
J3/97-200
ISO/IEC 1539-3:1997 – N1301

Information technology – Programming
languages – Fortran

Part 3:
Conditional compilation in Fortran

Foreword
[General part to be provided by ISO CS]

This is the third part of ISO/IEC 1539 and has been prepared by ISO/IEC JTC1/SC22/WG5, the technical
working group for the Fortran language. It is an auxiliary standard to ISO/IEC 1539-1: 1997, which
defines the latest revision of the base Fortran language (known informally as Fortran 95).

This part of ISO/IEC 1539 defines a conditional compilation language facility.

Introduction
Programmers often need to maintain several versions of code to allow for different systems and different
applications. Keeping several copies of the source code is error prone. It is far better to maintain a master
code from which any of the versions may be selected.

This conditional compilation facility has deliberately been kept very simple. The additional lines inserted
to control the process and all the lines that are not selected are omitted from the output or are converted to
comments. Those that are selected are copied to the output completely unchanged. Which version is
selected is controlled by directives in a file known as the SET file.

Examples of the need for such a facility are:

(1) Parameterized types do not solve all the problems associated with different precisions.
Parameterized derived types are not part of Fortran 95.

25th July 1997 CONDITIONAL COMPILATION

ISO/IEC 1539-3:1997 DRAFT

(2) A version of a code for complex arithmetic may differ little from the version for real arithmetic.

(3) The relative efficiency of different algorithms or constructions may vary from processor to
processor.

(4) Versions may be required for different message-passing libraries.

(5) Additional print statements may be inserted into a program when under development. It may be very
helpful to have these readily available in case some unexpected results are found in production use.

(6) Versions may be required with character constants in different languages (internationalization).

(7) For OPEN statements, the file naming convention varies between systems.

Some of these cases may be addressed within the Fortran code itself by run-time tests, but this will result
in a large object code and some run-time overhead. Without conditional compilation, however, most of
them can only be solved by maintaining separate versions of the code.

1 General

1.1 Scope

This part of ISO/IEC 1539 defines facilities for conditional compilation in Fortran. This part of ISO/IEC
1539 provides an auxiliary standard for the version of the Fortran language specified by the international
standard ISO/IEC 1539-1 and informally known as Fortran 95.

1.2 Normative References

The following standard contains provisions which, through reference in this text, constitute provisions of
this part of ISO/IEC 1539. At the time of publication, the edition indicated was valid. All standards are
subject to revision, and parties to agreements based on this part of ISO/IEC 1539 are encouraged to
investigate the possibility of applying the most recent editions of the standard indicated below. Members
of IEC and ISO maintain registers of currently valid International Standards.

ISO/IEC 1539-1 : 1997 Information technology – Programming Languages – Fortran.

2 25th July 1997

DRAFT ISO/IEC 1539-3:1997

2 Overview

2.1 Conditional compilation

Conditional compilation (coco) is described in this document as an independent process that yields a
source program for a Fortran processor. It is expected that implementations will usually integrate the two
processes.

The coco process is controlled by directives that are either omitted from the coco output or are converted
to Fortran comments. Coco comments may be introduced to explain the actions and these, too, are either
omitted from the coco output or are converted to Fortran comments. Other lines (noncoco lines) are either
copied unchanged to the output, omitted, or converted to Fortran comments. There is no requirement that
the coco output is a valid Fortran program. The lines of the coco output are in the same order as the
corresponding lines of the coco program.

Coco execution is a sequence of actions specified by the coco directives and performed in the order that
they appear. The combination of a computing system and the mechanism by which these actions are
performed is called a coco processor in this part of this standard.

2.2 Section numbers and syntax rules

The notation used in this part of ISO/IEC 1539 is described in Part 1, section 1.6. However, item (4) in
Part 1, section 1.6.2 is replaced with:

(4) Each syntax rule is given a unique identifying number of the form CCRsnn, where s is a one or
two-digit section number and nn is a two-digit sequence number within that section. The syntax
rules are distributed as appropriate throughout the text, and are referenced by number as needed.

2.3 Coco program conformance

A coco program is a standard-conforming coco program if it uses only those forms and relationships
herein and if the program has an interpretation according to this part of this standard.

A coco processor conforms to this part of this standard if:

(1) It executes any standard-conforming coco program and its SET file in a manner that fulfills the
interpretations herein, subject to any limits that the processor may impose on the size and
complexity of the coco program and its SET file.

(2) It contains the capability to detect and report the use within the executed part of a coco program and
its SET file of an additional form or relationship that is not permitted by the numbered syntax rules
or their associated constraints.

(3) It contains the capability to detect and report the use within the executed part of a coco program and
its SET file of source form not permitted by Section 3.

(4) It contains the capability to detect and report the reason for rejecting a submitted coco program and
its SET file.

