
ISO/IEC JTC1/SC22/WG5 N1541
To: WG5/J3
From: Lawrie Schonfelder
Subject: Comments on draft Submodule TR J3/03-123
Date: July 2003
Subsequent to writing the previous version of this paper I have spent some time looking carefully at the
issues related to the functionality needed for this enhancement. My conclusion is that the previous paper,
J3/03-143, was broadly correct in its conclusions but not in its emphasis nor in its presentation.
Having decided that a submodule approach to supporting the separation of the design of user interface and
facility implementation is the right one, the key issue is what is the relationship between a submodule and
its parent module. In Fortran terms what is the nature of the association between entities in the parent and
entities of the same name in a submodule. It should be noted that what we are defining as a submodule is
an additional non-executable program unit similar to a module and which like a module constitutes a
separate scoping unit.
A submodule is delimited by statements of the form
SUBMODULE (<parent-name>) <submodule-name>

…

ENDSUBMODULE <submodule-name>

The <parent-name> identifies the parent that will have declared a number of named entities and possibly
accessed a number of others by use association or by a previous level of parent/child association. All of
these entities will be visible in the submodule. The question is what are the association rules that apply to
these entities within the submodule? Host association was suggested in 03-123. This I contend is very
much an inappropriate choice.
Host association currently has two essential propertiies:

1. the host is a containing program unit at the source code level, and
2. if in the contained scope a name available from the host via host association is redeclared then the

local name refers to a new local entity and access to the host entity is masked
Both of these are inappropriate for the submodule/parent relationship. By definition a submodule is not
contained within its parent module. To have a submodule redeclaration of a parent entity create a new
local entity that masks access to the parent entity is likely to cause an error. For example, with the 03-123
the following code structure would be legal.
MODULE POP

 INTEGER,PARAMETER::N=10

 FORWARD INTERFACE

 FUNCTION FUN(a)

 REAL::a(N),FUN

 ENDFUNCTION FUN

 ENDINTERFACE

ENDMODULE POP

SUBMODULE(POP)::SON

 INTEGER,PARAMETER::N=50 ! new local N masking the host associated N

 CONTAINS

 IMPLEMENTATION FUN

 FUNCTION FUN() ! the interface is not redeclared

 ! the dummy argument will therefore appear with name a and size 20

 ! it will be a cause of some surprise then if the programmer writes

 a(1:N)=0.0

 ! and finds an array overflow

 ! body of function

 ENDFUNCTION FUN

 ENDIMPLEMENTATION FUN

 FUNCTION SUBFUN(a)

 REAL::a(N),SUBFUN ! no bracketing means this N is the local one accessed normally

 ! body of function

 ENDFUNCTION SUBFUN

ENDSUBMODULE SON

A further complication arises since it would appear to be legal under the proposed host association rule
that SUBFUN could have been named FUN. In this case we have the confusion of which FUN would be
invoked by a reference to FUN in other procedures within the submodule.
An interface body declared in the parent can only refer to a parent entity. If this interface is redeclared in
the submodule but a local entity of a similar name is also declared that masks the parent entity the
characteristics of the procedure could be different and hence in error. Even if language is added to say
that in this case the parent entity is accessed and not the local submodule entity there is much scope for
confusion. Host association allows a whole variety of horrible codes to be produced that sometimes will
be caught by the compiler and sometimes they will not but will just produce wrong results.
Fundamentally any reference within a submodule to a name inherited from the parent should be a
reference to the parent entity. This will greatly reduce the scope for inadvertent obscure and wrong code.
Use association is closer to what is required but is not totally appropriate either. As currently defined use
association applies from one named program unit to another identified by name, which is essentially what
applies for a submodule/parent. However, use association at present applies only via a USE statement that
must name a module. The entities that are made accessible from this module are controlled first by the
accessibility attributes declared for them in the module and secondly by the controls that are applied
locally on the USE statement. A submodule of necessity must have access to all accessible entities from
its named parent. There is no local control in the parent/child inheritance and the accessibility attributes in
the parent do not apply to this association. Finally use association deals with redeclaration by the simple
expedient of banning it. Any redeclaration of a name made visible by use association is currently defined
as an error. Part of the point of the submodule concept is to subdivide the development of large facility
packages so that possibly different programmers might be responsible for interface design (module) and
implementation (submodule). It is therefore highly desirable that the essential parts of the module
declarations be duplicated by redeclaration in the submodule as essentially processor checkable
documentation for the implementor.
I contend a new parent/child submodule association is required. The required properties of this
submodule association are:

1. all entities visible in the parent are accessible in the submodule,
2. redeclaration in part or in full of a parent entity is permitted but such declaration must confirm

attributes and characteristics of the parent entity and are a reference to the parent entity, a new
entity is not created,

3. redeclaration of a data entity may not change the definition status nor the initialisation value of a
parent entity, and

