1sonec Jrcvusczzwes N1299

Page 1 of 3
From M chael Hennecke
To: WEE and J3
Subject: Interoperability PDTR - C enum support
Dat e: 1997/ 07/ 23
Thi s docunent provides the specifications to add C enum support to

WG/ N1277. 1f accepted, it could replace section 3.3.3 of the PDTR

DI

SCUSSI ON:

Enum support has been repeatedly asked for, and sone APIs like

X wi ndows heavily use enunerations. So supporting themis useful.
It has been proposed to introduce new kind paraneter nanes |ike
C SHORT_ENUM whi ch designates the type a C procressor chooses
for all enumerations whose constants fall within the range of

C short integers. This has two shortcom ngs:

(1) it is very difficult for a user to tell the correct kind
paraneter nane, taht is to find out if a given value |like
33333 is in the range of C short. This would need conparison
of the largest enuneration constant to the SHRT_MAX limt
and changi ng the kind paranmeter from C SHORT ENUM t o
C LONG ENUM say, all within a <kind-sel ector>.

(2) it is not guaranteed that the C processor maps all enuns in
the C short range to one and the same integer type

It has al so been proposed to introduce a C SELECTED_ENUM KI ND

procedure which takes a LONENUM and H GH ENUM argunent. This is

nore user-friendly but still dangerous:

(1) If on system A an enuneration RGB is

enum RGB { Red=1, Geen, Blue } ;
and on system B that enumis
enum RGB { Red=16, G een=8, Blue=0 } ;
the selected kind type for the enumon systemA is
C_SELECTED_ENUM KI ND{ LOW ENUM=Red, HI GH_ENUMEBI ue)
whereas on systemB it is
C_SELECTED_ENUM KI ND{ LOW ENUMEBI ue, HI GH_ENUMERed)
whi ch may be a cause of trouble if overlooked. It is preferable
that the definition of the enuneration constants is the only
pl ace whi ch needs change when noving fromsystem A to system B.
(2) it is not guaranteed that the C processor bases its choice only

on the | owest and hi ghest val ue of the enuneration constants.
The text bel ow circunvents all of these problens.

ISO/IEC JTC1/SC22/WG5 N1299
Page 2 of 3

UNRESCOLVED | SSUE
How do we ensure that C ENUM KIND results can be used as
initialization expression in kind selectors? Probably the
only way is to add C ENUMKIND to (5) in the list under
"initialization expression" in 7.1.6.1 of F95 (page 94)~?

SUGGESTED NEW PDTR TEXT:
3.3.3 C enunerated types

Fortran does not support enunerated types. But since C enuneration
constants and types have C integral types, they can be mapped to
Fortran integer types of suitable kind type paraneters.

This section provides the nmeans to bind C enunerated types to
Fortran integer types.

Al C ““enunerators'' (the <enuneration constants>) are constants of
the C type #int# and shall be mapped to Fortran constants of type

| NTEGER(C I NT) which are initialized with the same val ues as the
respective C enunerators.

Note 3.13
For exanple, if a C enuneration is declared as

enum RGB { Red=1, Geen, Blue } ;
t he enumerati on constants may be declared in Fortran as
| NTEGER(C_I NT), PARAMETER :: Red=1, Green=2, Blue=3

Note that C enunerator nanes do not have their own name cl asses and
must be distinct fromall other enumerator nanes and ot her |ocal nanes.
So there is no nane class problemin using individual integer constants
on the Fortran side.

The C integer type chosen for a given enunmeration type is

i mpl enent ati on-defined. It need not be #int# but only conformable to
any C integer type which is capable of representing the value of that
enurmeration type's enunerators.

The nodul e 1 SO C shall nake available a function C ENUM KIND whi ch can
be used to inquire the inplenentation-defined integer kind type
parameter for a given enuneration

ISO/IEC JTC1/SC22/WG5 N1299
Page 3 of 3

3.3.3.1 C ENUMKIND (ENUM)

Descri pti on.
Returns the inplenmentation-defined integer kind type paraneter that
corresponds to a given C enuneration type.

d ass.
Transformati onal function

Ar gunent .
ENUM shall be a rank-1 array of type INTEGER(C INT). It is an
I NTENT(IN) argument. It contains the Iist of enumerator val ues
of a C enuneration type

Result Characteristics.
The result is a scalar of type default integer

Resul t Val ue.
If the C type chosen for an enuneration type whose enumnerators have
the sane values as the elenents of ENUMis
(1) #signed char# or #unsigned char#, the result value is C_SCHAR
(ii) #short# or #unsigned short#, the result value is C_SHRT.
(iii) #int# or #unsigned int#, the result value is C_INT.
(iv) #l ong# or #unsigned |ong#, the result value is C LONG

Exanpl e.
G ven a C enunerated type
enum Bool { Fal se=0, True } ;
and the Fortran constants
| NTEGER(c_int), PARAMETER :: Fal se=0, True=1
the result of C ENUMKIND((/ False, True /)) is the integer kind type
par ameter which identifies the C type chosen for #enum Bool #.

A type alias statenent (3.3.9) may be used to nmake a type alias nane

for a C enuneration type available. This can but need not be identica
to the tag of the C enuneration

Note 3. 13a
For exanple, a type alias nane corresponding to #enum RGB# of Note 3.13
may be estalished as

ALIAS :: RGB => | NTEGER(C_ENUM KI ND((/ Red, Green,Blue /)))

using the Fortran constants declared in Note 3.13.

