ISO/IEC JTC1/SC22/WG5 N1305
Page 1 of 34

1sonec Jrcusczzwes N1305
Page 1 of 34

SC22 N2589 — Results of SC22 Ballots on Registration and
Approval of PDTR 15815 (Interoperability with C)

begi nning of title page

| SO'I EC JTC 1/ SC22
Progranmi ng | anguages, their environnents and system software interfaces
Secretariat: U S A (ANSI)

I SO 1 EC JTC 1/ SC22
N2589

TI TLE:

Summary of Voting on Concurrent PDTR Registration and PDTR Approval for
PDTR 15815 - Informati on technol ogy - Progranm ng | anguages, their
environnents and system software interfaces - Interoperability of Fortran
and C

DATE ASSI GNED:
1997-09- 18

SOURCE:
Secretariat, I1SOIEC JTC 1/ SC22

BACKWARD PO NTER:
N A

DOCUMENT TYPE:
Sunmary of Voting

PRQJIECT NUMBER:
JTC 1.22.02. 01. 03

STATUS:

PDTR 15815 has been registered. W35 is requested to prepare a Disposition
of Comrents Report and a recommendati on on the further processing of the
PDTR.

ACTI ON | DENTI FI ER:
FYl to SC22 Menber Bodies
ACT to WEH

DUE DATE:
N A

DI STRI BUTI ON:

ISO/IEC JTC1/SC22/WG5 N1305
Page 2 of 34

Text

CROSS REFERENCE
SC22 N2468

DI STRI BUTI ON FORM
Def

Address reply to:

| SO EC JTC 1/ SC22 Secretari at
WIlliamC. Rinehuls

8457 Rushi ng Creek Court
Springfield, VA 22153 USA

Tel ephone: +1 (703) 912-9680
Fax: +1 (703) 912-2973

emai | : rinehul s@ccess. di gex. net

end of title page; beginning of sunmary

SUMVARY OF VOTI NG ON

Letter Ballot Reference No: SC22 N2468
Crculated by: JTC 1/SC22

Circulation Date: 05-28-1997

Closing Date: 09-11-1997

SUBJECT:

Concurrent PDTR Registration and PDTR Approval for PDTR 15815 -

I nformati on technol ogy - Programm ng | anguages, their environments and
system software interfaces - Interoperability of Fortran and C

The foll owi ng responses have been received on the subject of PDTR
regi stration:

"P" Menbers supporting registration w thout conmrents: 14
"P" Menbers supporting registration with comrents: 0
"P" Menbers not supporting registration: 2
"P" Menbers abstaining: 2
"P" Menmbers not voting: 5

The foll owi ng responses have been received on the subject of PDIR
approval :

"P" Menbers supporting approval without coments: 12

ISO/IEC JTC1/SC22/WG5 N1305

Page 3 of 34
"P" Menbers supporting approval with conments: 2
"P" Menmbers not supporting approval: 2
"P" Menbers abstaining: 2
"P" Menbers not voting: 5

Secretariat Action:

PDTR 15815 has been registered. W5 is requested to prepare a Disposition
of Comrents Report and a recommendati on on the further processing of the
PDTR.

end of overall summary; begi nning of detailed registration summary

| SO | EC JTC1/SC22 LETTER BALLOT SUMVARY
Regi stration Ball ot

PRQIECT NO JTC 1.22.02. 01. 03
SUBJECT:

Concurrent PDTR Registration and PDTR Approval for PDTR 15815 -1 nformation
technol ogy - Progranm ng | anguages, their environments and system software

interfaces - Interoperability of Fortran and C

Ref erence Docunment No: N2468 Bal | ot Document No: N2468
Circul ati on Date: 05- 28- 1997 Closing Date: 09-11-1997
Crculated To: SC2 P, O L Crcul ated By: Secretariat

SUMVARY OF VOTI NG AND COMMENTS RECEI VED

Approve Disapprove Abstain Comments Not Voti ng
"P'" Menbers

Australia
Austria
Bel gi um

Br azi |
Canada

Chi na

Czech Republic
Denmar k
Egypt

Fi nl and
France

Ger many

I rel and
Japan

Net her | ands
Nor way

\>$\/\/\>Sv
O O

XXXXX

L
O

LR RN

ANAN AN AN AN AN AN AN AN AN AN AN AN AN S
L

ANAN AN AN AN AN AN AN AN AN AN AN AN AN S
e N N N N N N N N N N N N N N
ANAN AN AN AN AN AN AN AN AN AN AN AN AN S
ANAN AN AN AN AN AN AN AN AN AN AN AN AN S
e N N N N N N N N N N N N N N
ANAN AN AN AN AN AN AN AN AN AN AN AN S AN

e N N N N N N N N N

~— — —

ISO/IEC JTC1/SC22/WG5 N1305

Page 4 of 34

Romani a (X) () () () ()
Russi an Federati on (X) () () () ()
Sl oveni a () () () () (X)
Sweden () () () () (X)
UK () (X) () (X) ()
Ukr ai ne (X) () () () ()
USA () (X) () (X) ()
'O Members

Argentina () () () () ()
Bul gari a () () () () ()
Cuba () () () () ()
G eece () () () () ()
Hungary () () () () ()
| cel and () () () () ()
| ndi a () () () () ()
| ndonesi a () () () () ()
Italy () () () () ()
Korea Republic () () () () ()
New Zeal and () () () () ()
Pol and () () () () ()
Por t ugal () () () () ()
Si ngapor e () () () () ()
Thai | and () () () () ()
Tur key () () () () ()
Yugos! avi a () () () () ()

end of registration sunmary; beginning of approval sumary __

| SO | EC JTCl/ SC22 LETTER BALLOT SUMVARY
Approval Ball ot

PRQIECT NO JTC 1.22.02. 01. 03
SUBJECT:

Concurrent PDTR Registration and PDTR Approval for PDTR 15815 -
I nformati on technol ogy - Programmi ng | anguages, their environments and

system software interfaces - Interoperability of Fortran and C

Ref erence Document No: N2468 Bal | ot Document No: N2468
Circul ati on Date: 05- 28- 1997 Cl osing Date: 09-11-1997
Crculated To: SC22 P, O L Circul ated By: Secretari at

SUMVARY OF VOTI NG AND COMMENTS RECEI VED

Approve Disapprove Abstain Comments Not Voti ng
"P'" Menbers

Australia (X) ()

()
Austria () () (X) () ()
Bel gi um (X) () (

Br azi |

Canada

Chi na

Czech Republic
Denmar k

Egypt

Fi nl and

France

Ger many

I rel and

Japan

Net her | ands
Nor way

Romani a
Russi an Federation
Sl oveni a
Sweden

UK

Ukr ai ne

USA

'O Members

Argentina
Bul gari a
Cuba

G eece
Hungary

| cel and

I ndi a

I ndonesi a
Italy

Korea Republic
New Zeal and
Pol and
Por t ugal

Si ngapor e
Thai | and
Tur key
Yugosl avi a

ANAN AN AN AN AN AN AN AN AN AN AN AN AN AN S

e N N N N N N N N N N N N N N N

ANAN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN S

X

ANAN AN AN AN AN AN AN AN AN AN AN AN AN AN S

O e e e N N N N N N N N N N N N N

~

e N N N N N N N N N N N N N N N

end of approval sunmary;

ISO/IEC JTC1/SC22/WG5 N1305

ANAN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN S

ANAN AN AN AN AN AN AN AN AN AN AN AN AN AN S

\>$v

e N N N N N N N N N N N N N N N N

e N N N N N N N N N N N N N N N

ANAN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN AN S

ANAN AN AN AN AN AN AN AN AN AN AN AN AN AN S

xX

O N N

O N N N

\>$v

e N N N N N N N N N N N N N N N

ANAN AN AN AN AN AN AN AN AN AN AN AN AN AN S

Page 5 of 34

e N N N N N N N N N N N N N N N

begi nni ng of commrents acconpanyi ng France approval vote

From

Thank you for recording the follow ng French vote on

N2468 -

---1--- The registration of doc.