If a coco program contains a STOP directive that is executed, there is no requirement for the processor to
report on any directives that follow the STOP directive.

25th July 1997 3

ISO/IEC 1539-3:1997 DRAFT

2.4 High level syntax

This section introduces the terms associated with the conditional compilation program.

CCR201 coco-program is pp-input-item [pp-input-item] ...

CCR202 pp-input-item is coco-construct
or noncoco-line

The term noncoco-line refers to any line without the characters ″??″ in character positions 1 and 2.

CCR203 coco-construct is coco-type-declaration-directive
or coco-action-construct

CCR204 coco-action-construct is coco-action-directive
or coco-if-construct

CCR205 coco-action-directive is coco-assignment-directive
or coco-message-directive
or coco-stop-directive

Note 2.1

A coco program is not required to contain any coco directives.

3 Constants, source form and text inclusion

3.1 Coco constants

CCR301 coco-constant is coco-literal-constant
or coco-named-constant

CCR302 coco-literal-constant is coco-int-literal-constant
or coco-logical-literal-constant

CCR303 coco-int-literal-constant is digit [digit] ...

CCR304 coco-logical-literal-constant is .TRUE.
or .FALSE.

CCR305 coco-char-literal is ′ [rep-char] ... ′
or ″ [rep-char] ... ″

CCR306 coco-named-constant is name

Constraint: coco-named-constant shall have the PARAMETER attribute.

CCR307 name is letter [alphanumeric-character] ...

Constraint: The maximum length of a name is 31 characters.

CCR308 alphanumeric-character is letter
or digit

4 25th July 1997

DRAFT ISO/IEC 1539-3:1997

or underscore

CCR309 underscore is _

Each digit is one of the digits

0 1 2 3 4 5 6 7 8 9

and each coco-int-literal-constant is interpreted as a decimal value.

Each letter is one of the upper-case letters

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

or one of the lower-case letters

a b c d e f g h i j k l m n o p q r s t u v w x y z

Each rep-char is a character in the processor-dependent character set, which includes the letters, the
digits, the underscore, the blank, the currency symbol, and the characters

= + – * / () , . ′ : ! ″ % & ; < > ?

In a coco directive, a lower-case letter is equivalent to the corresponding upper-case letter except in a
coco character literal.

The delimiting apostrophes or quotation marks are not part of the value of a coco character literal.

An apostrophe character within a coco character literal delimited by apostrophes is represented by two
consecutive apostrophes (without intervening blanks); in this case, the two apostrophes are counted as one
character. Similarly, a quotation mark character within a character literal delimited by quotation marks is
represented by two consecutive quotation marks (without intervening blanks) and the two quotation
marks are counted as one character.

3.2 Coco source form

A coco program is a sequence of one or more lines, organized as coco directives, coco comment lines
(3.2.1) and noncoco lines. A coco directive is a sequence of one or more coco lines. A coco line is a line
with the characters ″??″ in character positions 1 and 2. These characters are not part of the coco directive.
A noncoco line is a line that does not begin in this way.

A keyword is a word that is part of the syntax of a coco directive. Examples of keywords are IF,
INTEGER, LOGICAL, and MESSAGE.

A coco comment may contain any character that may occur in a coco character literal. Outside
commentary, a coco directive consists of a sequence of coco lexical tokens. Each token is a keyword, a
name, a literal constant, an operator (see Table 5.2), a comma, a parenthesis, an equals sign, or the
separator :: .

In coco source, each source line may contain from zero to 132 characters.

In coco source, blank characters shall not appear within coco lexical tokens other than in a coco character
literal. Blanks may be inserted freely between tokens to improve readability. A sequence of blank
characters outside of a coco character literal is equivalent to a single blank character.

A blank shall be used to separate names, constants, or coco-char-literals from adjacent keywords, names,
constants, or coco-char-literals.

25th July 1997 5

ISO/IEC 1539-3:1997 DRAFT

Blanks are optional between the following pairs of adjacent coco keywords:

ELSE IF
END IF

3.2.1 Coco commentary

Within a coco directive, the character ″!″ in any character position initiates a coco comment except when
it appears within a coco character literal. The coco comment extends to the end of the source line. If the
first nonblank character on a coco line after character positions 1 and 2 is an ″!″, the line is a coco
comment line. Coco lines containing only blanks after character positions 1 and 2 or containing no
characters after character positions 1 and 2 are also coco comment lines.

Note 3.1

An example of the use of a coco comment in a coco IF construct (Section 6.2) is:

?? IF (DEVELOPING) THEN
?? ! The following output statement was used when
?? ! developing the code
 WRITE(UNIT=*,FMT=*) 'The value of A is', A
?? END IF

3.2.2 Coco directive continuation

The character ″&″ is used to indicate that the current coco directive is continued on the next line. The next
line shall be a coco line. Coco comment lines shall not be continued; an ″&″ in a coco comment has no
effect during coco execution. When used for continuation, the ″&″ is not part of the coco directive. After
character positions 1 and 2, no coco line shall contain a single ″&″ as the only nonblank character or as the
only nonblank character before an ″!″ that initiates a coco comment.

