
ISO/IEC JTC1/SC22/WG5 N1542

WORKING DRAFT

ISO IEC TECHNICAL REPORT 19767

ISO/IEC JTC1 WG5 PROJECT 1.22.02.01.01.01

Enhanced Module Facilities

in

Fortran

An extension to IS 1539-1

April 2003

THIS PAGE TO BE REPLACED BY ISO-CS

i

Contents

Foreword..ii
Introduction ...ii
Information technology – Programming Languages – Fortran ...1
Technical Report: Enhanced Module Facilities...1
1 General ..1

1.1 Scope ...1
1.2 Normative References ...1

2 Requirements ...1
2.1 Summary..1
2.2 Submodules ...2
2.3 Submodule association ..2
2.4 Forward interface body..2
2.5 Separate module procedure ...2
2.6 Examples of modules with submodules ..3

3 Required editorial changes to, ISO/IEC 1539-1 : 1996...4
4 Required editorial changes to, ISO/IEC 1539-1 : 2004...9

ii

Foreword
[General part to be provided by ISO CS]
This technical report specifies an extension to the module program unit facilities of the
programming language Fortran. Fortran is specified by the international standard ISO/IEC
1539-1. This document has been prepared by ISO/IEC JTC1/SC22/WG5, the technical working
group for the Fortran language. It is the intention of ISO/IEC JTC1/SC22/WG5 that the
semantics and syntax specified by this technical report be included in the next revision of the
Fortran standard (ISO/IEC 1539-1) without change unless experience in the implementation and
use of this feature identifies errors that need to be corrected, or changes are needed to achieve
proper integration, in which case every reasonable effort will be made to minimize the impact of
such changes on existing implementations.
This extension is upward compatible with the version of Fortran specified by the international
standard ISO/IEC 1539-1 : 1996, informally known as Fortran 95. It would be possible for the
facilities defined in this technical report to be implemented as an extension to this version of
Fortran.
A revision of the 1996 standard is in an advanced stage of processing and is expected to be
published in 2004. This version whose technical content was finalized in 2003 will be known as
Fortran 2003. The extension defined by this TR is also upward compatible with this 2003
revision of Fortran.

Introduction
The module system of Fortran, as standardized by ISO/IEC 1539-1 : 1996 and unchanged in
ISO/IEC 1539-1 : 2004, while adequate for programs of modest size, has shortcomings that
become evident when used for large programs or programs requiring large modules. The
primary cause of these shortcomings is that modules are monolithic. The declaration of usable
data, datatypes, interfaces to procedures manipulating such data, and the implementation details
defining such procedures must be included within the same module.
A change to the procedure implementation definition within a module without any change to the
interface will usually trigger unnecessary recompilation of any dependent modules or programs.
For a module that has a large number of dependent programs, this can be a very significant
overhead.
The lack of separation between interface declaration and procedure implementation makes it
difficult to manage the program development process, particularly if multiple programmers are
needed to work on one large module. Because of the monolithic nature of the module facility
each programmer needs to work on the same source code with the obvious danger of
incompatible code changes.
This technical report extends the module facility of Fortran by introducing a new program unit
called a submodule. A submodule is separate from but dependent on a module. Program
developers may include the implementation details of module procedures in submodules while
declaring their interfaces in the module on which the submodules depend.
Since a submodule may not be accessed directly by a USE statement but only indirectly via its
parent module, a change to an implementation detail for a module procedure defined separately
in a submodule does not change the interface on which program units that use the module
depend. Such changes therefore do not trigger chains of dependent recompilations.
Separate submodules may be implemented by different programmers but they must implement
separate module procedures that are consistent with the original interface designs expressed in
the parent module. Thus the management of large development processes is significantly
facilitated.
Provided a module declares only the publicly visible aspects of the interface to a facility and all
the implementation details are provided in submodules, the source code of the module may be
published as definitive documentation of the interface without exposing possibly propriety
implementation techniques.

TECHNICAL REPORT 19767 WG5 Draft 27-Jun-03

1

Information technology – Programming Languages – Fortran

Technical Report: Enhanced Module Facilities

1 General

1.1 Scope
This technical report specifies an extension to the module facilities of the programming
language Fortran. The current Fortran language is specified by the international standard
ISO/IEC 1539-1 : 1996, informally known as Fortran 95. This standard is currently under
revision and a new version is scheduled for publication in 2004. This technical report is also a
compatible extension to this new language version, informally known as Fortran 2003.
The extension specified in this technical report allows program authors to develop the
implementation details of concepts in new program units, called submodules that cannot be
accessed directly by use association but are dependent on a “parent” module that declares the
interfaces.
Clause 2 of this technical report contains a general and informal but precise description of the
extended functionalities. Clause 3 contains detailed editorial changes that would implement the
revised language specification if they were applied to the international standard ISO/IEC 1539-1
: 1996. Clause 4 contains detailed editorial changes that would implement the revised language
specification if they were applied to the proposed international standard expected to be
designated ISO/IEC 1539-1 : 2004.