N2468 as PDTR :

ARNAUD. A. R. D. DI QUELOU@enwi | . af nor . fr

_ PDTR 15815 Interoperability of Fortran and C, and concurrent
letter ballots on PDIR registration and PDTR approva

ISO/IEC JTC1/SC22/WG5 N1305
Page 6 of 34

YES
---2--- The approval of doc. N1277 or PDTR 15815
""Interoperability of Fortran and C'

YES W TH COMVENTS (see bel ow)

Techni cal conmments :

1)
Page 21, about result value of function C DEREFERENCE, case (ii)
We think that the sentence is in error (the argunent
MOLD i s not used) or inconplete.

2)
Sone exanples will be welcone, especially in:
Note 3.27 (page 23) or par. 3.5.1.4 (page 29)

3)

Page 37, par. 3.6, Note 3.52 : we are not aware of ''that Fortran
prohi bits the appearrance of a nodule variable as the
vari abl e-nane in a conmon- bl ock-obj ect or as an
equi val ence- obj ect "', It seens to us that it is
possi ble in the nodul e that defines such variables, BUT
not in any nodul e that uses this nodule.

Sorry, we don't understand what the author has in his mnd

4)
What about the binding with the second part of |S:1539-2
(variable length character string in Fortran) ?7?

Edi torial Comments :

A
Page 1, paragraph 1.1, line 3
As decided (really ?) for the nane of the first part of the
Fortran standard 1539-1 replace ''current Fortran | anguage'
by ''current base Fortran | anguage'
Page 3, paragraph 1.7, line 11 : the sane.

B)
Page 19, about result value of function C _ADDRESS, at the end

ISO/IEC JTC1/SC22/WG5 N1305
Page 7 of 34

Better wording (?), as witten page 21 for the
result value of function C_DEREFERENCE :
If C_ISNULL(OBJ) is true (or .TRUE. ??), the result is
(al so) undefi ned.
Page 22, about result value of function C_|NCREMENT : the sane.
Page 19, 21 and 22 : Wat is the best ? : If CISNULL(...) is true
OR If C_ISNULL(...) is .TRUE

0

Page 31, line 5 : replace ''a type "function returning T1"'
by ''a type "function returning T"'

D)

Page 34, Note 3.46, line 5 : replace ''callee'' by caller’

E)
Ref erences to the base Fortran standard are not very clearly stated.
For instance, ref. (1.4) page 7, par. 3.2, line 2
ref. (12.5.3) page 7, par. 3.2, line 4 ;
ref. (6.2.2.2) page 17, par. 3.3.6, line 25
ref. (13.14.111), page 17, par. 3.3.6, line 30
refer to the 1S 1539-1 and not to the present docunent.

end of French comments; begi nning of Germany conments acconpanyi ng
affirmati ve vote

German voting on PDTR 15815, |SQO | EC JTC1l/ SC22/ N2468, Interoperability of
Fortran and C

YES, CGermany supports the proposal that docunment |SQO | EC JTCl/ SC22/ N2468
(same as | SO | EC JTCLl/ SC22/ W5/ N1277), or its revised version, be
regi stered as PDTR 15815.

YES, Cermany approves the draft PDTR 15815 with the foll owi ng comrents:

1. General comments

1.1 Although nixing C and Fortran input and output is intentionally not
addressed by the TR, it is unclear if a C procedure mnmight performl/O
at all. Shouldn't the TR say sonet hing about the question who is
responssi ble for bringing up the C runtime environnent? O should
this problem be sol ved outside the standard?

1.2 The conformance cl auses of the TR need to be nore precise, especially
concer ni ng conformance of the processor

1.3 Depending on the schedule of C9X and this TR, several C9X additions
may be included in the TR The new standard headers

2.

ISO/IEC JTC1/SC22/WG5 N1305

Page 8 of 34
<conpl ex. h> | SO C_COWPLEX_H
<fenv. h> | SO C FENV_H
<inttypes. h> | SO C I NTTYPES_H
<bool . h> | SO C BOOL_H (not sure yet)

may be added to section 3.1 of the PDITR The new basic dat atypes

l ong | ong | NTEGER(C_LONG_LONG
fl oat compl ex COVPLEX(C_FLT)
doubl e conpl ex COVPLEX(C_DBL)

| ong doubl e conpl ex COVPLEX(C_LDBL)

may be added to section 3.3.1 of the PDIR (if C s and Fortran's conpl ex
types may differ in nmenory layout, the latter three mght require
derived types rather than binding to COVWLEX).

Techni cal conmment s

.1 Docurent WGH/ N1265, part 2, requested that argunents to C_ADDRESS shal |

5

have the TARGET attribute. This should be added to the PDTR

In accordance with WG5S/ N1265 part 3, the text in W5/ NL237 to restrict
C pointer operations (esp. C ADDRESS and C DEREFERENCE) to objects of
C types has been renmoved fromthe PDTR

Germany reconmends that these restrictions be reinstated.

The type aliasing nechanismis anbiguous. It should be enhanced al ong
the lines of W35/ N1298.

Germany proposes that the C pointer support be enhanced by adding
at least the follow ng derived types to the | SO C nodul e:

TYPE(C_SCHAR PTR)
TYPE(C_SHRT_PTR)
TYPE(C_| NT_PTR)
TYPE(C_LONG PTR)
TYPE(C FLT_PTR)
TYPE(C_DBL_PTR)
TYPE(C_LDBL_PTR)

to support pointers to the basic types (one pointer indirection), and
TYPE(C_CHAR PTR_PTR)

to support char** in addition to the existing support for char*.
Al of these types shall have BIND(C) attribute and PRI VATE conponents.

Wth these new derived types, argunents and result types of the
procedures for C pointer support need to be revised.

Strong type checking should be enforced for dereferencing a pointer
to a C basic type.

ISO/IEC JTC1/SC22/WG5 N1305
Page 9 of 34

2.6 ARGV in 3.7 should be changed to type TYPE(C CHAR PTR_PTR) and the
text of this section should be revised accordingly.

2.7 Text needs to be added to specify the behavior in cases where the
<c-kind-paranr for a C basic type is negative but a C DEREFERENCE
of a C pointer type derived fromit is attenpted.

2.8 A TYPE(C FNC PTR) to support C function pointers may be added
Dumry procedures in an interface to a C procedure may then be decl ared
either with an interface block having the BIND(C) attribute or with
this new derived type. This parallels the F2000 requirenent for Fortran
procedure pointers/variables, which will probably include both an
inmplicit (EXTERNAL) and an explicit (INTERFACE) version of procedure
poi nters.

2.9 Gernmany recommends to del ete support for unsigned integer types from
the PDTR (too limted in scope, not sufficiently inportant).
The <c-ki nd-paranr constants C UCHAR, C USHRT, C U NT and C_ULONG
shoul d be del eted, and the first paragraph on page 11 shoul d be
renoved or changed to an informative note.

2.10 Support for enunerated types should be added, as outlined in
WGE5/ N1299.

2.11 The PDIR prohibits the use of arrays which are potentially not dense
in menory (assuned-shape dumy argunments, pointer arrays, etc) as
actual arguments to C procedures. These restrictions shoul d be del eted.

Rational e: The restrictions are present to avoid potential problens
wi th COPYlI NN COPYQUT ar gunent associ ation semantics.
However, they are unnecessary in all cases where access to
the argument is not asynchronous. The behavi or when calling
C functions with array argunents should be similar to that
when calling Fortran procedures with assunmed size array
argunents -- which may invol ve conpil er-generated

t empor ari es.

The asynchroneous problem may occur in both cases, it should
not be addressed by the PDTR but rather by the ongoi ng work
for F2000 asynchronous |1/O and the ASYNC attri bute.

2.12 Binding to C data that is qualified "volatile" should be prohibited.

2.13 The necessity for the restriction in 3.3.11 concerning register
storage class specifiers on C function paraneters shoul d be checked.

2.14 1t has been pointed out that the nunerical bounds of the C environnent
are nmacros, not constants. This means that in section 3.3.2 the term
"constant" shoul d probably be avoi ded.

