
30/JULY/2003 \E�ects of N1562" WG5/N1563

Section 4: Types1

Fortran provides an abstract means whereby data may be categorized without relying on a particular2

physical representation. This abstract means is the concept of type.3

An intrinsic type is one that is de�ned by the language. The intrinsic types are integer, real, complex,4

character, and logical.5

A derived type is one that is de�ned by a derived-type de�nition ((4.5.1)).6

A derived type may be used only where its de�nition is accessible (4.5.1.1). An intrinsic type is always7

accessible.8

A type is speci�ed in several contexts by a type speci�er.9

R401 type-spec is intrinsic-type-spec10

or derived-type-spec11

C401 (R401) The derived-type-spec shall not specify an abstract type.12

4.1 The concept of type13

A type has a name, a set of valid values, a means to denote such values (constants), and a set of14

operations to manipulate the values.15

NOTE 4.1

For example, the logical type has a set of two values, denoted by the lexical tokens .TRUE. and
.FALSE., which are manipulated by logical operations.

An example of a less restricted type is the integer type. This type has a processor-dependent set of
integer numeric values, each of which is denoted by an optional sign followed by a string of digits,
and which may be manipulated by integer arithmetic operations and relational operations.

4.1.1 Set of values16

For each type, there is a set of valid values. The set of valid values may be completely determined, as is17

the case for logical, or may be determined by a processor-dependent method, as is the case for integer,18

character, and real. For complex, the set of valid values consists of the set of all the combinations of the19

values of the individual components. For derived types, the set of valid values is as de�ned in 4.5.7.20

4.1.2 Constants21

The syntax for literal constants of each intrinsic type is speci�ed in 4.4.22

The syntax for denoting a value indicates the type, type parameters, and the particular value.23

A constant value may be given a name (5.1.2.10, 5.2.9).24

A structure constructor (4.5.9) may be used to construct a constant value of derived type from an25

appropriate sequence of initialization expressions (7.1.7). Such a constant value is considered to be a26

scalar even though the value may have components that are arrays.27

30/JULY/2003 \E�ects of N1562" 33

WG5/N1563 \E�ects of N1562" 30/JULY/2003

4.1.3 Operations1

For each of the intrinsic types, a set of operations and corresponding operators is de�ned intrinsically.2

These are described in Section 7. The intrinsic set may be augmented with operations and operators3

de�ned by functions with the OPERATOR interface (12.3.2.1). Operator de�nitions are described in4

Sections 7 and 12.5

For derived types, there are no intrinsic operations. Operations on derived types may be de�ned by the6

program (4.5.10).7

4.2 Type parameters8

A type may be parameterized. In this case, the set of values, the syntax for denoting the values, and9

the set of operations on the values of the type depend on the values of the parameters.10

The intrinsic types are all parameterized. Derived types may be de�ned to be parameterized.11

A type parameter is either a kind type parameter or a length type parameter.12

A kind type parameter may be used in initialization and speci�cation expressions within the derived-type13

de�nition (4.5.1) for the type; it participates in generic resolution (16.2.3). Each of the intrinsic types14

has a kind type parameter named KIND, which is used to distinguish multiple representations of the15

intrinsic type.16

NOTE 4.2

By design, the value of a kind type parameter is known at compile time. Some parameterizations
that involve multiple representation forms need to be distinguished at compile time for practical
implementation and performance. Examples include the multiple precisions of the intrinsic real
type and the possible multiple character sets of the intrinsic character type.

A type parameter of a derived type may be speci�ed to be a kind type parameter in order to
allow generic resolution based on the parameter; that is to allow a single generic to include two
speci�c procedures that have interfaces distinguished only by the value of a kind type parameter
of a dummy argument. Generics are designed to be resolvable at compile time.

A length type parameter may be used in speci�cation expressions within the derived-type de�nition for17

the type, but it may not be used in initialization expressions. The intrinsic character type has a length18

type parameter named LEN, which is the length of the string.19

NOTE 4.3

The adjective \length" is used for type parameters other than kind type parameters because they
often specify a length, as for intrinsic character type. However, they may be used for other
purposes. The important di�erence from kind type parameters is that their values need not be
known at compile time and might change during execution.