1.2 Normative References
The following standards contain provisions that, through reference in this text, constitute
provisions of this technical report. For dated references, subsequent amendments to, or revisions
of, any of these publications do not apply. Parties to agreements based on this technical report
are, however, encouraged to investigate the possibility of applying the most recent editions of
the normative documents indicated below. For undated references, the latest edition of the
normative document referenced applies. Members of IEC and ISO maintain registers of
currently valid International Standards.
ISO/IEC 1539-1 : 1996 Information technology - Programming Languages - Fortran
ISO/IEC 1539-1 : 2004 Information technology - Programming Languages - Fortran

2 Requirements
The following subclauses contain a general description of the extensions to the syntax and
semantics of the current Fortran programming language to provide facilities for submodules,
and to allow the separation of module procedure definitions into interface and implementation
parts.

2.1 Summary
This technical report defines a new program unit, “a submodule”, a new form of name
association, “submodule association”, an additional variety of interface body, “a forward
interface body”, and a new variety of procedure, “a separate module procedure”. A submodule
is a program unit that is dependent on and subsidiary to a module or another submodule. By
putting a forward interface body in a module and its corresponding separate module procedure
in a submodule, compilation of program units that access the interface body by use association
does not depend on the details of the corresponding procedure body implementation. The
procedure body implementation cannot change the interface body on which it depends.

TECHNICAL REPORT 19767 WG5 Draft 27-Jun-03

2

2.2 Submodules
A module or submodule may have several subsidiary submodules. If it has subsidiary
submodules, it is the parent of those subsidiary submodules, and each of those submodules is a
child of its parent. A submodule accesses its parent by submodule association. An ancestor of a
submodule is that submodule, or an ancestor of its parent. A descendant of a module or
submodule is that program unit, or a descendant of a child of that program unit.
A submodule is introduced by a statement of the form,

SUBMODULE (parent-name) submodule-name

and terminated by a statement of the form,

END SUBMODULE submodule-name

The parent-name is the name of the parent module or submodule.
It is not possible to access entities declared in the specification part of a submodule by use
association because a USE statement is required to specify a module, not a submodule. PRIVATE
and PUBLIC attributes may not be specified for entities declared in a submodule. All entities
declared in a submodule are accessible in its descendants, within procedures contained in the
submodule by host association and within any child submodule by submodule association.

2.3 Submodule association
The SUBMODULE statement identifies the parent of the submodule. Within the scoping unit
of the submodule all named entities visible in the parent are accessed by submodule
association. The accessed entities have the attributes, characteristics, definition status, and
values, if any, specified in the parent. The entities made accessible in the submodule are
identified by the names or generic identifiers used to identify them in the parent.
Within a submodule any entity accessed by submodule association may be redeclared in part or
in full. However, such redeclaration shall confirm the attributes and characteristics of the
submodule associated entity and all references to submodule associated entities, whether
redeclared or not, are references to the parent entity.
If a data entity is initialized in any descendant submodule this must also confirm the definition
status of the associated data entity and shall initialize it to the same value.

{ To provide checkable interface details at the point of implementation development, it is crucial
that it be possible to redeclare forward interface characteristics. Since such forward interface
characteristics may well depend on data-objects with initialized values accessible within an
ancestor, it is desirable that redeclaration of all submodule associated entities be permitted but
that it is a requirement that redclaration does not alter the status or value of the inherited
entity. }

2.4 Forward interface body
A forward interface body is declared with the FORWARD prefix on the FUNCTION or SUBROUTINE
statement that introduces the interface body specification in an interface block. Such an
interface body specifies the characteristics and dummy argument names of the procedure, and
that its corresponding procedure body shall be defined by a separate module procedure in a
descendant of the module or submodule in which it appears. A forward interface body accesses
the module or submodule in which it is declared by host association.

2.5 Separate module procedure
A separate module procedure is declared with a SEPARATE prefix on the FUNCTION or
SUBROUTINE statement that introduces its implementation definition. The name of the procedure

TECHNICAL REPORT 19767 WG5 Draft 27-Jun-03

3

so declared shall be that of a function or subroutine whose interface was declared with a
FORWARD prefix in an ancestor module or submodule.

{Strictly speaking the SEPARATE prefix is not necessary. The name of the procedure is
sufficient to identify an already accessible forward interface body and hence to indicate that the
particular procedure implementation definition is that of a separate module procedure.
However, the SEPARATE prefix may be considered to provide additional documentary alert
that the operative interface is declared elsewhere.
A possible restricted form of redeclaration for separate module procedures would be to use the
syntax
SEPARATE,PROCEDURE(forward-interface-name)
As the header if no redeclaration was to be done and to require full redeclaration of the
interface if any was wanted. I have not written the remainder of the TR to do this as I do not
think it necessary or particularly desirable but mention it here as a possibility.}

The characteristics and dummy argument names are those declared by the referenced interface
body, but they may optionally be confirmed by redeclaration in the separate procedure body. A
separate procedure may be redeclared PURE even if its interface body does not specify that it is
PURE.
If the procedure is a function, the result variable name is determined by the declaration of the
separate module procedure, not by the forward interface body. If the forward interface body
declares a result variable name different from the function name, that declaration is ignored,
except for its use in specifying the result variable characteristics.
A separate procedure is accessible if and only if its interface body is accessible.
At most one separate module procedure shall define an implementation for each forward
interface in the tree of related modules and submodules that are linked to form an executable
program.

