ! indeterminable

INTEGER, PARAMETER :: FLT_RADIX = RADIX (0.0_c_flt)

INTEGER, PARAMETER :: FLT_MANT_DIG = DIGITS (0.0_c_flt)

INTEGER, PARAMETER :: DBL_MANT_DIG = DIGITS (0.0_c_dbl)

INTEGER, PARAMETER :: LDBL_MANT_DIG = DIGITS (0.0_c_ldbl)

INTEGER, PARAMETER :: FLT_DIG = PRECISION (0.0_c_flt)

INTEGER, PARAMETER :: DBL_DIG = PRECISION (0.0_c_dbl)

INTEGER, PARAMETER :: LDBL_DIG = PRECISION (0.0_c_ldbl)

INTEGER, PARAMETER :: FLT_MIN_EXP = MINEXPONENT(0.0_c_flt)

INTEGER, PARAMETER :: DBL_MIN_EXP = MINEXPONENT(0.0_c_dbl)

INTEGER, PARAMETER :: LDBL_MIN_EXP = MINEXPONENT(0.0_c_ldbl)

INTEGER, PARAMETER :: FLT_MIN_10_EXP = -1*RANGE (0.0_c_flt)

INTEGER, PARAMETER :: DBL_MIN_10_EXP = -1*RANGE (0.0_c_dbl)

INTEGER, PARAMETER :: LDBL_MIN_10_EXP = -1*RANGE (0.0_c_ldbl)

INTEGER, PARAMETER :: FLT_MAX_EXP = MAXEXPONENT(0.0_c_flt)

INTEGER, PARAMETER :: DBL_MAX_EXP = MAXEXPONENT(0.0_c_dbl)

INTEGER, PARAMETER :: LDBL_MAX_EXP = MAXEXPONENT(0.0_c_ldbl)

INTEGER, PARAMETER :: FLT_MAX_10_EXP = RANGE (0.0_c_flt)

INTEGER, PARAMETER :: DBL_MAX_10_EXP = RANGE (0.0_c_dbl)

INTEGER, PARAMETER :: LDBL_MAX_10_EXP = RANGE (0.0_c_ldbl)

REAL(c_flt), PARAMETER :: FLT_MAX = HUGE (0.0_c_flt)

REAL(c_dbl), PARAMETER :: DBL_MAX = HUGE (0.0_c_dbl)

REAL(c_ldbl), PARAMETER :: LDBL_MAX = HUGE (0.0_c_ldbl)

REAL(c_flt), PARAMETER :: FLT_EPSILON = EPSILON(0.0_c_flt)

REAL(c_dbl), PARAMETER :: DBL_EPSILON = EPSILON(0.0_c_dbl)

REAL(c_ldbl), PARAMETER :: LDBL_EPSILON = EPSILON(0.0_c_ldbl)

REAL(c_flt), PARAMETER :: FLT_MIN = TINY (0.0_c_flt)

REAL(c_dbl), PARAMETER :: DBL_MIN = TINY (0.0_c_dbl)

REAL(c_ldbl), PARAMETER :: LDBL_MIN = TINY (0.0_c_ldbl)

END MODULE iso_c_float_h

Note A.1

The
oating point number models of C and Fortran are identical.