3.2.2.1 Continuation other than of a coco character literal

In a coco directive, if an ″&″ not in a coco comment is the last nonblank character on a line or the last
nonblank character before an ″!″ that initiates a coco comment, the coco directive is continued on the next
line. If the first nonblank character after character positions 1 and 2 on the next coco-noncomment line is
an ″&″, the coco directive continues at the next character following the ″&″; otherwise, it continues with
the first character position after character positions 1 and 2 of the next coco-noncomment line.

If a coco lexical token is split across the end of a line, the first nonblank character after character positions
1 and 2 on the first following coco-noncomment line shall be an ″&″ immediately followed by the
successive characters of the split token.

Note 3.2

An example of continuation in a coco type declaration directive (Section 4) is:

?? LOGICAL :: TOO_GOOD&
??&_TO_BE_&
?? &TRUE = &

6 25th July 1997

DRAFT ISO/IEC 1539-3:1997

?? ! These six lines contain one coco directive
?? ! and two coco comment lines.
?? .FALSE.

3.2.2.2 Continuation of a coco character literal

If a coco character literal is to be continued, the ″&″ shall be the last nonblank character on the line and
shall not be followed by coco commentary. An ″&″ shall be the first nonblank character after character
positions 1 and 2 on the next line and the coco directive continues with the next character following the
″&″.

Note 3.3

An example of the continuation of a coco character literal in a coco message directive
(Section 7) is:

?? MESSAGE "DE&
?? &F&
?? &INE VALID 'SYSTEM' VALUE" ! 3 lines, 1 coco directive

3.2.3 Coco directives

If a coco directive has one or more continuation lines, every line from the start of the coco directive until
the end of the coco directive shall be a coco line.

A coco directive shall not have more than 39 continuation lines.

Note 3.4

In the following extract from a coco program, all the coco lines are coco directives. This
extract permits a segment of code to be adapted according to whether the compiler is more
efficient with array section syntax or with loop syntax.

?? LOGICAL :: USE_SECTIONS
 . . .
?? IF (USE_SECTIONS) THEN
 A(1:10,1:10) = B(1:10,1:10) + C(1:10,1:10)
?? ELSE
 DO J = 1, 10
 DO I = 1, 10
 A(I,J) = B(I,J) + C(I,J)
 ENDDO
 ENDDO
?? ENDIF

25th July 1997 7

ISO/IEC 1539-3:1997 DRAFT

3.3 Source text inclusion

Additional text may be incorporated into the source text of a coco program during coco execution. This is
accomplished with the coco INCLUDE line, which has the form

?? INCLUDE coco-char-literal

with the characters ″??″ in character positions 1 and 2.

A coco INCLUDE line shall appear on a single source line; it shall be the only nonblank text on this line
other than an optional trailing comment.

The effect of the execution of a coco INCLUDE line is as if the coco INCLUDE line were replaced by the
coco comment of the form

??! INCLUDE coco-char-literal

followed by the referenced source text, followed by the coco comment of the form

??! END INCLUDE coco-char-literal

during coco processing. The inserted comments shall be indentical to the coco INCLUDE line apart from
the insertion of the two characters ″! ″ or the six characters ″! END ″ starting in character position 3.

A coco INCLUDE line in a coco FALSE block (6.2.2) is not expanded. Included text may contain any
source text, including additional coco INCLUDE lines; such nested coco INCLUDE lines are similarly
replaced with comments and the specified source text. The maximum depth of nesting of any nested coco
INCLUDE lines is processor dependent. Inclusion of the source text referenced by a coco INCLUDE line
shall not, at any level of nesting, result in inclusion of the same source text.

When a coco INCLUDE line is resolved, the first included line shall not be a coco continuation line and
the last included line shall not be a coco line that is continued. Each coco directive that is a
coco-else-if-directive, coco-else-directive, or coco-endif-directive shall appear in the same source text as
the matching coco-if-directive.

The interpretation of coco-char-literal is processor dependent. An example of a possible valid
interpretation is that coco-char-literal is the name of a file that contains the source text to be included.