A type parameter value may be speci�ed with a type speci�cation (4.4, 4.5.8).20

R402 type-param-value is scalar-int-expr21

or *22

or :23

C402 (R402) The type-param-value for a kind type parameter shall be an initialization expression.24

C403 (R402) A colon may be used as a type-param-value only in the declaration of an entity or25

34 \E�ects of N1562" 30/JULY/2003

30/JULY/2003 \E�ects of N1562" WG5/N1563

component that has the POINTER or ALLOCATABLE attribute.1

A deferred type parameter is a length type parameter whose value can change during execution of2

the program. A colon as a type-param-value speci�es a deferred type parameter.3

The values of the deferred type parameters of an object are determined by successful execution of an4

ALLOCATE statement (6.3.1), execution of an intrinsic assignment statement (7.4.1.3), execution of a5

pointer assignment statement (7.4.2), or by argument association (12.4.1.2).6

NOTE 4.4

Deferred type parameters of functions, including function procedure pointers, have no values.
Instead, they indicate that those type parameters of the function result will be determined by
execution of the function, if it returns an allocated allocatable result or an associated pointer
result.

An assumed type parameter is a length type parameter for a dummy argument that assumes the7

type parameter value from the corresponding actual argument; it is also used for an associate name in a8

SELECT TYPE construct that assumes the type parameter value from the corresponding selector. An9

asterisk as a type-param-value speci�es an assumed type parameter.10

4.3 Relationship of types and values to objects11

The name of a type serves as a type speci�er and may be used to declare objects of that type. A12

declaration speci�es the type of a named object. A data object may be declared explicitly or implicitly.13

Data objects may have attributes in addition to their types. Section 5 describes the way in which a data14

object is declared and how its type and other attributes are speci�ed.15

Scalar data of any intrinsic or derived type may be shaped in a rectangular pattern to compose an array16

of the same type and type parameters. An array object has a type and type parameters just as a scalar17

object does.18

A variable is a data object. The type and type parameters of a variable determine which values that19

variable may take. Assignment provides one means of de�ning or rede�ning the value of a variable of20

any type. Assignment is de�ned intrinsically for all types where the type, type parameters, and shape21

of both the variable and the value to be assigned to it are identical. Assignment between objects of22

certain di�ering intrinsic types, type parameters, and shapes is described in Section 7. A subroutine and23

a generic interface (4.5.1, 12.3.2.1) whose generic speci�er is ASSIGNMENT (=) de�ne an assignment24

that is not de�ned intrinsically or rede�ne an intrinsic derived-type assignment (7.4.1.4).25

NOTE 4.5

For example, assignment of a real value to an integer variable is de�ned intrinsically.

The type of a variable determines the operations that may be used to manipulate the variable.26

4.4 Intrinsic types27

The intrinsic types are:28

numeric types: integer, real, and complex
nonnumeric types: character and logical29

The numeric types are provided for numerical computation. The normal operations of arithmetic,30

addition (+), subtraction ({), multiplication (*), division (/), exponentiation (**), identity (unary +),31

30/JULY/2003 \E�ects of N1562" 35

WG5/N1563 \E�ects of N1562" 30/JULY/2003

and negation (unary {), are de�ned intrinsically for the numeric types.1

R403 intrinsic-type-spec is INTEGER [kind-selector]2

or REAL [kind-selector]3

or DOUBLE PRECISION4

or COMPLEX [kind-selector]5

or CHARACTER [char-selector]6

or LOGICAL [kind-selector]7

R404 kind-selector is ([KIND =] scalar-int-initialization-expr)8

C404 (R404) The value of scalar-int-initialization-expr shall be nonnegative and shall specify a rep-9

resentation method that exists on the processor.10

4.4.1 Integer type11

The set of values for the integer type is a subset of the mathematical integers. A processor shall12

provide one or more representation methods that de�ne sets of values for data of type integer. Each13

such method is characterized by a value for a type parameter called the kind type parameter. The kind14

type parameter of a representation method is returned by the intrinsic inquiry function KIND (13.7.59).15