3. Editorial comments

whol e docurent :
qualify all references to sections in IS 1539-1 and | S 9899,

ISO/IEC JTC1/SC22/WG5 N1305
Page 10 of 34

delete all qualifications of references to sections within the PDTR
and add text to section 1.6 explainig this. Possibly inconplete list:

page 7: (1.4) - 1S 1539-1

page 7: (12.5.3) - IS 1539-1

page 11: (12.5.7) - 1S 1539-1

page 12: (13.5.7) - 1S 1539-1

page 12: (6.2.2) - IS 1539-1

page 12: (13.14.11) - |S 1539-1

page 24: |S 1539 in 2nd constraint - IS 1539-1
page 28: (6.5.4.3) - 1S 9899

page 28: 3.3 - TR

page 29: 3.3 - TR

page 32: 1S 539 in note 3.29 - 1S 1539-1
page 32: (6.5.2.2) - 1S 9899 (twice)
page 36: 3.3 - TR (on next page)

whol e docunent :

change mmenoni ¢ nanmes of <c-kind-paranm> constants to nanmes which contain
the C type nanes rather than the mmenos according to note 3.9,

and delete note 3.9

page 3, note 1.3:
del ete note

page 4, bulleted list:
add MPI (nessage passing interface) to the |ist

page 10, note 3.8:
delete note [there is an Cinterp classifying enuns as integer types]

page 10, first line of 3.3.1:
add (including enunerated types) after <integer types> [see edit for note
3.8]

page 27, section 3.5.1:
notes with exanples should be added to illustrate these facilities

page 39, edit for page 7:

del ete reference to ANSI C standard

end of Gernmany comments; beginning of UK conments acconpanyi ng
negative vote

UK vote in SC22 ballot on PTDR 15815 (SC22/ N2468) on Interoperability of
Fortran and C

PDTR Regi stration Ball ot

The UK votes 'no'. The initial (1995) objective of this Technica
Report was to define a proposed standard nethod of enabling Fortran
programs to access C procedures, to be published as quickly as possible

ISO/IEC JTC1/SC22/WG5 N1305
Page 11 of 34

and prior to conpletion of the revision of the Fortran base |anguage
standard which is schedul ed for 2002. The task has proved far nore
difficult than was antici pated and has fallen behind schedule. The UK
believes that the requirement is now best treated as an integra

requi renent for the revision of the base | anguage standard, and not as a
separabl e entity. There is thus no reason to proceed with the Technica
Report .

PDTR Content Ball ot

Shoul d the vote be in favour of registering the PDTR, the UK votes 'no
on content. There are technical and editorial deficiencies which are
detail ed bel ow.

Maj or technical flaws:

(1) C-style pointer arithnmetic is inported into the Fortran |anguage
wi t hout sufficient safeguards to keep the existing |anguage
efficient and/or to nake pointer arithnetic safe; in particular
the argument to the C _ADDRESS function rmust be required to have
the TARGET attribute (cf Wh-N1261 LV4 and WGEh- N1265 section 2).

(2) There is no support for interfacing to C "enun' types.

(3) There should be some distinction between by-reference argunents
to C functions according to whether the C function stores
somewhere a pointer to the argunment; otherwi se an actual argunent
passed by reference will be forever "tainted" by the possibility
of it being a pointer target. Al arrays, as well as "output"
argunents, are passed by reference.

M nor technical flaws:

(4) There is sone confusion in the docunent between C NULL and NULL
in various guises, and al so between "zero" and the null pointer
(in Q. The null pointer in Cis not "zero" and should not be
referred to as such.

(5) C I SNULL appears to be redundant and unnecessary.

(6) Type aliases are introduced, but are not used for providing the
standard C types; instead, kind nunbers are provided (C _CHAR et
al) and applied to the Fortran intrinsic types. Type aliases
shoul d probably be used as the user cannot then nake the mnistake
of using a kind nunber with the wong type; this is nost likely
with the "char" types, which are:

CHARACTER(C_CHAR), | NTEGER(C_SCHAR), | NTEGER(C UCHAR).

Editorial flaws:

(7) Sone text that nust be normative is in (informative) notes.

(8) MOLD is used both to designate a (dunmy) variable nane and, in
t he sane paragraph, the type of that variable.

(9) Nam ng is sonetines inconsistent; e.g. C SIZEOF but OFFSETOF.

Further coments:

(A The draft TR uses the exanple of "extern char **environ;" in
order to justify inmporting alnost the entirety of C pointer
arithmetic (it does not inport pointer differencing). This
exanple is unconvincing - it does not need the full potentially

ISO/IEC JTC1/SC22/WG5 N1305
Page 12 of 34

damagi ng power of pointer arithmetic vented onto Fortran
optimsers to access C s "pointer to variable-length array"
entities - a sinpler, safer, alternative could be devised.

(B) The pi eceneal approach of inporting a subset of C facilities into
Fortran (until sufficient facilities are inported to support
interfacing to a sel ected subset of useful Clibraries) has the
undesi rabl e effects of:

(i) sone C functions cannot be interfaced to, in particular
- ones with enum argunents
- ones with function argunents (actually, these can be
interfaced to but only with actual argunents that are al so
C functions, not Fortran procedures).
(ii) Fortran becones nore conplicated, with all these extra
dat atypes that nust be supported (not just in C
interfaces); e.g. a conpiler that does not at present
support small | NTEGER types (8-bit and 16-bit) would not be
able to support calling C functions expecting those types
wi t hout supporting themthrough the entire Fortran
| anguage.

(O MPI is a widely used de-facto standard which is in effect a C
l[ibrary. It may not be practicable to support all of MPI from
Fortran, but there should be consideration of the interface
bet ween Fortran and MPI and ideally a discussion of what is and
what is not supported, perhaps in an annex.

end of UK comments; begi nning of USA comments acconpanyi ng negative

vot e

The US National Body votes to Disapprove | SO | EC PDTR 15815,

I nformati on Technol ogy - Programmi ng | anguages, their environments and
system software interfaces - Interoperability of Fortran and C
Comments |isted bel ow

Category 1: is defined as technical flaws which nust be repaired.
Category 2: is defined as technical flaws which nust be dealt with.
Category 3: is defined as editorial issues.

Category 1

Comment 1.

1.5

Is a processor permtted to make accessible entities in the 1SOC
intrinsic nodule or other nodul es that are not defined by this PDTR? |If
so, the nanes may conflict with the nane of a user-defined entity. This
is simlar to the issue Fortran has with pernmitting a standard-confornmnng
processor to define intrinsic procedures that are not specified by the

st andar d.

Comment 2.

ISO/IEC JTC1/SC22/WG5 N1305
Page 13 of 34

1.5, paragraph after Note 1.1

Section 1.5 of DS 1539-1 states that a processor conforns if it
"contains the capability to detect and report the use within a submtted
programunit of an additional formor relationship that is not permitted
by the numbered syntax rules or their associated constraints". How
shoul d a conform ng processor handl e the additional forms and

rel ati onshi ps specified by this PDTR?

Comment 3.

3, the whole section If this section is intended to be the technica
specification, then it should be witten in the sane formand with the
same precision of term nology as the Fortran 95 standard, particularly
since the edit (in Section 4) for page 292 says that section 3 is to
sinmply be inserted into the Fortran standard as the new section 16

Comment 4.

3.1, 1st paragraph after Note 3.3

It says that an inplenentation may support all or parts of the
contents of the corresponding C standard header. This seens to be a
large hole in portability if vendors can not only choose which headers
t hey support but can also deternine the contents of the headers.

Comment 5.

3.2, Note 3.6

Al t hough the C standard requires that a C programnot use two externa
nanes that are distinguished only by case, this TR needs to require a
Fortran processor that does not support |ower case letters to have
some facility to enable the mapping to the C external nane. For
exanpl e,

i nt MyCFunc(voi d)
{}

| NTERFACE
Bl ND(C, NAME=' MYCFUNC) | NTEGER(C_I NT) FUNCTI ON F()
USE 1SO C
END FUNCTI ON F
END | NTERFACE

If the C processor preserves the case in the bind nane for MyCFunc,

the Fortran processor needs sone way of getting to that nane. It should
probably be a nmethod that's not specified in the TR but stil

required.

Comment 6.

3.3.1, Note 3.10

Support for unsigned integers is still confusing. The paragraph after
Note 3.10 notes that unsigned C types have the sane size and ali gnnent
as their signed counterparts.