Note 3.5

The following example shows the use of a coco construct to allow for different naming
conventions for coco INCLUDE files on different systems

?? IF (SYSTEM == DOS) THEN
?? INCLUDE "C:\mydir\myfile.txt"
?? ELSEIF (SYSTEM == UNIX) THEN
?? INCLUDE "/mydir/myfile.txt"
?? ENDIF

and might yield the following output

!?? IF (SYSTEM == DOS) THEN
!??! INCLUDE "C:\mydir\myfile.txt"
OPEN(UNIT=10,FILE="C:\mydir\myfile.dat")
!??! END INCLUDE "C:\mydir\myfile.txt"
!?? ELSEIF (SYSTEM == UNIX) THEN

8 25th July 1997

DRAFT ISO/IEC 1539-3:1997

!?? INCLUDE "/mydir/myfile.txt"
!?? ENDIF

Note 3.6

The fact that coco processing affects which coco INCLUDE lines are resolved means that it
may be unreasonably difficult to check the coco syntax of a program without actually
executing it. This is the reason for all coco directives being treated as executable.

4 Coco type declaration directives
A coco data object is a constant or is a variable. An object with the PARAMETER attribute is a constant
and has a value that does not change. An object without the PARAMETER attribute is a variable and is
undefined or has a value; during execution of a coco program, the value of a variable may change.

Every coco data object has a type. The type of a named data object, and possibly the PARAMETER
attribute, is specified by the execution of a type declaration directive. The initial value of a coco variable
is undefined unless it is given an initial value by coco-initialization.

CCR401 coco-type-declaration-directive is coco-type-spec [, PARAMETER] :: coco-entity-decl-list

CCR402 coco-type-spec is INTEGER
or LOGICAL

CCR403 coco-entity-decl is coco-object-name [coco-initialization]

CCR404 coco-object-name is name

Constraint: A coco-object-name declared in an executed coco-type-declaration-directive shall not be the
same as any other coco-object-name in its coco-type-declaration-directive or any other executed
coco-type-declaration-directive, except that a coco-object-name declared in an executed coco-type-
declaration-directive in a coco-program may be the same as a coco-object-name declared in its
coco-set-file.

Constraint: coco-object-name shall be declared in an executed coco-type-declaration-directive before
appearing in any other executed coco directive.

CCR405 coco-initialization is = coco-initialization-expr

Constraint: In an executed coco-type-declaration-directive, the types of the coco-initialization-expr and
the coco-type-spec shall either both be integer or both be logical.

Constraint: In an executed coco-type-declaration-directive, if the PARAMETER attribute is specified, a
coco-initialization shall appear for every coco-object-name.

Note 4.1

Examples of coco type declaration directives are:

?? INTEGER, PARAMETER :: F77 = 1, F90 = 2

25th July 1997 9

ISO/IEC 1539-3:1997 DRAFT

?? INTEGER, PARAMETER :: F95 = 3, F2000 = 4
?? INTEGER :: FORTRAN_LEVEL = F95
?? LOGICAL :: DEBUG_PROCEDURE_ENTRY_EXIT

Note 4.2

Although a coco-object-name must be declared in an executed coco-type-declaration-
directive before appearing in any other executed coco directive, there is no requirement that
all coco type declaration directives appear before other directives.

5 Coco variables, expressions and assignment directive

5.1 Coco variables

CCR501 coco-variable is coco-variable-name

CCR502 coco-variable-name is name

Constraint: coco-variable-name shall not have the PARAMETER attribute.

5.2 Coco expressions

5.2.1 Coco primary

CCR503 coco-primary is coco-constant
or coco-variable
or (coco-expr)

Constraint: A coco-variable shall be defined (8.2) before appearing as a coco-primary.

5.2.2 Level-1 expressions

CCR504 coco-add-operand is [coco-add-operand mult-op] coco-primary

CCR505 coco-level-1-expr is [[coco-level-1-expr] add-op] coco-add-operand

CCR506 mult-op is *
or /

CCR507 add-op is +
or –

5.2.3 Level-2 expressions

CCR508 coco-level-2-expr is [coco-level-1-expr rel-op] coco-level-1-expr

CCR509 rel-op is .EQ.
or .NE.

10 25th July 1997

DRAFT ISO/IEC 1539-3:1997

or .LT.
or .LE.
or .GT.
or .GE.
or ==
or /=
or <
or <=
or >
or >=

5.2.4 Level-3 expressions

CCR510 coco-and-operand is [not-op] coco-level-2-expr

CCR511 coco-or-operand is [coco-or-operand and-op] coco-and-operand

CCR512 coco-equiv-operand is [coco-equiv-operand or-op] coco-or-operand

CCR513 coco-level-3-expr is [coco-level-3-expr equiv-op] coco-equiv-operand

CCR514 not-op is .NOT.

CCR515 and-op is .AND.

CCR516 or-op is .OR.

CCR517 equiv-op is .EQV.
or .NEQV.

5.2.5 General form of a coco expression

CCR518 coco-expr is coco-level-3-expr

Note 5.1

An example of the use of a coco expression is:

?? IF (VERSION*100+RELEASE > 402) THEN

5.3 Data type and value of a coco expression

The data type of a coco expression is either integer or logical. The data type of the operands of an operator
shall be as specified in Table 5.1 and the type of the result is as specified in Table 5.1.