{This avoids the problem of having to specify a search order if a forward interface has more
than one submodule implementing its procedure body. Of course it would be possible to allow
redefinition down any leg of the tree but to define that say the first separate procedure body
encounted was used and later definitions ignored. This however does not deal with two or more
definitions at the same level, where any search order would have to be specified by means not
yet defined within the language.}

2.6 Examples of modules with submodules
The example module POINTS below declares a type POINT and a forward interface body for a
separate module function POINT_DIST. Because the interface body includes the FORWARD prefix,
the interface body accesses the scoping unit of the module by host association.

MODULE POINTS

 TYPE :: POINT
 REAL :: X, Y
 END TYPE POINT

 INTERFACE
 FORWARD FUNCTION POINT_DIST(A, B)
 TYPE(POINT), INTENT(IN) :: A, B ! type accessed by host association
 REAL :: POINT_DIST
 END FUNCTION POINT_DIST
 END INTERFACE

END MODULE POINTS

TECHNICAL REPORT 19767 WG5 Draft 27-Jun-03

4

The example submodule POINTS_A below is a submodule of the POINTS module. The scope of
the type name POINT and the name and characteristics of the function POINT_DIST extend into
the submodule by submodule association. The characteristics of the function POINT_DIST can
be fully confirmed by redeclaration in the separate module function body, or taken from the
forward interface body in the POINTS module.

SUBMODULE (POINTS) POINTS_A
CONTAINS

 SEPARATE FUNCTION POINT_DIST(A, B) ! complete redeclaration
 TYPE(POINT), INTENT(IN) :: A, B ! of the interface confirming
 REAL :: POINT_DIST ! the characteristics from the parent
 POINT_DIST = SQRT((A%X-B%X)**2 + (A%Y-B%Y)**2)
 END FUNCTION POINT_DIST

END SUBMODULE POINTS_A

An alternative example of a coding of the submodule POINTS_A showing minimal redeclaration
of the separate module function is

SUBMODULE (POINTS) POINTS_A
CONTAINS

 SEPARATE FUNCTION POINT_DIST() ! mimimal redeclaration
 ! of the interface
 POINT_DIST = SQRT((A%X-B%X)**2 + (A%Y-B%Y)**2)
 END FUNCTION POINT_DIST

END SUBMODULE POINTS_A

The minimum required to introduce the definition of a separate module procedure is the
specification of whether it is a function or subroutine and the name of the associated forward
interface. However, any combination of some or all of the additional characteristics of the
procedure interface may be redeclated as part of the definition as long as they merely confirm
the characteristics of the associated forward interface.
Program units may access the facilities defined in this module and submodule set only by way
of a USE statement that names the module; program units are prohibited from accessing
submodules by use association since a submodule name may not appear in a USE statement. As
a result a change made to the code in the submodule cannot affect the attributes or
characteristics of the entities accessed from the module by use association. Therefore, a
submodule change need not trigger a recompilation of any of the use associated program units.

3 Required editorial changes to, ISO/IEC 1539-1 : 1996
The following editorial changes to ISO/IEC 1539-1 : 1996, if implemented, would provide the
facilities described in foregoing section of this report as an extension to Fortran 95. The
specific changes are grouped by the sections of the above document to which they apply.

Section 2 changes
In 2.1
After rule R1104 add rule
R1111a submodule is submodule-stmt
 [specification-part]
 [module-procedure-part]
 end-submodule-stmt
In 2.2

TECHNICAL REPORT 19767 WG5 Draft 27-Jun-03

5

First paragraph, second sentence, after “module,” add “ submodule,”
Before sentence beginning “A block data program” add sentence
A submodule contains implementation definitions for separate module procedures whose
interfaces are declared with a FORWARD prefix in an ancestor program unit, and definitions that
are to be made accessible to descendant submodules.
In the pre-penultimate sentence, after “module,” add “ submodule,”
In the ultimate sentence, before “but” add “ or submodule “
In 2.2.3.2
Replace the second sentence by
A module procedure may be invoked from within any scoping unit that accesses its declaration
(12.3.2.1) or definition (12.5).
Insert the following note at the end of 2.2.3.2.
NOTE 2.2a
The scoping unit of a submodule accesses the scoping unit of its parent module or submodule
by submodule association (11.3.4).
Insert a new subclause:
2.2.5 Submodule
A submodule is a program unit that extends a module or submodule. It contains definitions
(12.5) for separate module procedures whose forward interfaces are declared (12.3.2.1) in its
parent module or submodule. It may also contain declarations and definitions of entities that are
accessible to descendant submodules. An entity declared in a submodule is not accessible by use
association, but a procedure that is declared in a module and defined in one of that module’s
descendant submodules is accessible by use association.
In 2.3.1
In the second line of the first row of Table 2.1 insert “,SUBMODULE ”after “MODULE ”.
In 2.3.2
Change the heading of the third column of Table 2.2 from “Module ”to
“Module or Submodule ”
In the third footnote to Table 2.2 insert “or submodule ”after “module ”and change “the module
”to “it ”
In the last line of 2.3.3 insert “,end-submodule-stmt” after “end-module-stmt ”
In 2.5.6
Last sentence, before “statement” add “ or submodule “

Section 3 changes
At the end of 3.3.1,immediately before 3.3.1.1,add “END SUBMODULE ”to the list of adjacent
keywords where blanks are optional, in alphabetical order.