G ven that the unsigned C types have the sane representation as their
associ ated signed types, there shouldn't be a need for the unsigned
ki nds, since there's no real support in Fortran for unsigned val ues.

ISO/IEC JTC1/SC22/WG5 N1305
Page 14 of 34

Coment 7

3.3.2

The first paragraph of this section states that | SO C FLOAT_H nodul e

shal |l provide a nodule with *constants* for the nuneric limts provided by
the <float.h> header. But nobst of the macros in <float.h> do not have to
be constants. They can expand into function calls for exanple. So, a
nmodul e could not reliably provide constants if the C inplenentation

deci ded

to delay floating-point C characteristics until runtine.

Comment 8.
3.3.4, Note 3.15
In the sentence

"Consequently, a NAVE= clause in a BIND(C) specification
within a derived type definition is not allowed."

shoul d either be a constraint or a rule in prose in normative text.
Notes are not normative.

Comment 9.
3.3.4, 3.3.6, pp. 15, 17

As currently defined, the PDTR only supports the concepts of arrays of
characters and pointers to type char. There really is no easy,
straightforward, and to a Fortran progranmer, intuitive way of
handl i ng CHARACTER data. This is especially true when a Fortran
programmer is trying to pass a CHARACTER variable, array el enment, or
substring to a C procedure which expects a Cstyle null- term nated
string. Several comercial conpilers already offer a transformationa
function, usually called CSTRING which takes a Fortran CHARACTER
scal ar data object and transfornms it into a CGstyle null-term nated
string. The PDTR should include such a capability.

Comment 10.
3.3.6, Note 3.20

Not e 3.20 suggests that sequence association could be used to
circunvent the problemthat C permits 12 array-specs, while Fortran
supports 7 array dimensions. W assune that this is suggesting that
the rank specified for the dumry argunent in the interface bl ock would
be seven or less, while the C array had 8 or nore array-specs. |If
this is correct, it conflicts with the normative text in the paragraph
that follows the note, which states the extents in the Fortran
<array-spec> are those specified in the corresponding C array
declarators (in reverse order). W read that as requiring the ranks
to be the same. |If they are not required to be the same, sequence
associ ation needs to be explicitly permitted, and the rul es nust be
spel l ed out.

Comment 11.

3.3.7, C_ADDRESS, C DEREFERENCE, C_| NCREMENT

The argunment to C_ADDRESS should be required to have the TARGET
attribute; failing to require this severely hinders a processor's

ISO/IEC JTC1/SC22/WG5 N1305
Page 15 of 34

ability to performoptinization.

Comment 12.

3.3.7, C_DEREFERENCE and C_| NCREMENT

Is the type of the MOLD argument specified pernmitted to be different
fromthe type of the object fromwhich the pointer was derived? |Is
C_INCREMENT pernitted to specify an increment value that causes the
dereference to exceed the bounds of an array? A user night expect to
be able to do this in a case |like the foll ow ng:

| NTEGER, TARGET :: T1, T2
COMMON / COM T1(1), T2(1)

PRI NT *, C_DEREFERENCE(C_| NCREMENT(C_ADDRESS(T1), T1, 1), T1)
END

Coment 13.

3.3.7, Note 3.24

The situations in which a pointer becomes "stale" need to be

specified. This should be simlar to the list of events that cause

vari abl es to beconme undefined (14.7.6 of 1539-1). That is, it is true of
many nore instances than just automatic objects. Wy are autonatic
objects the only ones nentioned? The additional text added to clarify
this point should be nornmative rather than informative.

Comment 14.

3.3.7, C_DEREFERENCE description

The description of case (iii) says that a dereference of a C CHAR PTR
returns the whole string. GCenerally in C, a dereference of a
character pointer only references a single character. |f

C _DEREFERENCE by definition always returns the whole string (like a C
char pointer referenced in, say, strcpy()), then how does one use a C
char pointer (fromthe Fortran side) to minmic the usual reference to
only a single character?

Comment 15.
3.3.7, C DEREFERENCE - Result value Case (i)
For the follow ng exanple:

integer(c_int) :: type(20)
print *, C DEREFERENCE(PTR, TYPE)

is MOLD_T considered to be "int" or "int[20]"? This makes a
signi ficant
di fference in the meaning.

Comment 16.

3.3.7, after C_DEREFERENCE

A C_SET_DEREFERENCE (say) subroutine is desirable. This would provide
a nethod of setting a value through a pointer

Coment 17.

3.3.9, R1606

The syntax of the <type-alias-stnt> leads to an anbiguity in fixed
source form One may nane a pointer "TYPEXID' and one may have an

ISO/IEC JTC1/SC22/WG5 N1305
Page 16 of 34

array named "| NTEGER' that has the TARGET attribute. Even in the
presence of the |1SO C nodul e,

TYPE XI D => | NTEGER(c¢_ul ong)

could easily be a pointer assignnent statenent.

One possibility is to require the "::" in fixed source formbut this
doesn't seemto be the optinmal solution since the Fortran standard has no
simlar rule.

Also, it might be a good idea to permt a list of entities to be
declared in a single <type-alias-stm>. For exanple,

type :: t1l =>integer, t2 => rea

And finally, the proposed syntax mi ght cause people to confuse the objects
declared with structures. W would Iike a keyword other than TYPE to be
considered to call attention to the fact that the <type-alias-stnt>

has different semantics.

Comment 18.

3.3.9, second constraint

Can the <type-alias-nane> be the sane as a variable name? a conmmobn

bl ock nane? a procedure nane? the nanme of a naned constant? The
second constraint isn't sufficient. The <type-alias-nanme> needs to be
added to the list of local entities of class (1) in 1539-1 (14.1.2).

Comment 19.
3.3.9, paragraph after Note 3.28
The second sentence states:

If the aliased <type-spec>is an intrinsic type, a
<structure-constructor> for <type-alias-nanme> shall contain a
si ngl e <expr>, which shall be assignment conpatible with that
intrinsic type.

The use of the term <structure-constructor> is mnisleading, since the
value is not necessarily a structure. Wy should the <type-alias-nane
become a derived type if the <type-spec> is an intrinsic type?

Thi s doesn't nake any sense for either Fortran or C (and is not like C a
typedef that names an intrinsic type does not suddenly create a struct).
Per haps a new non-term nal symnbol (<alias-val ue-constructor>, for
exanple) is needed. |In addition, the neaning of this constructor is

uncl ear, especially for intrinsic types; what is the value of the
expression what is its type ?

Creating a new nanme for an intrinsic type would be a generally useful
feature. We don't understand why the type alias needs to be a derived
type if the type spec is for an intrinsic type and we think this
seriously limts the useful ness and generality of this statenent.

Note al so that the first sentence of section 3.4.1 says "shall be a
type alias for the inplenmentation-defined integer type". W think a

ISO/IEC JTC1/SC22/WG5 N1305
Page 17 of 34

Fortran user would be very surprised that a type alias for an integer
type is a derived type.

Coment 20.

3.4.3

If a NULL constant is being defined, why is C|SNULL needed? And where
does the value C NULL cone fron? |If this is defined later, there
shoul d be a forward reference here. [If CISNULL is also going to be
kept, why does the description of CISNULL conpare the PTR argunent to
zero instead of to NULL?

Comment 21.

3.5.1.1, second paragraph

This states that if no <name-string> is present, the Fortran

processor's rules are used to generate the external entry. 1Is this

hel pful ? This neans the user can't do anything portably if they

don't specify the <name-string> Wiy not specify that it's treated as

if <nane-string> was present with the value equal to the <function-name>
or <subroutine-nane> w th any |ower-case letters converted to
upper - case?

Comment 22.

3.5.1.2

This section appears to allow a "pointer to double" (and others, Iike
"int *") to be passed as an argument to a C function, but the function
itself cannot (portably) return a "pointer to double" value. This seens
like a pretty linmting restriction. |If the Fortran translator nust
somehow ' know about pointers to basic types and pointers to structure
types, then it seens like there is no technical reason why a C function
cannot return a pointer to all of these types.

Coment 23.
3.5.1.5 After 4th bullet
Add a new bul | et
"A function result shall not be an array."