25th July 1997 11

ISO/IEC 1539-3:1997 DRAFT

Table 5.1 Types of operands and results

Operator Type of Type of
operands result

+, –, *, / Integer Integer

.EQ., .NE., .LT., .LE., .GT., .GE. Integer Logical
==, /=, <, <=, >, >=

.NOT., .AND., .OR., .EQV., .NEQV. Logical Logical

CCR519 coco-logical-expr is coco-expr

Constraint: coco-logical-expr shall be of type logical.

Note 5.2

There is a precedence among the operations implied by the general form in 5.2, which
determines the order in which the operands are combined, unless the order is changed by the
use of parentheses. This precedence order is summarized in Table 5.2.

Table 5.2 Categories of operations and relative precedences

Category of Operators Precedence Term
Operation
Numeric * or / Highest mult-op

Numeric unary + or – . add-op

Numeric binary + or – . add-op

.EQ., .NE., .LT., .LE., .GT., .GE. .Relational rel-op
==, /=, <, <=, >, >=

Logical .NOT. . not-op

Logical .AND. . and-op

Logical .OR. . or-op

Logical .EQV. or .NEQV. Lowest equiv-op

The value of a coco expression shall be determined by interpreting each operation as specified in Tables
5.3, 5.4, and 5.5. The result of a division is the integer closest to the mathematical quotient and between
zero and the mathematical quotient inclusively.

12 25th July 1997

DRAFT ISO/IEC 1539-3:1997

Table 5.3 Interpretation of the numeric operators

Operator Representing Use of Interpretation
operator

/ Division x / x Divide x by x1 2 1 2

* Multiplication x ∗ x Multiply x by x1 2 1 2

– Subtraction x − x Subtract x from x1 2 2 1

– Negation − x Negate x2 2

+ Addition x + x Add x and x1 2 1 2

+ Identity + x Same as x2 2

Table 5.4 Interpretation of relational operators

Operator Representing Use of Interpretation
operator

.LT. Less than x .LT.x x less than x1 2 1 2

< Less than x < x x less than x1 2 1 2

.LE. Less than or equal to x .LE. x x less than or equal to x1 2 1 2

<= Less than or equal to x ≤ x x less than or equal to x1 2 1 2

.GT. Greater than x .GT. x x greater than x1 2 1 2

> Greater than x > x x greater than x1 2 1 2

.GE. Greater than or equal to x .GE. x x greater than or equal to x1 2 1 2

>= Greater than or equal to x ≥ x x greater than or equal to x1 2 1 2

.EQ. Equal to x .EQ. x x equal to x1 2 1 2

== Equal to x = = x x equal to x1 2 1 2

.NE. Not equal to x .NE. x x not equal to x1 2 1 2

/= Not equal to x /= x x not equal to x1 2 1 2

Table 5.5 Result values of logical operators

x x .NOT. x x .AND. x x .OR. x x .EQV. x x .NEQV. x1 2 2 1 2 1 2 1 2 1 2

true true false true true true false

true false true false true false true

false true false false true false true

false false true false false true false

25th July 1997 13

ISO/IEC 1539-3:1997 DRAFT

5.4 Coco initialization expression

Execution of a coco directive containing coco-initialization causes the evaluation of the expression
coco-initialization-expr and, unless already defined by the SET file (section 9), the definition of the coco
object with the resulting value.

CCR coco-initialization-expr is coco-expr

Constraint: Every primary of a coco-initialization-expr in the coco-initialization for an executed
coco-type-declaration-directive that specifies the PARAMETER attribute shall be a coco-constant or a
coco-initialization-expr enclosed in parentheses.

Note 5.3

Note that coco variables with defined values are permitted in a coco-initialization-expr for a
coco variable.

5.5 Coco assignment directive

A coco variable may be defined or redefined by execution of a coco assignment directive.

CCR521 coco-assignment-directive is coco-variable = coco-expr

In a coco assignment directive, the types of coco-variable and coco-expr shall either both be integer or
both be logical. Execution of a coco assignment causes the evaluation of the expression coco-expr and the
definition of coco-variable with the resulting value. The execution of the coco assignment shall have the
same effect as if the evaluation of all operations in coco-expr occurred before coco-variable is defined by
the coco assignment.

Note 5.4

Examples of coco assignment directives are:

?? DEBUG_LEVEL = DEBUG_LEVEL + 1
?? IS_COMPANY_X_MACHINE = (SYSTEM == SYS_E) .OR. &
?? & (SYSTEM == SYS_F)
?? PROJECT_LEVEL = VERSION + LATEST_RELEASE

6 Coco execution control and conditional compilation
The execution sequence and conditional compilation are controlled by coco IF constructs.