Section 4 changes
In 4.4
In the third line of the paragraph following note 4.16 after “itself ” add “and its descendant
submodules ”.
In 4.4.1
In the last line of the second paragraph following note 4.19, after “definition ”add “and its
descendant submodules ”.]
In the first sentence of the third paragraph following Note 4.19, after “definition ”,add “and its
descendant submodules ”
In the last line of the same paragraph, after “defining module ”add “and its descendant
submodules ”
In the Note 4.22, in the sentence following the first block of code, after “module ”add “and its
descendant submodules ”
In the last line of Note 4.23, after “defined” add “, and its descendant submodules ”

TECHNICAL REPORT 19767 WG5 Draft 27-Jun-03

6

Section 5 changes
In 5.1.2.2
[In the first line of the paragraph following the constraint, replace “outside the module.” by “by
use association.”
Add at the end of the paragraph,
All entities, declared in the module, regardless of their accessibility attribute, are accessible in
the module’s descendant submodules by submodule association.
In 5.1.2.5
In the first sentence of the second paragraph after, “module” add “ or one of its decsendent
submodules”

Section 6 changes
In 6.3.3.1
In item (2) in the first list, after “module” add “ or submodule”
In item (1) of the second list, after “use association” add “ or submodule association”
In 6.3.3.2
In item (4) of the list, after “module” add “ or submodule” twice

Sections 7 – 10 no changes

Section 11 changes
First paragraph, after “a module,” add “ a submodule,”
Add new subsection 11.3.3 and renumber as necessary
11.3.3 Submodules
A submodule is a program unit that is subsidiary to and dependent on a module or another
submodule, termed its parent. This parent is identified by the parent-name in the submodule
statement that introduces the submodule. A submodule is a child of its parent. An ancestor of
a submodule is itself and any ancestor of its parent. A descendant of a module or a submodule
is itself and any descendant of its child submodules.
R1111a submodule is submodule-stmt
 [specification-part]
 [module-procedure-part]
 end-submodule-stmt
R1111b submodule-stmt is SUBMODULE (parent-name) submodule-name
R1111c end-submodule-stmt is END [SUBMODULE [submodule-name]]
Constraint: The parent-name shall be the name of a submodule or a nonintrinsic module.
Constraint: If a submodule-name is specified in the end-submodule-stmt it shall be identical to
the submodule-name specified in the submodule-stmt.
Constraint: A submodule specification-part shall not contain a stmt-function-stmt, an entry-stmt, or a
format-stmt.
Constraint: If an object of a type for which component-initialization is specified appears in the
specification-part of a submodule and does not have the ALLOCATABLE or POINTER
attribute, the object shall have the SAVE attribute.
A submodule name must be different from that of every other module or submodule. A
submodule may contain USE statements by which it may access modules other than its ancestor
module.
A submodule accesses named entities from its parent by submodule association (11.3.4).
A submodule may provide implementations for separate module procedures that are declared by
forward interface bodies in ancestor program units. A submodule may also declare and define
other entities that are accessible in descendant submodules. One and only one separate module
procedure shall provide a definition for a procedure declared by a forward interface.

TECHNICAL REPORT 19767 WG5 Draft 27-Jun-03

7

11.3.4 Submodule association
The scoping unit of a submodule accesses all named data objects, derived types, interface
blocks, procedures, generic identifiers, and namelist groups accessible in its parent by
submodule association, regardless of the accessibility attributes.
Any reference to the name of a submodule associated entity within the scoping unit of the
submodule is a reference to the entity accessed from the parent program unit.
A submodule associated entity may be redeclared, in part or completely, in the submodule but
such redeclaration shall confirm the attributes, characteristics, and values (if any) of the
associated parent entity. Any attributes, characteristics or values not confirmed by redeclaration
remain as specified in the ancestor program unit.

Section 12 changes
In 12.1.2.2, third paragraph before “subprogram” add “or submodule “, add the sentence “A is a
procedure that defines an implementation for a procedure declared by a forward interface body.”
In 12.3.2.1,
In rule R1205 before “function-stmt” and “subroutine-stmt” add “[FORWARD] ”
Before rule R1206 add
Constraint: The FORWARD prefix shall appear only in an interface-body within a module or
submodule.
In paragraph following constraints, third sentence, after “external procedure” add “, separate
module procedure,”
In the penultimate line of this paragraph, before “;otherwise, add “. If the interface body has the
FORWARD prefix it declares the interface for a module procedure that shall be defined by a
separate module procedure body within a descendant module or submodule”
In 12.5.2.2,
At the end of rule R1219 add line
 or SEPARATE
Add further constraints before rule R1220
Constaint: SEPARATE shall appear if and only if the function-name is that of a forward
interface body declared in an ancestor module or submodule.
Constraint: SEPARATE shall not appear except for a module procedure.
In 12.5.2.3,
Add constraint following rule R1222
Constaint: SEPARATE shall appears if an only if the subroutine-name is that of a forward
interface body declared in an ancestor module or submodule.