The decimal exponent range of a representation method is returned by the intrinsic function RANGE16

(13.7.96). The intrinsic function SELECTED INT KIND (13.7.105) returns a kind value based on a17

speci�ed decimal range requirement. The integer type includes a zero value, which is considered neither18

negative nor positive. The value of a signed integer zero is the same as the value of an unsigned integer19

zero.20

The type speci�er for the integer type uses the keyword INTEGER.21

If the kind type parameter is not speci�ed, the default kind value is KIND (0) and the type speci�ed is22

default integer.23

Any integer value may be represented as a signed-int-literal-constant .24

R405 signed-int-literal-constant is [sign] int-literal-constant25

R406 int-literal-constant is digit-string [kind-param]26

R407 kind-param is digit-string27

or scalar-int-constant-name28

R408 signed-digit-string is [sign] digit-string29

R409 digit-string is digit [digit] ...30

R410 sign is +31

or {32

C405 (R407) A scalar-int-constant-name shall be a named constant of type integer.33

C406 (R407) The value of kind-param shall be nonnegative.34

C407 (R406) The value of kind-param shall specify a representation method that exists on the pro-35

cessor.36

The optional kind type parameter following digit-string speci�es the kind type parameter of the integer37

constant; if it is not present, the constant is of type default integer.38

An integer constant is interpreted as a decimal value.39

36 \E�ects of N1562" 30/JULY/2003

30/JULY/2003 \E�ects of N1562" WG5/N1563

NOTE 4.6

Examples of signed integer literal constants are:

473

+56

-101

21_2

21_SHORT

1976354279568241_8

where SHORT is a scalar integer named constant.

R411 boz-literal-constant is binary-constant1

or octal-constant2

or hex-constant3

R412 binary-constant is B ' digit [digit] ... '4

or B " digit [digit] ... "5

C408 (R412) digit shall have one of the values 0 or 1.6

R413 octal-constant is O ' digit [digit] ... '7

or O " digit [digit] ... "8

C409 (R413) digit shall have one of the values 0 through 7.9

R414 hex-constant is Z ' hex-digit [hex-digit] ... '10

or Z " hex-digit [hex-digit] ... "11

R415 hex-digit is digit12

or A13

or B14

or C15

or D16

or E17

or F18

Binary, octal and hexadecimal constants are interpreted according to their respective number systems.19

The hex-digits A through F represent the numbers ten through �fteen, respectively; they may be repre-20

sented by their lower-case equivalents.21

C410 (R411) A boz-literal-constant shall appear only as a data-stmt-constant in a DATA statement, as22

the actual argument associated with the dummy argument A of the numeric intrinsic functions23

DBLE, REAL or INT, or as the actual argument associated with the X or Y dummy argument24

of the intrinsic function CMPLX.25

4.4.2 Real type26

The real type has values that approximate the mathematical real numbers. A processor shall provide27

two or more approximation methods that de�ne sets of values for data of type real. Each such method28

has a representation method and is characterized by a value for a type parameter called the kind type29

parameter. The kind type parameter of an approximation method is returned by the intrinsic inquiry30

function KIND (13.7.59). The decimal precision and decimal exponent range of an approximation31

method are returned by the intrinsic functions PRECISION (13.7.90) and RANGE (13.7.96). The32

intrinsic function SELECTED REAL KIND (13.7.106) returns a kind value based on speci�ed precision33

and decimal range requirements.34

30/JULY/2003 \E�ects of N1562" 37

WG5/N1563 \E�ects of N1562" 30/JULY/2003

NOTE 4.7

See C.1.2 for remarks concerning selection of approximation methods.