6.1 Coco blocks

A coco block is a sequence of coco directives, coco comment lines, coco INCLUDE lines, and noncoco
lines that are treated as a unit.

CCR601 coco-block is [pp-input-item] ...

Coco IF constructs may be used to control which noncoco lines of a coco program are copied unchanged
to the coco output.

14 25th July 1997

DRAFT ISO/IEC 1539-3:1997

6.2 Coco IF construct

The coco IF construct marks at most one of its constituent coco blocks as its coco TRUE block. Any
remaining coco blocks are coco FALSE blocks. Each noncoco line is copied unchanged to the coco output
unless it lies in a coco FALSE block at any level of nesting.

6.2.1 Form of the coco IF construct

CCR602 coco-if-construct is coco-if-then-directive
coco-block

[coco-else-if-directive
coco-block] ...

[coco-else-directive
coco-block]

coco-end-if-directive

CCR603 coco-if-then-directive is IF (coco-logical-expr) THEN

CCR604 coco-else-if-directive is ELSE IF (coco-logical-expr) THEN

CCR605 coco-else-directive is ELSE

CCR606 coco-end-if-directive is END IF

Note 6.1

An example of two coco IF constructs, one nested within the other, is:

?? IF (IS_COMPANY_X_MACHINE) THEN
?? IF (FORTRAN_LEVEL == F95) THEN
 PURE FUNCTION GET_RABBIT_WEIGHT(A_RABBIT) RESULT(WEIGHT)
 TYPE (RABBIT), INTENT(IN) :: A_RABBIT
?? ELSEIF (FORTRAN_LEVEL == F90) THEN
 FUNCTION GET_RABBIT_WEIGHT(A_RABBIT) RESULT(WEIGHT)
 TYPE (RABBIT) :: A_RABBIT
?? ELSE
?? MESSAGE "Company X does not have a FORTRAN 77 product"
?? STOP
?? ENDIF
?? ELSE
 FUNCTION GET_RABBIT_WEIGHT() RESULT(WEIGHT)
?? ENDIF

6.2.2 Execution of an IF construct

At most one of the coco blocks in the coco IF construct is selected as a coco TRUE block. If there is a
coco ELSE directive in the construct, exactly one of the coco blocks in the construct will be selected as a
coco TRUE block. The coco logical expressions are evaluated in the order of their appearance in the
construct until a true value is found or a coco ELSE directive or coco END IF directive is encountered. If
a true value or a coco ELSE directive is found, the coco block immediately following is selected as a coco
TRUE block, the TRUE block is executed, and this completes the execution of the construct. All other

25th July 1997 15

ISO/IEC 1539-3:1997 DRAFT

blocks of the construct are coco FALSE blocks. The coco logical expressions in any remaining coco
ELSE IF directives of the coco IF construct are not evaluated. If none of the evaluated expressions are true
and there is no coco ELSE directive, the execution of the construct is completed without the selection of
any coco block within the construct as a coco TRUE block.

Any coco IF constructs nested within a coco TRUE block are treated similarly.

Execution of a coco END IF directive has no effect.

Note 6.2

An example of declaring a coco variable and referencing a module inside a coco IF construct
is:

?? IF (MACHINE==BIG) THEN
?? INTEGER :: CHIPS = 3
 USE MODULE_FOR_BIG
?? ELSE
?? INTEGER :: CHIPS = 1
 USE MODULE_FOR_SMALL
?? ENDIF

6.2.2.1 Processing a coco TRUE block

Source lines contained in a coco TRUE block are processed by the coco processor.

6.2.2.2 Processing a coco FALSE block

Coco directives in a coco FALSE block are not executed. Source lines contained in a coco FALSE block
are omitted from the coco output or are converted to Fortran comments and are not otherwise processed
by the coco processor. Coco directives in FALSE blocks shall be in accord with the syntax rules, but have
no effect and need not satisfy the constraints.

Note 6.3

Coco directives in a FALSE block are required to be in accord with the syntax rules in order
that the end of the block is recognizable when the block has coco IF constructs nested within
it.

16 25th July 1997

DRAFT ISO/IEC 1539-3:1997

7 Coco message and stop directives
CCR701 coco-message-directive is MESSAGE [coco-output-item-list]

CCR702 coco-output-item is coco-expr
or coco-char-literal

Execution of a coco MESSAGE directive makes the coco-output-item-list, if any, available in a
processor-dependent manner.