Section 13 no changes

Section 14 changes
In 14.1.2.4
In the list add an item (1)(e)
If that scoping unit is a submodule and that name is made accessible by submodule association
from an ancestor where the name is established to generic.
Add an item (2)(g)
If that scoping unit is a submodule and that name is made accessible by submodule association
from an ancestor where the name is established to be specific.
In 14.1.2.4.1
In numbered paragraph (1), second line, after “appears” add “, is made accessible by submodule
association,”
In numbered paragraph (2) third line, after “appears” add “, is made accessible by submodule
association,”

TECHNICAL REPORT 19767 WG5 Draft 27-Jun-03

8

In numbered paragraph (3), after the first “If” add “the name is accessible in the scoping unit by
submodule association, “
In 14.1.2.4.2
In both paragraphs (1) and (2) first lines, before “interface” add “non-forward”
Add paragraph (6), and renumber
If the scoping unit is a submodule that accesses the procedure by submodule association by that
name.
In 14.6.1
In first line replace “three” by “four”, before “and” add “submodule association,”
In second line, before “and” add “submodule,”
Add a new unit 14.6.1.3 and renumber
14.6.1.3 Submodule association
Submodule association is the association of names in the scoping unit of a submodule with
those in its parent. The rules of submodule association are given in 11.3.4. Submodule
association allows a child submodule to access entities defined in its ancestors. Such an
association remains in effect throughout the execution of the program.

Annex A changes
Insert the following definitions into the glossary in alphabetical order:
ancestor (11.2.3):A module, a submodule, or an ancestor of the parent of that submodule.
child (11.2.3):A submodule, when considered in its relation to the module or submodule upon
which it depends.
descendant (11.2.3):A module, a submodule, or a descendant of a child of that module or
submodule.
forward interface (12.3.2.1):An interface defined by an interface body with a FORWARD
prefix. It declares the interface for a module procedure that has a separately-defined
implementation body in a descendant module or submodule.
parent (11.2.3):A module or submodule, when considered in its relation to the submodules that
depend upon it. The module or submodule named as the parent in the submodule statement that
introduces the particular submodule.
separate module procedure (12.5) A module procedure that defines an implementation body
for a procedure that has a forward interface.
submodule (2.2.5,11.2.3):A program unit that depends on a module or another submodule; it
extends the program unit on which it depends.
submodule association (14.6.1.3) The association of names accessed in a submodule that are
specified in an ancestor.

Annex B no changes

Annex C changes
Add subsection
C.8.3.8 Submodule use
The example module POINTS below declares a type POINT and a forward interface body for a
separate module function POINT_DIST. Because the interface body includes the FORWARD prefix,
the interface body accesses the scoping unit of the module by host association.

MODULE POINTS

 TYPE :: POINT
 REAL :: X, Y
 END TYPE POINT

 INTERFACE
 FORWARD FUNCTION POINT_DIST(A, B)

TECHNICAL REPORT 19767 WG5 Draft 27-Jun-03

9

 TYPE(POINT), INTENT(IN) :: A, B ! Accessed by host association
 REAL :: POINT_DIST
 END FUNCTION POINT_DIST
 END INTERFACE

END MODULE POINTS

The example submodule POINTS_A below is a submodule of the POINTS module. The scope of
the type name POINT and the name and characteristics of the function POINT_DIST extend into
the submodule by submodule association. The characteristics of the function POINT_DIST can
be fully confirmed by redeclaration in the separate module function body, or taken from the
forward interface body in the POINTS module.

SUBMODULE (POINTS) POINTS_A
CONTAINS

 SEPARATE FUNCTION POINT_DIST(A, B) ! complete redeclaration
 TYPE(POINT), INTENT(IN) :: A, B ! of the interface confirming
 REAL :: POINT_DIST ! the characteristics from the parent
 POINT_DIST = SQRT((A%X-B%X)**2 + (A%Y-B%Y)**2)
 END FUNCTION POINT_DIST

END SUBMODULE POINTS_A

An alternative example of a coding of the submodule POINTS_A showing minimal redeclaration
of the separate module function is

SUBMODULE (POINTS) POINTS_A
CONTAINS

 SEPARATE FUNCTION POINT_DIST() ! mimimal redeclaration of the interface
 POINT_DIST = SQRT((A%X-B%X)**2 + (A%Y-B%Y)**2)
 END FUNCTION POINT_DIST

END SUBMODULE POINTS_A

Programs may access the facilities defined in this module and submodule only by way of a USE
statement that names the module; programs are prohibited from accessing submodules by use
association since a submodule name may not appear in a USE statement. As a result a change
made to the code in the submodule cannot affect the attributes or characteristics of the entities
accessed from the module by use association. Therefore, a submodule change need not trigger a
recompilation of any of the use associated program units.

4 Required editorial changes to, ISO/IEC 1539-1 : 2004
The following editorial changes to ISO/IEC 1539-1 : 2004, if implemented, would provide the
facilities described in foregoing section of this report as an extension to Fortran 2003. The
changes are grouped by the major sections to which they apply.

