AFNOR proposal on object orientation in Fortran
2000
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Type extension
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Extend an existing derived type by adding zero or more additional
components
TYPE,EXTENDS () :: POINT 2D
REAL :: X,Y
END TYPE POINT 2D
TYPE , EXTENDS (POINT 2D) :: POINT 3D
REAL :: Z
END TYPE POINT 3D
TYPE, EXTENDS (POINT 3D) :: POINT COLOR
INTEGER :: COLOR
END TYPE POINT COLOR
TYPE , EXTENDS (POINT 2D) :: POINT RADIO
REAL :: FREQUENCY
END TYPE POINT RADIO
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Extension type hierarchy
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TY!P E0 Supertype
TYPE(POINT_2D)
]
TYPE(POINT_3D)  TYPE(POINT_RADIO)
{ ,
TYPE(POINT_COLOR) Subtype or extension type
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Supertype cast operation (1)
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Consider a subroutine operating on POINT 2D types:
SUBROUTINE POLAR (POINT)
TYPE (POINT 2D) ,INTENT (IN) :: POINT
PRINT *,’'polar angle=’ ,ATAN (POINT%Y/POINT%X)
PRINT *,’modulus=’,SQRT (POINT%$X**2 + POINTSY**2)
END SUBROUTINE POLAR

Consider now using this subroutine on a variable of type
POINT _COLOR:

TYPE (POINT COLOR) :: A

CALL POLAR(A) ! Compile-time error
CALL POLAR(A%POINI_3D%POINI“2D) ! Legal, X3J3 syntax
CALL POLAR(POINT_ZD@A) ! Legal, AFNOR supertype cast
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Supertype cast operation (2)
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Comparison of AFNOR and X3J3 syntax:

TYPE (POINT COLOR) :: A

Afnor X3J3

POINT 3DQA A%POINT 3D

POINT 2DQA ASPOINT 3D$POINT 2D
POINT 2DQRA%X ASPOINT 3D%POINT 2D%X
A%X A%X

Restriction on X3J3 syntax:

«A component or type parameter declared in an extended type shall not
have the same name as the parent type.» page 56, line 23
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Polymorphic variable

Ability for a variable declared with the CLASS keyword to assume
differing dynamic types during program execution:
CLASS (POINT 2D) :: A ! The dynamic type of A is
! POINT 2D, POINT 3D, POINT RADIO
! or POINT COLOR

CLASS() :: B ! The dynamic type of B is any
! extensible type
CLASS (POINT 3D) :: C ! The dynamic type of C is

! POINT 3D or POINT COLOR

A polymorphic variable gets its dynamic type via argument association,
pointer assignment, NULLIFY, or execution of ALLOCATE or
DEALLOCATE statement.
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Allocation of a polymorphic variable
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Consider a polymorphic variable A:

CLASS (POINT 2D) :: A
Default allocation:

ALLOCATE (A) ! The dynamic type of A is POINT 2D
Casted allocation, X3J3 syntax:

ALLOCATE (TYPE (COLOR_POINT) :: A) ! The dynamic type of
! A is COLOR POINT

Casted allocation, AFNOR syntax:
ALLOCATE (COLOR POINT@A) ! The dynamic type of A is
| COLOR_POINT
ALLOCATE (A,CAST=B) ! The dynamic type of A is the same
as the dynamic type of B
The second form of AFNOR casted allocation is not possible with the
X3J3 syntax
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Dynamic Dispatch

To be able to make a procedure reference where the specific procedure
that is called depends on the dynamic type of a polymorphic variable.
CLASS (POINT 2D) ,POINTER :: A
TYPE (POINT 3D) :: B
A => B ! The dynamic type of A is POINT 3D
CALL METHOD (A,other parameters) ! Dynamic dispatch

Here, a run-time analysis of this request is made:

= If CALL METHOD can operate on objects of type POINT 3D (the dynamic
type of A), the run-time system replace the call with

CALL METHOD (POINT 3D@A,other parameters)

» [f CALL METHOD can operate on objects of type POINT 2D (the parent
type of the dynamic type of A) , the run-time system replace the call with

CALL METHOD (POINT 2D(@A,other parameters)

» Else, run-time error
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Subtype cast operation on a polymorphic variable
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«Only components of the declared type of a polymorphic object may be
designated by component selection». Page 77, line 2

CLASS (POINT 2D) :: A

TYPE (POINT COLOR) :: B

A => B ! The dynamic type of A is B

X A%COLOR ! Compile-time error

X = POINT COLOR@A%COLOR ! Legal, AFNOR subtype cast

SELECT TYPE (A) ASSOCIATE (point) ! Legal, X3J3 syntax
TYPE IS(POINT_COLOR)
X=point$COLOR !
END SELECT ! End of X3J3 syntax
The AFNOR syntax is type-unsafe (a run-time error may occurs); the
X3J3 syntax is type-safe (a run-type error cannot occurs).
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Unresolved issues with type cast
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e Should type cast be available in Fortran2000

= X3J3: Supertype cast is type safe, but it can be replaced with
%-operations with restrictions; subtype cast is type unsafe and should
not be available

= AFNOR: Both supertype cast and subtype cast operations should be
available

e Should casted-allocation be available in Fortran2000

= Two forms of casted allocation are required.

— ALLOCATE (TYPE (COLOR POINT) :: A) or ALLOCATE (COLOR_POINT(QA)
— ALLOCATE (A, CAST=B)
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Unresolved issues with dynamic dispatch
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e Should dynamic dispatch be available only for type-bound
procedures?
— AFNOR: Should be available also to ordinary procedures.
e What happens if a procedure is called with many polymorphic
variables:
CLASS (POINT 2D) :: A,B
CALL METHOD (A,B,other parameters)
— AFNOR: The order of resolution should follow some rules.

e Can dynamic dispatch be made type-safe without loosing flexibility?

—AFNOR: No. Exception handling may be added to deal with the
type-unsate characteristic of dynamic dispatch.
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CONSTRUCTOR and DESTRUCTOR capabilities (1)
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We propose to supplement the ALLOCATE statement with a
«CONSTRUCTORY capability and to supplement the DEALLOCATE
statement with a <KDESTRUCTOR» capability.

Defined as a type bound procedure with name CONSTRUCTOR or
DESTRUCTOR:
TYPE CHAR OBJ
INTEGER :: NTABLE = 0
CHARACTER (LEN=1) , POINTER,DIMENSION(:) :: PTEXT
CONTAINS
PROCEDURE , PASS OBJ :: CONSTRUCTOR => SUBO0O
PROCEDURE , PASS OBJ :: DESTRUCTOR => SUB1l1l
END TYPE CHAR OBJ
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CONSTRUCTOR and DESTRUCTOR capabilities (2)
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The constructor/destructors are implemented as elemental subroutines:
ELEMENTAL SUBROUTINE SUBOO (AA,LENGT)
TYPE (CHAR OBJ) :: AA
AAINTABLE = LENGT
ALLOCATE (AA%PNEXT (LENGT) )

AASPTEXT = '
END SUBROUTINE SUBOO
ELEMENTAL SUBROUTINE SUB11 (ARZ)

IF (AASNTABLE > 0) DEALLOCATE (AA$PNEXT)

END SUBROUTINE SUB1l1

In the calling procedure, we write:
TYPE (CHAR OBJ) ,DIMENSION(:) ,ALLOCATABLE

ALLOCATE (STRING (10) , LENGT=5)

STRING

DEALLOCATE (STRING)
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