Note 7.1

Here is an example of the use of a coco message directive:

?? IF (SYSTEM == DOS) THEN
 OPEN(10, "C:\mydir\myfile.txt")
?? ELSEIF (SYSTEM == UNIX) THEN
 OPEN(10, "/mydir/myfile.txt")
?? ELSE
?? MESSAGE "system = ", SYSTEM
?? ENDIF

CCR703 coco-stop-directive is STOP

Execution of a coco STOP directive halts coco execution. At the time of execution of a coco STOP
directive, the fact that coco execution was halted by the execution of a coco STOP directive is available in
a processor-dependent manner.

Note 7.2

An example of using the coco MESSAGE directive and the coco STOP directive for error
reporting is:

?? IF (MACHINE==BIG) THEN
?? INTEGER :: CHIPS = 3
 USE MODULE_FOR_BIG
?? ELSEIF (MACHINE==SMALL) THEN
?? INTEGER :: CHIPS = 1
 USE MODULE_FOR_SMALL
?? ELSE
?? MESSAGE "SET MACHINE TO EITHER BIG OR SMALL"
?? MESSAGE "MACHINE = ", MACHINE
?? MESSAGE "PREPROCESSING ERROR. HALTING! "
?? STOP ! FATAL ERROR. HALT COCO EXECUTION
?? ENDIF

25th July 1997 17

ISO/IEC 1539-3:1997 DRAFT

8 Scope and definition of coco variables

8.1 Scope of coco variables

Coco variables have the scope of the coco program in which they are declared.

8.2 Events that cause coco variables to become defined

Coco variables become defined as follows:

(1) Execution of a coco assignment directive causes the coco variable that precedes the equals to
become defined.

(2) Execution of a coco initialization for a coco variable in a coco type declaration directive causes the
variable to become defined, unless already defined by the SET file (section 9).

9 The coco SET file
The coco SET file provides a method of

(1) controlling the way coco directive lines and lines in a coco FALSE block are represented in the coco
output;

(2) documenting the value of a coco constant outside the coco program;

(3) assigning an initial value to a coco variable (CCR501);

(4) overriding the initial value assigned to a coco variable in a coco initialization expression (CCR520).

The mechanism fo associating a particular SET file with a coco program is processor dependent.

CCR901 coco-set-file is [coco-alter-directive]
[coco-type-declaration-directive] ...

CCR902 coco-alter-directive is ALTER: DELETE
or ALTER: BLANK
or ALTER: SHIFT1
or ALTER: SHIFT0
or ALTER: SHIFT3

Constraint: A named constant declared in the coco-set-file shall be declared in the coco program as a
constant with the same type and value.

Constraint: A coco variable declared in the coco-set-file shall be given an initial value in its type
declaration directive and shall be declared in the coco program with the same type.

The coco SET file is executed before execution of the coco program. The initial value of a coco variable
declared in the coco SET file is that in the SET file; any initial value in the coco program has no effect.

If coco-alter-directive is present, coco directive lines and lines in a coco FALSE block in the coco
program are treated thus:

18 25th July 1997

DRAFT ISO/IEC 1539-3:1997

DELETE they are deleted,

BLANK they are converted to blank lines,

SHIFT1 they are converted to a line with a ″!″ in character position 1, followed by the original source
line shifted one position to the right; the processor shall issue a warning if any resulting line
has more than 132 characters,

SHIFT0 they are converted to a line with a ″!″ in character position 1, followed by the characters
starting from character position 2 of the original source line, or

SHIFT3 they are converted to a line with a ″!?>″ in character positions 1 to 3, followed by the
original source line shifted three positions to the right; the processor shall issue a warning if
any resulting line has more than 132 characters.

If there is no coco-alter-directive, the behaviour is as for SHIFT3.

Note 9.1

All the options except DELETE preserve the line numbers, apart from the effects of
INCLUDE.

There is no representation of the lines of the coco SET file in the coco output.

Note 9.2

For example, the following coco SET file:

?? ALTER: SHIFT3
?? INTEGER, PARAMETER :: DOS = 1
?? INTEGER :: SYSTEM = DOS

will lead to a use of the module DOS_MODULE in the following coco program:

?? INTEGER, PARAMETER :: DOS = 1, MAC = 2, UNIX = 3, OTHER = 4
?? INTEGER :: SYSTEM = UNIX
?? IF (SYSTEM==DOS) THEN
 USE DOS_MODULE
?? ELSEIF (SYSTEM==UNIX) THEN
 USE UNIX_MODULE
?? ENDIF
 . . .

and the following output:

!?>?? INTEGER, PARAMETER :: DOS = 1, MAC = 2, UNIX = 3, OTHER = 4
!?>?? INTEGER :: SYSTEM = UNIX
!?>?? IF (SYSTEM==DOS) THEN
 USE DOS_MODULE
!?>?? ELSEIF (SYSTEM==UNIX) THEN
!?> USE UNIX_MODULE
!?>?? ENDIF
 . . .