Section 2 changes
In 2.1
After the third right-hand-side of syntax rule R202 insert:
 or submodule
After syntax rule R1104 add the following syntax rule. This is a quotation of the “real ”syntax
rule in subclause 11.2.2.
R1115a submodule is submodule-stmt

 [specification-part]
 [module-subprogram-part]

TECHNICAL REPORT 19767 WG5 Draft 27-Jun-03

10

 end-submodule-stmt
In the second line of the first paragraph of subclause 2.2 insert “,a submodule ”after “module ”
In the fourth line of the first paragraph of subclause 2.2 insert a new sentence:
A submodule is an extension of a module; it may contain the definitions of procedures declared
in a module or another submodule.
In the sixth line of the first paragraph of subclause 2.2 insert “,a submodule ”after “module ”
In the penultimate line of the first paragraph of subclause 2.2 insert “or submodule ”after
“module ”
Replace the second sentence of 2.2.3.2 by the following sentence
A module procedure may be invoked from within any scoping unit that accesses its declaration
(12.3.2.1) or definition (12.5).
Insert the following note at the end of 2.2.3.2.
NOTE 2.2
The scoping unit of a submodule accesses the scoping unit of its parent module or submodule
by submodule association.
Insert a new subclause:
2.2.5 Submodule
A submodule is a program unit that extends a module or submodule. It contains definitions
(12.5) for separate module procedures whose forward interfaces are declared (12.3.2.1) in its
parent module or submodule. It may also contain declarations and definitions of entities that are
accessible to descendant submodules. An entity declared in a submodule is not accessible by use
association, but a procedure that is declared in a module and defined in one of that module ’s
descendants is accessible by use association.
In the second line of the first row of Table 2.1 insert “,SUBMODULE ”after “MODULE ”
Change the heading of the third column of Table 2.2 from “Module ”to “Module or Submodule
”
In the second footnote to Table 2.2 insert “or submodule ”after “module ”and change “the
module ”to “it ”
In the last line of 2.3.3 insert “,end-submodule-stmt” after “end-module-stmt ”
In the first line of the second paragraph of 2.4.3.1.1 insert “,submodule ”after “module ”
In 2.5.3, first paragraph, after “use association” insert “, submodule association”

Section 3 changes
At the end of 3.3.1,immediately before 3.3.1.1,add “END SUBMODULE ”to the list of adjacent
keywords where blanks are optional, alphabetize the list.

Section 4 changes
In the third paragraph of 4.5.1.1, after “definition ”add “and its descendant submodules ”
In the last line of Note 4.19, after “definition ”add “and its descendant submodules ”
In the third line of the second paragraph of 4.5.5.2 insert “or submodule ”after “module ”. In the
third and fourth line, replace “referencing the module ”by “that has access to that program unit ”
In the first line of the second paragraph of Note 4.49,insert “or submodule ”after “module ”

Section 5 changes
In constraint C532 insert “or submodule ”after “module ”
In the first line of the second paragraph of 5.1.2.12 insert “,or any of its descendant submodules
”after “attribute ”
In the first line of the second paragraph of 5.1.2.13 insert “or any of its descendant submodules
”after “module ”.
In the last line of the same paragraph, after “module” add “ or submodule”
In constraint C559 insert “or submodule ”after “module ”

TECHNICAL REPORT 19767 WG5 Draft 27-Jun-03

11

Section 6 changes
In the third line of the penultimate paragraph of 6.3.1.1 replace “or a subobject thereof ”by “or
submodule,or a subobject thereof,”
In the first line of the first paragraph after Note 6.23 insert “or submodule ”after “module ”

Sections 7-10 no changes

Section 11 changes
First paragraph, after “a module,” add “ a submodule,”
In the first line of the second paragraph insert “,submodules ”after “modules ”
After constraint C1109 insert an additional constraint:
C1109a (R1109) If the USE statement appears within a submodule, module-name shall not be
the name of the ancestor module of the submodule.
Add new subsection 11.2.2 and renumber as necessary
11.2.2 Submodules
A submodule is a program unit that is subsidiary to and dependent on a module or another
submodule, termed its parent. This parent is identified by the parent-name in the submodule
statement that introduces the submodule. A submodule is a child of its parent. An ancestor of
a submodule is itself and any ancestors of its parent. A descendant of a module or a submodule
is itself and any descendants of its child submodules.
R1115a submodule is submodule-stmt
 [specification-part]
 [module-procedure-part]
 end-submodule-stmt
R1115b submodule-stmt is SUBMODULE (parent-name) submodule-name
R1115c end-submodule-stmt is END [SUBMODULE [submodule-name]]
C1114a R(1115b) The parent-name shall be the name of a submodule or a nonintrinsic module.
C1114b R(1115b) The submodule-name shall not be the same as parent-name.
C1114c R(1115c) If a submodule-name is specified in the end-submodule-stmt it shall be

identical to the submodule-name specified in the submodule-stmt.
C1114d R(1115a) submodule specification-part shall not contain a stmt-function-stmt, an entry-stmt,

or a format-stmt.
C1114e R(1115a) An automatic object shall not appear in the specification-part of a

submodule.
C1114f R(1115a) If an object of a type for which component-initialization is specified appears

in the specification-part of a submodule and does not have the
ALLOCATABLE or POINTER attribute, the object shall have the SAVE
attribute.