4. a procedure may be defined by a procedure body at most once in any chain of descendants.
It should be noted that with this form of association between submodule and parent, host association still
applies between the contained scope of a procedure and its containing host. In the case of the parent

declared interface body it accesses the data environment of the parent by host association and for the
implementation defined in a descendent, it accesses the data environment of its containing submodule by
host association. In this case this includes the data environment of the parent inherited into the submodule
by the association rules defined above, plus any new data environment declared within the submodule.
This latter by definition must be additional to and different from the parent data. I contend that this is
precisely the desired behaviour.
The only remaining language syntax that is needed is a keyword to indicate that a specific interface body
declaration applies to a descendent procedure and not an external. This I contend is logically a
qualification of a specific procedure not of an interface block. To qualify an interface block rather than
the individual interface bodies complicates the construction of generic procedure sets and provides no
compensating advantage. I would propose we spell this keyword FORWARD and that it be used as a prefix
to the FUNCTION or SUBROUTINE header statement on an interface body.
With this definition of association no other language syntax is needed; the clumsy verbose
IMPLEMENTATION <proc-name>...ENDIMPLEMENTATION bracketing is not required. Such bracketing
would be needed if host association were used since within the brackets the effects must be partially
counteracted. With submodule association as defined above the occurrence of the parent procedure name
is sufficient to provide the reference to the relevant ancestor declaration. However, it may be desirable to
locally distinguish a procedure body that is providing a definition for a “forward” procedure and one that
is defining a “local” module/submodule procedure. To this end a companion prefix keyword could be
usefully included that is attached to the header of the relevant procedure body definition. I have suggested
that SEPARATE would be a suitable spelling for such a prefix.
The following is an example of the sort of program structure that is possible with this proposal. The basic
package is one providing facilities for variable precision arithmetic (drawn from my VPA module). The
interface declarations are included in a parent module and the implementation definitions are given in two
submodules, one defines the arithmetic operations the other the logical comparison procedures.

MODULE VARIABLE_PRECISION_ARITHMETIC

PRIVATE
INTEGER,PARAMETER :: radd=8
INTEGER,PARAMETER :: rad=100000000
TYPE NUMBER
 PRIVATE
 INTEGER :: exp=rad+2 ! holds the base rad exponent
 INTEGER,POINTER :: sig(:)=>NULL()! holds the significand
ENDTYPE NUMBER
INTEGER :: ndig=14 ! controls the current accuracy
 ! initially set to provide at least 104D

INTERFACE ASSIGNMENT(=)
 FORWARD ELEMENTAL SUBROUTINE num_ass_num(var,expr)
 type(NUMBER),INTENT(IN) :: expr
 type(NUMBER),INTENT(INOUT) :: var
 ENDSUBROUTINE num_ass_num
 FORWARD ELEMENTAL SUBROUTINE num_ass_int(var,expr)
 INTEGER,INTENT(IN) :: expr
 type(NUMBER),INTENT(INOUT) :: var
 ENDSUBROUTINE num_ass_int
ENDINTERFACE ASSIGNMENT(=)

INTERFACE OPERATOR(+)
 FORWARD ELEMENTAL FUNCTION num_plus_num(l,r)
 type(NUMBER),INTENT(IN) :: l,r
 type(NUMBER) :: num_plus_num
 ENDFUNCTION num_plus_num
FORWARD ELEMENTAL FUNCTION num_plus_int(l,r)

 type(NUMBER),INTENT(IN) :: l
 INTEGER, INTENT(IN) :: r
 type(NUMBER) :: num_plus_int
 ENDFUNCTION num_plus_int
FORWARD ELEMENTAL FUNCTION int_plus_num(l,r)
 INTEGER, INTENT(IN) :: l
 type(NUMBER),INTENT(IN) :: r
 type(NUMBER) :: int_plus_num
 ENDFUNCTION num_plus_num
 FORWARD ELEMENTAL FUNCTION plus_num(r)
 type(NUMBER),INTENT(IN) :: r
 type(NUMBER) :: plus_num
 ENDFUNCTION plus_num
ENDINTERFACE OPERATOR(+)

INTERFACE OPERATOR(<)
 FORWARD ELEMENTAL FUNCTION num_lt_num(l,r) ! OPERATOR(<)
 type(NUMBER),INTENT(IN) :: l,r
 LOGICAL :: num_lt_num
 ENDFUNCTION num_lt_num
ENDINTERFACE OPERATOR(<)

PUBLIC :: NUMBER,PRECISION,ASSIGNMENT(=),OPERATOR(+),OPERATOR(<)

ENDMODULE VARIABLE_PRECISION_ARITHMETIC

The first submodule will define assignment and the arithmetic operators,

SUBMODULE(VARIABLE_PRECISION_ARITHMETRIC)::VPA_ARITH_PROCS

CONTAINS

 SEPARATE ELEMENTAL SUBROUTINE num_ass_num(var,expr)
! redeclares and refers to interface from parent
 type(NUMBER),INTENT(IN) :: expr
 type(NUMBER),INTENT(INOUT) :: var
 ! implements assignment between NUMBER values
 ! body of procedure
 ENDSUBROUTINE num_ass_num