Comment 24.

3.6

Sone edits are needed to tie these objects in with the other gl oba
entities in 14.1.1 of 1539-1. One difference between these and ot her

gl obal entities is that it's not the nane that is global, but the value
specified by the <name-string> |Is the value of the <name-string>
permitted to be the same as the name of any other global entity?

Comment 25.

4, New cl ause 16

This indicates that section 3 could be placed into IS 1539-1 al nost
unchanged. However, section 3 is not currently in a state that that
could be done. For exanple, it would not be appropriate for Note 3.1
to appear in IS 1539-1. Also, the section contains rules and
explanatory material that doesn't necessarily belong in a new section
16. For exanple, in 3.3.4, the first paragraph after Note 3.15 states
"The PO NTER <conmponent-attr-spec> is not allowed because there is not
C type whose corresponding Fortran type has the PO NTER attribute."

ISO/IEC JTC1/SC22/WG5 N1305
Page 18 of 34

This nmore properly belongs in the edits to section 4.4.1 of IS 1539-1
as a constraint. Another exanple is the definition of the BIND
statenment in 3.2 rather than adding it as an edit to section 4 of IS
1539-1.

Comment 26.
CGener al conmment

Let's get a little philosophical. How can a vendor know if they
conformto this TR and whose "fault"” is it when a mixed | anguage
program fails? The intent seens to be one of giving Fortran
programers access to the operating system graphics libraries, C

| anguage libraries, etc. However, there's no guarantee that these
routines are witten in C They could easily be witten in assenbly.
It's not unconmon for parts of the Standard C Library to be witten in
assenbly. The C standard doesn't require that they actually be
witten in C

Consi der this scenari o:

Vendor A provides a "standard conforming" C conpiler for
architecture X

Vendor B provides a "standard conforming" Fortran conpiler for
architecture X

A m xed-| anguage programfails

Now, is it the Fortran vendor's "fault" if the C conmpiler is
validated? That is, the C function works fine when called fromC so
it nust be the Fortran conpiler's problem

This seenms |ike dangerous logic to get into. The best that can be
done here may be to make this an infornmati ve annex because there's no
way to seriously check confornmance or to arbitrate resol uti on when

m xed | anguage prograns fail. Unless the Fortran committee wants to
say if the function works when called fromC then it nust be a Fortran
probl em

Now, if it can be the C conpiler's fault then we recomend
conmuni cati on be nade with W314/J11 to nmake sure the C committee
agrees with the responsibility that has just placed upon their
shoul ders.

Si nce the docunent chooses not to address nmixed | anguage |/ O every
Fortran programer w shing to call a C function cannot put a "printf"
or "fprintf" statenent into their C function as a neans of debuggi ng
their code. It is quite common in Cto use "fprintf(stderr,)"
to i ssue diagnostics when a function has been called incorrectly. It
sounds |ike any function a user mght want to call from Fortran had
better not do that sort of thing. The sanme is true with the "assert"
macro. This seens to nme to be a serious linitation for any nixed

| anguage program especially if you want to call an existing library
routine.

Exactly what routines are I/Oroutines? Is it sone or all of the

ISO/IEC JTC1/SC22/WG5 N1305
Page 19 of 34

routi nes defined in the standard header <stdio.h>? For exanple,
calling the "tnpnam' function seens totally innocuous. What about
"sprintf" which is defined in <stdio.h> but doesn't really do any
output to a file? What about the "assert" nmacro? How about the
"systent function? |f an X-Wndows routine pops up a w ndow on the
screen and asks the user to enter their nanme, is that considered to be
I/ 0O?

Category 2

Comment 27.

3.1, Note 3.2

The note says that not all entities contained in <stddef.h> are
required to be supported in I1SO C STDDEF_H Who chooses what is
supported and what is not? |Is this inplenentation-dependent?

Comment 28.

3.1, Paragraphs following Note 3.2

Shoul d this docunment mandate the names of these nodul es w thout any
specification of the contents? It's potentially confusing.

Coment 29.

3.2, R1601

Wiy are the LANG= and NAME= specifiers specified as being optional but
PRAGVA= is required for each specified pragm?

Comment 30.

3.2, first constraint after R1604

Does the val ue of <name-string> include |eading or trailing blanks?
We assunme so, but we would like this clarified since blanks are
ignored in deternining the value of an I/O specifier.

Coment 31.
3.3, Note 3.8
It states that "enunt types are not integer types (but rather integra

types).

Def ect Report #067 asks the question about which category enunerated
types falls into. The reply starts out by saying:

"Signed integer type", "unsigned integer type", and plain

"integer type" are used interchangeably with "signed integra
typen ,

"unsi gned integral type" and "integral type" in the C Standard.

So, an enunerated type nmust nmap onto one of the integer types, but the
i mpl ement ati on need not reveal what the underlying type really is.
don't think you want to provide a binding to enumtypes in the TR but
Note 3.8 should be corrected. The problemis that there is no way to
tell what the underlying integral type really is.

Coment 32.
3.3.1, the list of C basic types and Fortran intrinsic types
The nanes of the naned constants should be spelled out so that the

ISO/IEC JTC1/SC22/WG5 N1305
Page 20 of 34

nanes have the same spellings as the C data types. For exanmple, C _SHRT
shoul d be C SHORT. W understand that Note 3.9 has the rationale for
choosi ng the nanes, but Fortran progranmers are not going to be | ooking
in these headers. They are going to be sonmewhat famliar with the C
data types so the ternms used to describe these C data types should use
t he sane words.

Conmment 33.

3.3.1, Note 3.10

It states that the type "char" is not an integer type. This is an
i ncorrect assertion for the sane reason as cited for "enunt above.

Coment 34.
3.3.1, Note 3.12
The TR shoul d not give suggestions about possi bl e extensions.

Comment 35.

3.3.2, third paragraph

This indicates that the val ues made accessible shall conformto the
requi renents of the C standard. What if that requires representation

of values that are not nodel nunbers in the Fortran nodel, e.g. -2**31?

Comment 36.

3.3.3

Per haps we could provide partial support for enumtypes with integer
ki nd parameters naned C_SCHAR ENUM (for enunms whose value is within

t he signed char range), C _SHORT _ENUM (for those whose value is within
the short int range), etc. This may help in alnost all cases, but
does not necessarily solve the problem since the C processor nay not
use straightforward rules in determining the representation for the
enum type. O perhaps a SELECTED ENUM KI ND(LOW ENUM HI GH_ENUM .

O course, if the suggestion that enunms not be supported is taken
this comment can be ignored.

Comment 37.
3.3.4, paragraph following Note 3.15
The first sentence should be a constraint.

Comment 38.
3.3.6, Last paragraph
Change "may build on any" to "may build on either". On the other

hand, what does it mean for the Fortran binding to "build on" the C
type? How can Fortran "build on" double *?

Shoul d t his paragraph be nade into a note?

Comment 39.

3.3.6

Shoul d ni smat ched array shapes be prohibited? It's going to be easy
for the progranmer to get confused between row maj or and col unm- naj or
subtleties.

Comment 40.

ISO/IEC JTC1/SC22/WG5 N1305
Page 21 of 34

3.3.7, second paragraph
In which nmodule is C NULL defined? Also, where are the C_| SNULL,
C ADDRESS, et al. functions defined?

Coment 41.

3.3.7, Description of C_ISNULL

Change "Compares PTR to zero"

to "Conpares PTR to the appropriate C null pointer".
(or something like that).

Shoul d this function be elenental rather than transformational? |Is
the function even necessary - why not provide operator(==) an
operator (/=) instead?

Coment 42.

3.3.7, C _ADDRESS, C DEREFERENCE, C | NCREMENT

Sone of the argunments are permitted to be of any type. These should
probably be restricted to be of types that are permitted in references
to C procedures.

In addition, should zero-sized objects be prohibited from appearing?

Comment 43.

3.3.7, C_ADDRESS

Wiy is the result value undefined if OBJ is of one of the pointer

types and C I SNULL(OBJ) is true? Shouldn't this procedure be returning a
pointer to OBJ rather than a pointer to the objects OBJ points to?