The real type includes a zero value. Processors that distinguish between positive and negative zeros1

shall treat them as equivalent2

(1) in all relational operations,3

(2) as actual arguments to intrinsic procedures other than those for which it is explicitly speci�ed4

that negative zero is distinguished, and5

(3) as the scalar-numeric-expr in an arithmetic IF.6

NOTE 4.8

On a processor that can distinguish between 0.0 and �0:0,

(X >= 0.0)

evaluates to true if X = 0.0 or if X = �0:0,

(X < 0.0)

evaluates to false for X = �0:0, and

IF (X) 1,2,3

causes a transfer of control to the branch target statement with the statement label \2" for both X = 0.0 and X =

�0:0.

In order to distinguish between 0.0 and �0:0, a program should use the SIGN function.
SIGN(1.0,X) will return �1:0 if X < 0.0 or if the processor distinguishes between 0.0 and �0:0
and X has the value �0:0.

NOTE 4.9

Historically some systems had a distinct negative zero value that presented some diÆculties. For-
tran standards were speci�ed such that these diÆculties had to be handled by the processor and
not the user. The IEEE standard introduced a negative zero with particular properties. For
example, when the exact result of an operation is negative but rounding produces a zero, the
value speci�ed by the IEEE standard is �0:0. This standard includes adjustments intended to
permit IEEE-compliant processors to behave in accordance with that standard without violating
this standard.

The type speci�er for the real type uses the keyword REAL. The keyword DOUBLE PRECISION is an7

alternate speci�er for one kind of real type.8

If the type keyword REAL is speci�ed and the kind type parameter is not speci�ed, the default kind9

value is KIND (0.0) and the type speci�ed is default real. If the type keyword DOUBLE PRECISION10

is speci�ed, the kind value is KIND (0.0D0) and the type speci�ed is type double precision real. The11

decimal precision of the double precision real approximation method shall be greater than that of the12

default real method.13

R416 signed-real-literal-constant is [sign] real-literal-constant14

R417 real-literal-constant is signi�cand [exponent-letter exponent] [kind-param]15

or digit-string exponent-letter exponent [kind-param]16

R418 signi�cand is digit-string . [digit-string]17

or . digit-string18

38 \E�ects of N1562" 30/JULY/2003

30/JULY/2003 \E�ects of N1562" WG5/N1563

R419 exponent-letter is E1

or D2

R420 exponent is signed-digit-string3

C411 (R417) If both kind-param and exponent-letter are present, exponent-letter shall be E.4

C412 (R417) The value of kind-param shall specify an approximation method that exists on the5

processor.6

A real literal constant without a kind type parameter is a default real constant if it is without an7

exponent part or has exponent letter E, and is a double precision real constant if it has exponent letter8

D. A real literal constant written with a kind type parameter is a real constant with the speci�ed kind9

type parameter.10

The exponent represents the power of ten scaling to be applied to the signi�cand or digit string. The11

meaning of these constants is as in decimal scienti�c notation.12

The signi�cand may be written with more digits than a processor will use to approximate the value of13

the constant.14

NOTE 4.10

Examples of signed real literal constants are:

-12.78

+1.6E3

2.1

-16.E4_8

0.45D-4

10.93E7_QUAD

.123

3E4

where QUAD is a scalar integer named constant.

4.4.3 Complex type15

The complex type has values that approximate the mathematical complex numbers. The values of a16

complex type are ordered pairs of real values. The �rst real value is called the real part, and the second17

real value is called the imaginary part.18

Each approximation method used to represent data entities of type real shall be available for both the19

real and imaginary parts of a data entity of type complex. A kind type parameter may be speci�ed for20

a complex entity and selects for both parts the real approximation method characterized by this kind21

type parameter value. The kind type parameter of an approximation method is returned by the intrinsic22

inquiry function KIND (13.7.59).23

The type speci�er for the complex type uses the keyword COMPLEX. There is no keyword for double24

precision complex. If the type keyword COMPLEX is speci�ed and the kind type parameter is not25

speci�ed, the default kind value is the same as that for default real, the type of both parts is default26

real, and the type speci�ed is default complex.27

R421 complex-literal-constant is (real-part , imag-part)28

R422 real-part is signed-int-literal-constant29

or signed-real-literal-constant30

or named-constant31

30/JULY/2003 \E�ects of N1562" 39

WG5/N1563 \E�ects of N1562" 30/JULY/2003

R423 imag-part is signed-int-literal-constant1

or signed-real-literal-constant2

or named-constant3

C413 (R421) Each named constant in a complex literal constant shall be of type integer or real.4