C1114g R(1115b) A submodule-name shall not appear as module-name in a USE statement.
A submodule name must be different from that of every other module or submodule. A
submodule may contain USE statements by which it may access modules other than its ancestor
module.
A submodule accesses named entities from its parent by submodule association (11.2.3).
A submodule may provide implementations for separate module procedures that are declared by
forward interface bodies in ancestor program units. A submodule may also declare and define
other entities that are accessible in descendant submodules. At most one separate module
procedure shall provide a definition for any forward interface in any particular set of descendant
program units.
11.2.4 Submodule association
The scoping unit of a submodule accesses all named data objects, derived types, interface
blocks, procedures, generic identifiers, and namelist groups accessible in its parent by
submodule association, regardless of the accessibility attributes.

TECHNICAL REPORT 19767 WG5 Draft 27-Jun-03

12

Any reference to the name of a submodule associated entity within the submodule is a reference
to the entity accessed from the parent program unit.
A submodule associated entity may be redeclared, in part or completely, in the submodule but
such redeclaration shall confirm the attributes, characteristics, and values (if any) of the
associated parent entity. Any attributes, characteristics or values not confirmed by redeclaration
remain as specified in the ancestor program unit.

Section 12 changes
In the fourth paragraph before “host association” add “submodule association, “
In 12.1.2.2, third paragraph before “subprogram” add “or submodule “
At the end of the first paragraph of 12.3 add the sentence “However, iIf the dummy arguments
are redeclared in a separate module procedure body (12.5.2.5) they shall have the same names
as in the corresponding forward interface body (12.3.2.1).”
In 12.3.2.1,
In rule R1205 before “function-stmt” and “subroutine-stmt” add “[FORWARD] ”
Before constraint C1207 add
C1206a (R1205) The FORWARD prefix shall appear only in an interface-body within a

module or submodule.
Add additional constraint,
C1211a (R1209) An IMPORT statement shall not appear within an interface body that is

declared with a FORWARD prefix.
Add the following as a new fourth paragraph after the constraint
If the interface body is introduced by a statement with the FORWARD prefix it is a forward
interface body. A forward interface body declares the interface for a module procedure that
shall be defined by a separate module procedure within a descendant program unit. If the
definition of a separate module procedure body corresponding to a particular forward interface
does not appear within a descendant of the of the program unit in which the forward interface
body is declared (11.2.3), the interface may be referenced but the procedure shall not be
invoked.
In the existing fourth paragraph first sentence after “body” add “ without the FORWARD
prefix”
At the end of rule R1228 add line
 or SEPARATE
Add further constraints before rule 1229
C1243a (R1228) If SEPARATE is present the function-name shall be that of a forward

interface body declared in an ancestor module or submodule.
C1243b R(1228) SEPARATE shall not appear for an internal procedure or an external

procedure; it may appear only for a module procedure in a module or
submodule.

Add paragraph before the end of subsection
If a prefix-spec of SEPARATE appears, the subprogram defines a separate module procedure
whose interface shall have been declared in a forward interface body in an ancestor module or
submodule. A separate module procedure is accessible by use association if and only if its
forward interface body is accessible by use association. For a particular forward interface body
at most one separate module procedure shall occur in any set of descendant program units.
In 12.5.2.2,
Add following rule R1231
C1248a R(1231) If SEPARATE is present the subroutine-name shall be that of a forward

interface body declared in an ancestor module or submodule.
Insert a new subclause before 12.5.2.4 and renumber succeeding subclauses appropriately
12.5.2.4 Separate module procedure definition

TECHNICAL REPORT 19767 WG5 Draft 27-Jun-03

13

A separate module procedure is a module procedure for which the interface is declared by a
forward interface body (12.3.2.1) in the specification-part of a module or submodule. The
procedure body that defines an implementation of a separate module procedure must be in a
descendant of the program unit in which the forward interface body is declared.
NOTE 12.40a
A separate module procedure can be accessed by use association if and only if its interface body
can be accessed by use association. A separate module procedure that is not accessible by use
association might still be accessible by way of a procedure pointer, a dummy procedure, or a
type-bound procedure.
A module subprogram that defines a separate module procedure may redeclare the
characteristics declared in its interface body. If they are redeclared, they shall be identical to
those specified in its interface body and hence merely confirm the characteristics referenced
from the forward interface body, The one exception is that the module procedure may be
specified to be pure even if the interface body does not so specify.
NOTE 12.40b
Specifications within an interface body that do not determine characteristics or dummy
argument names have no effect. Therefore, if a separate module procedure is to be recursive, or
it is to have a result name different from the function name, these properties must necessarily be
specified within the separate module subprogram.
In the first line of the first paragraph after syntax rule R1236 in 12.5.2.6 insert “,submodule
”after “module ”