Comment 44.
3.3.7, C DEREFERENCE - Result value Case (i)
Change "*((MOLD_T *) PTR) where PTRis ... PTR"
to "*((MOLD_T *) PTR), where PTRis ... PTR and MOD T is the
type of
MOLD. "
Comment 45.

3.3.7, C DEREFERENCE - Result value Case (ii)

The description of the MOLD argunent indicates that the MOLD argunent
shall be present if PTR is of type TYPE(C STRUCT_PTR), but Case (ii)

i ndicates that the result has the value of *(PTR), rather than
expressing it as *((MALD_T *)PTR). Shouldn't cases (ii) and (iii) be
conbi ned?

Comment 46.

3.3.7, C _DEREFERENCE - Result and Exanple Case (iii)

Change "ASCI1 NUL" to "NUL" (or whatever termis used to describe '\0
in the C standard - we don't want to require support for ASCII.) The
PDTR shoul d say sonething about '\0' being the sane as CHAR (O,

Kl ND=C_CHAR)

Coment 47.

3.3.7, C DEREFERENCE - Result value Case (iii)

The dependence on the string being NUL-term nated seens unfriendly.
There's no requirement that char * point to a C string. Perhaps it

ISO/IEC JTC1/SC22/WG5 N1305
Page 22 of 34

should return the value of (char *) ('h' in this case), nmaking it nore
consistent with the other two cases. A separate set of procedures
could be defined to handl e the string case.

Coment 48.

3.3.7, C.INCREMENT - Result val ue

Change "(PTR *) ((MOLD *) PTR+tN) where PTRis . . . PTR"

to "(PTR *) ((MOLD_T *)PTR+N), where PTRis . . . PTR
and MOLD T is the type of MOLD."

Coment 49.

3.3.8

This section seens to inply that a C definition Iike:

int func(int n, float x);
int func(n, x)

int n; float x;
{ return n + x; }

is not allowed because the definition uses old-style (even though a
prototype is in scope). Is this intended? Seens like this should say
that the "type of the definition includes a function paraneter |ist"
and not focus on the declarator.

Comment 50.

3.3.9, R1606

The neani ng of the <access-spec> on the <type-alias-stnt> needs to be
specified. Conpare to p.40, lines 39-41 of 1539-1

Comment 51.

3.3.9, first paragraph after constraints after R1606
Rul e R502 of 1S 1539-1 needs to be extended to permt
TYPE(<type-alias-nane>) as a <type-spec>.

Comment 52.
3.3.10
If we're not specifying the neaning of volatile at all, we shouldn't

permit a Fortran entity to be associated with such an object.

Comment 53.

3.3.10, last paragraph

Instead of specifying that if a C object of a const-qualified type is
used in a way that violates the C standard, the object becones undefi ned,
shoul dn't we specify that such an object is not permtted to becone
redefi ned?

Coment 54.

3.3.11

Wiy is there a restriction on "register" being present for paraneter
decl arations? Sone rationale is needed.

Coment 55.
3.4.2, Argunent
As with the argunents to C ADDRESS, et al., should the type be restricted?

ISO/IEC JTC1/SC22/WG5 N1305
Page 23 of 34

Shoul d the TYPE argunent be required to be of a type that has the BI ND(C)
attribute or of an intrinsic type that has a kind paraneter defined in
t he 1 SO _C nodul e?

After "it shall be allocated." add "It shall not be an assuned-size
array.".

Comment 56.

3.4.2, the Exanple

The exanpl e uses the kind type paraneter C CHAR to precede a character
constant. Is there any inplication here that C CHAR inplies the
character constant is terminated by the null character? The Argunent
description for C SIZECF states that EXPR nay be of any type. Does
this mean that a default character constant can be passed to it or is
there sonme unstated expectation that it nust be of type C _CHAR?

Coment 57.

3.4.3

Wiy are all the newintrinsic functions prefixed by "C " except for
OFFSETOF? This seens to be quite inconsistent.

Comment 58.
3.4.3, Description
VWhat does "its structure" nean? For exanple, in a structure reference
of the form OUTERYM DDLEYCOMP is "its structure" defined to mean
QUTER or OUTERYM DDLE? Seens like it should be OUTERYM DDLE si nce
COW is a conponent of OUTERYM DDLE, but we can easily inagine that a
user mght want to know the offset of COMP within OUTER or within
OUTERYM DDLE. Does the specification of the TYPE argunent (which
real Iy shoul d be STRUCTURE because we're tal king about the offset
within the object named with a structure nanme, not with a derived type
nane) all ow

C _OFFSETOF(QUTER, OUTERYM DDLEY%COVP)
as well as

C_OFFSETOF(OQUTERYM DDLE, OUTERY DDLEY%COMP)

If there is no intent of allow ng the second case then the first
argument is superfluous.

Comment 59.

3.5, first paragraph

This states that an explicit interface is required for a procedure
defined by neans of C, and that it have the BIND(C) attribute. Currently
1539-1 doesn't require this, so this requirenent would cause conform ng
Fortran 95 programs to be non-conformng with respect to this TR

Coment 60.

3.5.1.2, Note 3.34

If the second sentence is "inplying" a rule, the sentence should be
noved out of the note and turned into a rule in normative text.

Coment 61.
3.5.1.2, second bullet
Del ete second bullet. It is confusing in a list of supported itens

ISO/IEC JTC1/SC22/WG5 N1305
Page 24 of 34

and how they are supported. Also, delete sentence that reads "Al other
C pointer types are not supported.” Instead, insert before 1st paragraph
of 3.5.1.2, sonething like:

"The return type of the C function shall be void, a basic type,
a structure type, pointer to void, pointer to struct or pointer
to char. The return type is not pernmitted to be an enuneration
type, a union type or any other C pointer type."

Comment 62.
3.5.1.3, R1607
As in the BIND attribute, why is "PRAGVA=" required?

Coment 63.

3.5.1.3, the constraint for R1607

Wy force a user to wite a zero-length string? |If it doesn't apply
then just don't specify it.

Comment 64.

3.5.1.3, Constraint after R1608

Way not pernmit blanks that are not significant as is done with I/0O
speci fiers?

Comment 65.

3.5.1.3, second paragraph after R1608

Change "A "*" character in the <pass-by-string>"

to "I'f the value of the <pass-by-string>is "*", it"

(O course, the suggested nodification will be affected by the
foll owi ng coment.)

Shoul d sone nore suggestive value for the <pass-by-string> be used
other than '*' and ''?

Reword the sentence that reads

"A"*" character in the. . . "pointer to T""
As witten, it inplies that "pointer to T" is a Fortran type, whereas
there are no pointer types in Fortran.

Conmrent 66.

3.5.1.4, second bullet of first bulleted list and fifth bullet of the
second bulleted I|i st

Reword in a way that is consistent with the suggestion for 3.5.1.2,
second bul |l et.

Coment 67.

3.5.1.4

It is unclear how arrays are passed to C. Specifically, Cis row najor
and Fortran is colum major, but the TR states that the Fortran interface
"shal | declare the type corresponding to the C type T, a DI MENSI ON
attribute corresponding to the C array decl arator, "

If the C paraneter is declared:
int Al 2][3]
then 3.3.6 states that the corresponding Fortran declaration is:

ISO/IEC JTC1/SC22/WG5 N1305
Page 25 of 34

| NTEGER, DI MENSION(3,2) :: A
but what happens if the (for all practical purposes) identica
decl arations of:
int (*A)[3]
or
int A[][3]
are used? Should the correspondi ng Fortran decl aration be:
| NTEGER, DI MENSION(3,*) :: A
It is not clear fromthe TR whether this is correct.

Coment 68.
3.5.1.5 4th bullet
Change "A dunmy argunent or function result" to "A dumry argunent".

Comment 69.

3.5.2.1

Change "If the dummy argunent"”

to "I'f a dummy argunment of a procedure with the BIND(C) attribute"

in the first sentence of each paragraph

Comment 70.

3.5.2.1, second sentence (beginning "It shall be")

VWhat does "It" refer to? The dunmy argunent or actual argunment? Sane
comment for second sentence of second paragraph following Note 3.40
and for the second sentence of the paragraph follow ng Note 3.42.