25th July 1997 19

ISO/IEC 1539-3:1997 DRAFT

Note 9.3

Provided the coco program has no include lines and no lines that commence with !?>, the
following Fortran program can be used to restore the coco program from its SHIFT3 coco
output:

PROGRAM RESTORE
 CHARACTER(LEN=135) :: LINE
 DO
 READ(*,'(A)')LINE
 IF (LINE(1:3)=='!?>') LINE(1:132) = LINE(4:135)
 WRITE(*,'(A)')LINE(1:LEN_TRIM(LINE))
 END DO
END PROGRAM RESTORE

Note 9.4

The reason for the strict rules for the matching of declarations in the SET file and the coco
program is to ensure that the coco program is complete, apart from the initialization of those
variables that control which alternative is constructed, and that the SET file accords with it.
For instance, if a name is misspelled in the SET file, this will be diagnosed by the system
unless the misspelled name happens to be that of another coco object with matching
properties.

Note 9.5

A large program is usually presented to the processor in parts of a manageable size. In this
case, each part will need a coco SET file, and must obey the rules of this standard with
respect to execution of duplicated coco type declarations. A single SET file may be
employed for all the parts. If different SET files are employed and the parts do not use
distinct sets of coco names, merging such parts to be executed as a whole with a single
merged SET file will require some editing.

20 25th July 1997

DRAFT ISO/IEC 1539-3:1997

Annex A: EXAMPLES
This annex includes two examples illustrating the use of facilities conformant with this part of ISO/IEC
1539.

The first example uses conditional compilation to facilitate the editing of a large block comment.

The second example uses conditional compilation to provide debugging information upon entering and
exiting procedures. The example intentionally has a programming bug in it. Note that the conditional
compilation directives in this example could be automatically generated.

Each example contains a conditional compilation program and a SET file.

Initial text

! EXAMPLE 1 shows a possible shift file for output
?? IF (.FALSE.) THEN

One convenient use of conditional compilation is the ability to write
large comments that span across many lines without requiring each line
to start with a "!". Since conditional compilation can be asked to
convert these to comments, this whole paragraph can be written and
modified without the overhead of making sure that each line is a
Fortran comment.

One can imagine this use of conditional compilation for header
comments preceding Fortran program units.

?? ENDIF

Execution with a SET file consisting of the single line

?? ALTER: SHIFT3

will yield the following output:

! EXAMPLE 1 shows a possible shift file for output
!?>?? IF (.FALSE.) THEN
!?>
!?>One convenient use of conditional compilation is the ability to write
!?>large comments that span across many lines without requiring each line
!?>to start with a "!". Since conditional compilation can be asked to
!?>convert these to comments, this whole paragraph can be written and
!?>modified without the overhead of making sure that each line is a
!?>Fortran comment.
!?>
!?>One can imagine this use of conditional compilation for header
!?>comments preceding Fortran program units.
!?>
!?>?? ENDIF

25th July 1997 21

ISO/IEC 1539-3:1997 DRAFT

Initial text

! EXAMPLE 2 shows a possible short file for output
?? LOGICAL :: DEBUG_PROC_NAME = .FALSE.
?? LOGICAL :: DEBUG_PROC_ARGS = .FALSE.
?? ! Make sure to debug the procedure name if debugging the arguments
?? DEBUG_PROC_NAME = DEBUG_PROC_NAME .OR. DEBUG_PROC_ARGS
SUBROUTINE INTSWAP (LEFT, RIGHT)
 INTEGER, INTENT(INOUT) :: LEFT, RIGHT
 INTEGER :: WRONG
?? IF (DEBUG_PROC_NAME) THEN
 PRINT *, "Entering IntSwap"
?? ENDIF
?? IF (DEBUG_PROC_ARGS) THEN
 PRINT *, " IntSwap(in):left = ", LEFT
 PRINT *, " IntSwap(in):right = ", RIGHT
?? ENDIF

 WRONG = RIGHT
 LEFT = RIGHT
 RIGHT = WRONG

?? IF (DEBUG_PROC_ARGS) THEN
 PRINT *, " IntSwap(out):left = ", LEFT
 PRINT *, " IntSwap(out):right = ", RIGHT
?? ENDIF
?? IF (DEBUG_PROC_NAME) THEN
 PRINT *, "Exiting IntSwap"
?? ENDIF
ENDSUBROUTINE INTSWAP

Execution with a SET file consisting of the single line

?? ALTER: DELETE

will yield the following output:

! EXAMPLE 2 shows a possible short file for output
SUBROUTINE INTSWAP (LEFT, RIGHT)
 INTEGER, INTENT(INOUT) :: LEFT, RIGHT
 INTEGER :: WRONG

 WRONG = RIGHT
 LEFT = RIGHT
 RIGHT = WRONG

ENDSUBROUTINE INTSWAP

22 25th July 1997