Section 13-15 no changes

Section 16 changes
In item (1)in the first list in 16.2,after “abstract interfaces ”insert “,forward interfaces ”
Before Note 16.3 add a new paragraph
A separate module procedure shall have the same name as its forward interface. A submodule
accesses all available entities from its parent by submodule association. Such entities may have
their attributes and characteristics confirmed by redeclaration within the submodule but all
references to the names of such entities are to the associated entity.
In 16.4.1, first sentence, replace “five” by “six”, after “use association,” add “ submodule
association,”
Add new item 16.4.1.3 and renumber as necessary
16.4.1.3 Submodule association
Submodule association is the association of names in the scoping unit of a submodule with
those in its parent. The rules of submodule association are given in (11.3.4). Submodule
association allows a child submodule to access entities defined in its ancestors. Such an
association remains in effect throughout the execution of the program. Submodule association
does not demand but it permits redeclaration of associated entities but such redeclaration shall
confirm the attributes, characteristics, definition status and value, if any, of the associated entity.
Any reference to the named entity within the scoping unit of a submodule is a reference to the
associated entity regardless of redeclaration and the entity has the attributes, definition status,
value (if any), and characteristics of the parent entity.
In the first line of the existing first paragraph of 16.4.1.3 insert “,a forward interface body ”after
“module subprogram ”.In the second line, insert “that is not a forward interface body ”after
“interface body ”
In item 2 of 16.5.6 insert “or submodule ”after “module ”
In item 3c of 16.5.6 insert “or submodule ”after the first “module ”and replace the second
“module ”by “that scoping unit ”
Replace Note 16.18 by the following
NOTE 16.18

TECHNICAL REPORT 19767 WG5 Draft 27-Jun-03

14

A module subprogram inherently references the module or submodule that is its host. Therefore,
for processors that keep track of when modules or submodules are in use, one is in use
whenever any procedure in it or any of its descendant submodules is active, even if no other
active scoping units reference its ancestor module; this situation can arise if a module procedure
is invoked via a procedure pointer or by means other than Fortran.
In item 3d of 16.5.6 insert “or submodule ”after the first “module ”and replace the second
“module ” by “that scoping unit ”

Annex A changes
Insert the following definitions into the glossary in alphabetical order:
ancestor (11.2.2):A module, a submodule, or an ancestor of the parent of that submodule.
child (11.2.2):A submodule, when considered in its relation to the module or submodule upon
which it depends.
descendant (11.2.2):A module, a submodule, or a descendant of a child of that module or
submodule.
forward interface (12.3.2.1):An interface defined by an interface body with a FORWARD
prefix. It declares the interface for a module procedure that has a separately-defined
implementation body in a descendant program unit.
parent (11.2.2):A module or submodule, when considered in its relation to the submodules that
depend upon it. The module or submodule named as the parent in the submodule statement that
introduces a particular submodule.
separate module procedure (12.5) A module procedure that defines an implementation for a
procedure that has a forward interface.
submodule (2.2.5,11.2.2):A program unit that depends on a module or another submodule; it
extends the program unit on which it depends.
submodule association (14.6.1.3) The association of names accessed in a submodule that are
specified in an ancestor.

Annex B no changes

Annex C changes
Insert a new subclause immediately before C.9
C.8.3.9 Modules with submodules
The example module POINTS below declares a type POINT and a forward interface body for a
separate module function POINT_DIST. Because the interface body includes the FORWARD prefix,
the interface body accesses the scoping unit of the module by host association.

MODULE POINTS

 TYPE :: POINT
 REAL :: X, Y
 END TYPE POINT

 INTERFACE
 FORWARD FUNCTION POINT_DIST(A, B)
 TYPE(POINT), INTENT(IN) :: A, B ! Accessed by host association
 REAL :: POINT_DIST
 END FUNCTION POINT_DIST
 END INTERFACE

END MODULE POINTS

The example submodule POINTS_A below is a submodule of the POINTS module. The scope of
the type name POINT and the name and characteristics of the function POINT_DIST extend into
the submodule by submodule association. The characteristics of the function POINT_DIST can

TECHNICAL REPORT 19767 WG5 Draft 27-Jun-03

15

be fully confirmed by redeclaration in the separate module function body, or taken from the
forward interface body in the POINTS module.

SUBMODULE (POINTS) POINTS_A
CONTAINS

 SEPARATE FUNCTION POINT_DIST(A, B) ! complete redeclaration
 TYPE(POINT), INTENT(IN) :: A, B ! of the interface confirming
 REAL :: POINT_DIST ! the characteristics from the parent
 POINT_DIST = SQRT((A%X-B%X)**2 + (A%Y-B%Y)**2)
 END FUNCTION POINT_DIST

END SUBMODULE POINTS_A

An alternative example of a coding of the submodule POINTS_A showing minimal redeclaration
of the separate module function is

SUBMODULE (POINTS) POINTS_A
CONTAINS

 SEPARATE FUNCTION POINT_DIST() ! mimimal redeclaration of the interface
 POINT_DIST = SQRT((A%X-B%X)**2 + (A%Y-B%Y)**2)
 END FUNCTION POINT_DIST

END SUBMODULE POINTS_A

Programs may access the facilities defined in this module and submodule only by way of a USE
statement that names the module; programs are prohibited from accessing submodules by use
association since a submodule name may not appear in a USE statement. As a result a change
made to the code in the submodule cannot affect the attributes or characteristics of the entities
accessed from the module by use association. Therefore, a submodule change need not trigger a
recompilation of any of the use associated program units.

	General
	Scope
	Normative References

	Requirements
	Summary
	Submodules
	Submodule association
	Forward interface body
	Separate module procedure
	Examples of modules with submodules

	Required editorial changes to, ISO/IEC 1539-1 : 1996
	Required editorial changes to, ISO/IEC 1539-1 : 2004