This sanme sentence following Note 3.42 contains the phrase of type
TYPE(C_VA D_PTR) which conpares equal to NULL. Can it be conpared
equal to NULL or nust it be passed to C ISNULL? Does the font

i ndicate the C NULL? If so, why? Wy not specify that it nust be
equal to the Fortran NULL constant?

The sane question applies to "It" in the second sentence of paragraph
3.

Comment 71.

3.5.2.1, 3rd paragraph

The sentence that begins "ASSI GNMENT(=) for the types. . . " seens to
describe sonething that is unnatural. The entire concept that

conversions for actual argunents happen inplicitly on procedure
references is foreign to Fortran, but support for inplicit defined
assi gnment even when the defined assignment is not accessible is very
strange. |In addition, what happens when the user redefines assignnent
for these types?

Coment 72.

3.5.2.2

Change "If a dunmy argunment"”

to "I'f a dummy argunment of a procedure with the BIND(C) attribute"
in the first sentence of each paragraph

Comment 73.

3.5.3

The handl i ng of <stdarg.h> seens clunmsy. Wy is the operator
specified as "OPERATOR(//)" instead of just "//"? This formis used for

ISO/IEC JTC1/SC22/WG5 N1305
Page 26 of 34

i nterface bl ocks and makes one think that an interface block for th
operator // nust be provided somewhere. A suggested alternative would
be to define a descriptive procedure in | SO C STDARG H that has a

vari abl e nunber of argunments (similar to MAX and MN). For exanpl e,

call sub(va_list(i,j,k,a(17)))
call sub(va_list(i,r))

If the first itemin the list nmust always be VA EMPTY, why nake the
user wite it? The conpiler can just construct the VA list this way.

Coment 74.

3.5.3

Since VA LI ST nust be a derived type, it seens |like the correspondi ng
C type nust be a structure type. Many inplenentations of va |list use
a pointer instead. This could be a problemif, say, the mninumsize
for any derived type is 64-bits but a pointer is 32-bits.

Comment 75.

3.6

It should be noted when such a variabl e becones defined (as is done in
14.7.5 of 1539-1 for variables which are initialized).

Comment 76.

3.6, first bullet after Note 3.51

Change "No initialization shall appear in the <entity-decl>."

to "initialization shall not appear in an <entity-decl>in a
<type-declaration-stnt> for a variable with the Bl ND(C)

attribute.”

Comment 77.
3.6, second bullet after Note 3.51
Change "ALLOCATABLE, PARAMETER or PO NTER shall not be specified."
to "The variabl e shall not
* have the ALLOCATABLE, PARAMETER or the PO NTER attri bute
* be an automatic object
* be a function result variable."

Comment 78.

3.6, last paragraph before Note 3.52

Change "If two or nore. . . <nanme-string> are accessible in a scoping
uni t"

to "If two or nore. . . <name-string>"

Comment 79.

3.6, last paragraph

It's not clear what this paragraph is saying. |Is it talking about

things like errno? Al so, what does it nmean to say that "The Fortran
processor is not required to guard such behavior"?

Comment 80.

3.7, paragraph preceding Note 3.54

The |l ast sentence is describing a conparison to (apparently) the C
NULL again instead of using the Fortran NULL or C_I SNULL.

ISO/IEC JTC1/SC22/WG5 N1305
Page 27 of 34

Comment 81.

4, 2nd constraint in edits for page 38

Change "the sane <nane-string>" to "the same <l|ang-keyword>".
(At least, we think that was what was intended.)

Coment 82.

4, edits for page 38

I s Bl ND(FORTRAN) permitted to appear in a derived type definition? |If
so, what effect does it have? Should the SEQUENCE statenent still be
prohi bited for that case?

Comment 83.

General coment

COX is due to hit the streets in 1999. So, by the time this TR nakes
it into a Fortran standard, there will be a new (and hopeful ly

i mproved) C Standard. The TR should attenpt to align itself with COX

Thi ngs to consi der:

new keywords: restrict, conplex
new headers: <conpl ex. h> <fenv.h> <inttypes. h>
<bool .h> is likely to be added soon
external nanes: 31 characters, mnixed case
new types: long |long, unsigned long | ong, float conplex,
doubl e conpl ex, |ong doubl e conpl ex,
restricted pointers, variable length arrays

Category 3

Coment 84.

1.4, item1l

Change "M xed- Language | nput and Qutput"” to "M xed-I|anguage i nput and
out put ".

Coment 85.

1.4, item4

Change "and sone pointer types" to ", sonme pointer types, and bit
fields".

Comment 86.

1.5

Delete "first-class" (twice) {we don't use this kind of term nol ogy
in the standard}

Comment 87.

2, first paragraph

VWhat is neant by "the standard (de-facto or de-jure) conputing

envi ronnent? \What standard? A Macintosh in someone's hone does not
generally have a C conpiler on it and yet it seens to be a productive
conputi ng environnent.

Coment 88.
2, second paragraph after bulleted Iist

ISO/IEC JTC1/SC22/WG5 N1305
Page 28 of 34

Change "environnent: Mny" to "environment - nany".

Al'so in this paragraph in the sentence beginning "Due to the
difficulties...":

Peopl e are not noving to C because of the difficulties of producing a
standard for communi cati ons between Fortran and C, they are noving to
C because there is no such standard at all or because it is nore
"natural" to wite the application in C

Coment 89.

3, Note 3.1

G ven the general statenment on section 3 (in category 1), this note
shoul d be del et ed.

Comment 90.

3.1, the bulleted Iist

Who is going to provide these standard nodul es and by what nmechani sm
are they going to be kept current with the C standard?

Comment 91.

3.1, second bullet in list

Is "conmon definitions" a Ctern? If not, a different termshould be
used to avoid confusion with the Fortran nmeaning of the word "common".

Coment 92.
3.1, First paragraph after Note 3.2
Change "facilites" to "facilities".

Comment 93.

3.1, 1st paragraph after Note 3.3

"nane" appears in italics once, but other occurrences are not
italicized.

Comment 94.

3.2, the first paragraph and throughout the renmainder of the docunent
Each section reference should be qualified so the reader knows what
docunment the section nunber is relative to. For exanple, in the first
paragraph of 3.2, section 1.4 could refer to this docunent or to the
Fortran 95 standard.

Comment 95.
3.2, paragraph follow ng the constraints foll owi ng RL604
Change "<l ang- keyword>, this" to "<l ang-keyword>. This".

Comment 96.
3.2, 1st paragraph after Note 3.6
Change "which" to "that".

Comment 97.
3.2, Constraint after R1605
Change "which" to "that".

Comment 98.
3.3, Note 3.7

ISO/IEC JTC1/SC22/WG5 N1305
Page 29 of 34

Change "are supported, see" to "are supported; see
Coment 99.

3.3, paragraph following Note 3.7

Change "define object types" to "define data types"

Comment 100.

3.3, Paragraph after Note 3.8

Change "Fortran types, access" to "Fortran types; access"
Change "C datatypes: Derived" to "C data types. Derived"
Change "recursively applied," to "recursively applied, and"

Comment 101.

3.3.1, first paragraph

Change "and real types: The intrinsic" to "and real types. The
intrinsic".

Comment 102.

3.3.1, the list of C basic types and Fortran intrinsic types

The nanes of the kind parameters should be |isted before specifying
whi ch data types correspond to which C data types

Comment 1083.

3.3.1, Note 3.11

It's not clear whether this note is suggesting things that an

i mpl ement ati on

needs to do to support the unsigned types or sonething the user needs
to do.

Comment 104.

3.3.3, before Note 3.13

Change "inplenmentation-defined: 1t" to "inplenentation-defined. [It".
Comment 105.

3.3.4, Last sentence of paragraph after Note 3.14

Repl ace with
"A <conponent-initialization> shall not be specified for any
conponent of a derived type that has the BIND(C) attribute."

Comment 106.

3.3.4, Note 3.15

Change "the Fortran nenber objects" to "the Fortran derived type
conmponents”.

Change "way: The" to "way. The".

Comment 107.

3.3.4, second paragraph follow ng Note 3.15

This is the first time TYPE(C STRUCT_PTR) has been seen. This nmay
confuse the reader, and cause themto search back toward the front of
the docunent to locate the definition of this term It turns out that
this termis defined later in the document. The term should either be
defined before this reference or there should be a forward reference
here to where this termis defined.