 SEPARATE ELEMENTAL SUBROUTINE num_ass_int(var,expr)
! redeclares and refers to interface from parent
 INTEGER,INTENT(IN) :: expr
 type(NUMBER),INTENT(INOUT) :: var
 ! implements assignment of an INTEGER to a NUMBER performing the required conversion
 ! body of procedure
 ENDSUBROUTINE num_ass_int

 SEPARATE ELEMENTAL FUNCTION num_plus_num(l,r)
! redeclares and refers to interface from parent
 type(NUMBER),INTENT(IN) :: l,r
 type(NUMBER) :: num_plus_num
 ! implements addition between a NUMBER and a NUMBER
 ! body of procedure
 ENDFUNCTION num_plus_num

 SEPARATE ELEMENTAL FUNCTION num_plus_int(l,r)
! redeclares and refers to interface from parent
 type(NUMBER),INTENT(IN) :: l
 INTEGER, INTENT(IN) :: r
 type(NUMBER) :: num_plus_int
 ! implements addition between a NUMBER and an INTEGER
 ! body of procedure

 ENDFUNCTION num_plus_int

 SEPARATE ELEMENTAL FUNCTION int_plus_num(l,r)
! redeclares and refers to interface from parent
 INTEGER, INTENT(IN) :: l
 type(NUMBER),INTENT(IN) :: r
 type(NUMBER) :: int_plus_num
 ! implements addition between an INTEGER and a NUMBER
 ! body of procedure
 ENDFUNCTION int_plus_num

 SEPARATE ELEMENTAL FUNCTION plus_num(r)
! redeclares and refers to interface from parent
 type(NUMBER),INTENT(IN) :: r
 type(NUMBER) :: plus_num
 ! implements monadic addition for a NUMBER
 ! body of procedure
 ENDFUNCTION plus_num

END SUBMODULE VPA_ARITH_PROCS

Note the redeclarations in the submodule reconfirm the attributes and characteristics of entities accessed
from the parent. Also note the SEPARATE keyword is not strictly necessary since the names like plus_num
are sufficient to provide the reference to the inherited FORWARD interface. The keyword does however
provide additional “documentation” for the human reader that could be useful when, as is not uncommon,
the submodule contains a number of auxiliary procedures that do not define procedure bodies for forward
procedures.
The following submodule would independently implement the logical comparison operators for VPA

SUBMODULE(VARIABLE_PRECISION_ARITHMETRIC)::VPA_COMP_PROCS

CONTAINS
 SEPARATE ELEMENTAL FUNCTION num_lt_num(l,r)
! OPERATOR(<) the interfaces here are simple so are not fully redeclared
 ! implements the logical < comparison between NUMBER values
 ! body of procedure
 ENDFUNCTION num_lt_num

END SUBMODULE VPA_COMP_PROCS

This time the whole parent declarations are not repeated merely referenced from the parent declaration via
the interface name num_lt_num.
As an example of what this proposal would permit, it would be possible for the module designer to present
an implementation programmer with a “stub” submodule that contained the relevant declarations from the
module. This would provide checkable exact “documentation” of the interface and relevant semantic
information of the required implementation e.g. a stub like

SUBMODULE(VARIABLE_PRECISION_ARITHMETRIC)::VPA_ASSGN_PROCS

INTEGER,PARAMETER :: radd=8
INTEGER,PARAMETER :: rad=100000000
TYPE NUMBER
 PRIVATE
 INTEGER :: exp=rad+2 ! holds the base rad exponent
 INTEGER,POINTER :: sig(:)=>NULL()! holds the significand
ENDTYPE NUMBER
INTEGER :: ndig=14 ! controls the current accuracy

 ! initially set to provide at least 104D
CONTAINS

 SEPARATE ELEMENTAL SUBROUTINE num_ass_num(var,expr)
 type(NUMBER),INTENT(IN) :: expr
 type(NUMBER),INTENT(INOUT) :: var
 ! implements assignment between NUMBER values

 ENDSUBROUTINE num_ass_num

 SEPARATE ELEMENTAL SUBROUTINE num_ass_int(var,expr)
 INTEGER,INTENT(IN) :: expr
 type(NUMBER),INTENT(INOUT) :: var
 ! implements assignment of INTEGER to NUMBER value

 ENDSUBROUTINE num_ass_int

END SUBMODULE VPA_ASSGN_PROCS

The implementor has all the necessary information to perform the implementation task. If either the
module designer or the submodule implementer makes a change in the redeclared entities there will be a
compilation failure indicating this. Checkable redeclaration is a powerful aid to large project development
and code maintenance.