ISO/IEC JTC1/SC22/WG5 N1305
Page 30 of 34

Comment 108.
3.3.4, Note 3.16
Sane point as above for TYPE(C_CHAR PTR) in the exanple.

Comment 109.

3.3.4, Paragraph after Note 3.16

Del ete the sentence that begins "In either case, It's not clear
why the user m ght have thought that the length informati on would be
stored in the structure.

Comment 110.
3.3.5, Note 3.18
Change "union nmenbers: |In" to "union nenbers. In".

O just delete the note entirely. W shouldn't give suggestions as to
how to wite non-conform ng code.

Comment 111.

3.3.6, Note 3.21

Change "the transposition nmust be done by the user”

to "one can use the RESHAPE intrinsic with the ORDER ar gunent
present".

Comment 112.

3.3.7, C_ISNULL, C ADDRESS, et al

Each of these functions should probably be in a separate little
section (as is done for the Fortran intrinsic procedures).

Comment 113.
3.3.7, second paragraph
Change "are supported: The" to "are supported. The"

Comment 114.
3.3.7, paragraph preceding "C_I SNULL(PTR)"
Change "All C pointers” to "In a C program all pointers". 1In the

next sentence, insert "in Fortran" followi ng "this conparison”

Comment 115.

3.3.7, Result value description and Exanple for C_I SNULL

The Fortran standard uses "true" and "false" for logical values in the
descriptions of intrinsic procedures rather than ". TRUE. " and

". FALSE. ".

Comment 116.

3.3.7, Note 3.22

It's not clear what the first sentence of this note is trying to say.
Shouldn't it be sufficient to say that none of the operators is
defined on these types. (W don't think it's really necessary to say
even that nuch.)

Comment 117.
3.3.7, C DEREFERENCE - Exanple Case (iii)
Change "character string of length 5" to "character string of length

ISO/IEC JTC1/SC22/WG5 N1305
Page 31 of 34

6".
(I's the length returned by LEN or strlen that is being discussed?)

Comment 118.

3.3.7, Note 3.27, paragraph follow ng the extern exanple

The first sentence of the note should remain. The renainder of the
note should be replaced with an exanple that would be valid. There is
no guarantee that the representation of void * will be the same as the
representation of char **. If this functionality is actually

requi red, a C CHAR PTR PTR type shoul d be defi ned.

Comment 119.
3.3.7, Last paragraph
Thi s | ast paragraph should be made informative.

Comment 120.
3.3.9, first constraint after R1606
Change "1539" to "1539-1". (There are other instances as well.)

Comment 121.

3.3.9, first paragraph after constraints after R1606

Change "interchangeable" to "interchangeabl y".

Change "correspondi ng <type-spec>. entities" to "correspondi ng
<type-spec>. Entities".

Comment 122.
3.3.9, Note 3.29
Change "hi dded" to "hidden".

Comment 123.

3.3.10, last paragraph

We think the sentence about a Fortran processor not being required to
di agnose viol ations that take place while a C subprogramis executing
can be del eted.

Comment 124.
3.3.11, Note 3.30
Del ete "(which is conparable to Fortran PRI VATE entities)".

Comment 125.

3.4.1, Note 3.31

Wiy does this note exist? The result types of C _SIZEOF and OFFSETOF
are explicitly described in the descriptions of these two new intrinsic
functions.

Comment 126.
3.4.3
Delete the comma in the section title.

Comment 127.
3.4.3, 2nd paragraph
Change "follwing" to "follow ng".

Comment 128.

ISO/IEC JTC1/SC22/WG5 N1305
Page 32 of 34

3.4.3, Description
Change "strucure" to "structure"

Change both the second argunment and the word "nenber" in the first
sentence to the word "conponent”. The Fortran standard uses
“conmponent", not "nenber".

In Result Characteristics, "inlenmentation-defined" is msspelled
(mssing the "p").

Si nce the next section of the description does not capitalize the word
"val ue", "Characteristics" should also not be capitalized. (This sane
capitalization change should be made in other intrinsic descriptions
el sewhere in the docunent as well.)

In Result value, delete the comma after "C standard)".

Comment 129.
3.5.1, first paragraph
Change "inluding" to "including".

Comment 130.
3.5.1, Note 3.33
Change "parantheses" to "parentheses".

O just delete this note. It describes how a user night do sonething
that is expressly prohibited by the normative text preceding the note.

Comment 131.
3.5.1.1, first sentence
Italicize "<interface-body>".

Comment 132.

3.5.1.2, 1st paragraph after Note 3.34

Del ete "The declaration of the function result variable shall be as
follows:"

Comment 133.
3.5.1.3, Constraint after R1608
Renove quotes around asterisk - they are not part of the val ue.

Comment 134.
3.5.1.3, first paragraph after R1608
Change "<pass-by-string> this" to "<pass-by-string> This".

Comment 135.

3.5.1.4, second paragraph

Del ete "The Fortran declaration. . . as follows:".

Comment 136.

3.5.1.4, sentence follow ng Note 3.37

Change "of the C function" to "of a C function" and change "type: If"
to

"type. If".

ISO/IEC JTC1/SC22/WG5 N1305
Page 33 of 34

Comment 137.
3.5.1.4, 6th bullet of second bulleted |ist
Change "funtion" to "function".

Comment 138.

3.5.1. 4, last paragraph

Change "All other C pointer types are not supported.”
to "No other C pointer types are pernmtted.”

Comment 139.

3.5.1.5, 8th bullet

Change "shall have an explicit interface, and that interface"
to "shall have explicit interfaces, and those interfaces"

Comment 140.

3.5.2.1, last sentence before Note 3.43

Rat her than indicating that the actual argunent has to obey the sane
set of restrictions that sonething el se obeys, repeat the restrictions
for this case

Comment 141.
3.5.2.1, Paragraph 3, last sentence.
Change "is" to "are".

Comment 142.

3.5.2.3

Delete this note and section. It should not be necessary to call the
user's attention to this.

Comment 143.

3.5.2.3

The first occurrence of the word "free" need not be in bold Courier
since it is not referring to the free() function

Comment 144.
3.5.2.3
The phrase "to take care about" seens awkward.

Comment 145.

3.5.3, first paragraph

Change "procedure interfaces." to "procedure interface."

Comment 146.

3.5.3, Note 3.45

Delete this note. Each of Fortran and Cis able to do things that the
ot her cannot.

Comment 147.
3.5.3, the bullet at the top of page 35
Change "to operands x1 of type" to "to operands x1 and x2 of type"

In the last sentence of this bullet, change "x<sub>2," to "x<sub>2;"

ISO/IEC JTC1/SC22/WG5 N1305
Page 34 of 34

Comment 148.
3.6, first sentence after Note 3.51
Change "additonal" to "additional"

Comment 149.

3.6, third bullet after Note 3.51

Is it necessary to nmention that CHARACTER w th assumed character
length is not permtted? This should followfromthe fact that it is
not permtted to be a dummy argunent or named constant.

Comment 150.

3.6, last paragraph before Note 3.52

Change "They all refer to the sane storage."

to "Al'l such variables are storage associated."

Comment 151.

3.6, paragraph after Note 3.52

I's this paragraph necessary? Shouldn't this follow fromthe
definition of storage association? Perhaps it should be nmade into a
note if it's felt to be necessary.

Comment 152.
3.7, paragraph preceding Note 3.54
Change "an MOLD' to "a MOLD'

Comment 153.

3.7, Note 3.54

Change "allows to | oad X resources fromconmand |ine argunents"” to
"allows X resources to be | oaded from conmrand |ine argunents”

Comment 154.

4, edit for page xvi

Change "defined by Fortran code" to "defined by a Fortran nodul e
programunit".

Comment 155.

4, edits for page 48

Change "may only" (two occurrences) to "shall only".
Change "which" to "that".

Comment 156.
4, Annex D

In nost instances cross-references are left unqualified, so it is
soneti mes uncl ear whether the reference is to a section within the PDTR
a section in the Fortran DIS or a section in the |1SO C standard.

end of SC22 N2589