If the real part and the imaginary part of a complex literal constant are both real, the kind type5

parameter value of the complex literal constant is the kind type parameter value of the part with the6

greater decimal precision; if the precisions are the same, it is the kind type parameter value of one of the7

parts as determined by the processor. If a part has a kind type parameter value di�erent from that of8

the complex literal constant, the part is converted to the approximation method of the complex literal9

constant.10

If both the real and imaginary parts are integer, they are converted to the default real approximation11

method and the constant is of type default complex. If only one of the parts is an integer, it is converted12

to the approximation method selected for the part that is real and the kind type parameter value of the13

complex literal constant is that of the part that is real.14

NOTE 4.11

Examples of complex literal constants are:

(1.0, -1.0)

(3, 3.1E6)

(4.0_4, 3.6E7_8)

(0., PI)

where PI is a previously declared named real constant.

4.4.4 Character type15

The character type has a set of values composed of character strings. A character string is a sequence16

of characters, numbered from left to right 1, 2, 3, ... up to the number of characters in the string. The17

number of characters in the string is called the length of the string. The length is a type parameter; its18

value is greater than or equal to zero. Strings of di�erent lengths are all of type character.19

A processor shall provide one or more representation methods that de�ne sets of values for data of20

type character. Each such method is characterized by a value for a type parameter called the kind type21

parameter. The kind type parameter of a representation method is returned by the intrinsic inquiry22

function KIND (13.7.59). The intrinsic function SELECTED CHAR KIND (13.7.104) returns a kind23

value based on the name of a character type. Any character of a particular representation method24

representable in the processor may occur in a character string of that representation method.25

The character set de�ned by ISO/IEC 646:1991 is referred to as the ASCII character set or the26

ASCII character type. The character set de�ned by ISO/IEC 10646-1:2000 UCS-4 is referred to as27

the ISO 10646 character set or the ISO 10646 character type.28

4.4.4.1 Character type speci�er29

The type speci�er for the character type uses the keyword CHARACTER.30

If the kind type parameter is not speci�ed, the default kind value is KIND ('A') and the type speci�ed31

is default character.32

R424 char-selector is length-selector33

or (LEN = type-param-value ,34

40 \E�ects of N1562" 30/JULY/2003

30/JULY/2003 \E�ects of N1562" WG5/N1563

KIND = scalar-int-initialization-expr)1

or (type-param-value ,2

[KIND =] scalar-int-initialization-expr)3

or (KIND = scalar-int-initialization-expr4

[, LEN =type-param-value])5

R425 length-selector is ([LEN =] type-param-value)6

or * char-length [,]7

R426 char-length is (type-param-value)8

or scalar-int-literal-constant9

C414 (R424) The value of scalar-int-initialization-expr shall be nonnegative and shall specify a rep-10

resentation method that exists on the processor.11

C415 (R426) The scalar-int-literal-constant shall not include a kind-param.12

C416 (R424 R425 R426) A type-param-value of * may be used only in the following ways:13

(1) to declare a dummy argument,14

(2) to declare a named constant,15

(3) in the type-spec of an ALLOCATE statement wherein each allocate-object is a dummy16

argument of type CHARACTER with an assumed character length, or17

(4) in an external function, to declare the character length parameter of the function result.18

C417 A function name shall not be declared with an asterisk type-param-value unless it is of type CHAR-19

ACTER and is the name of the result of an external function or the name of a dummy function.20

C418 A function name declared with an asterisk type-param-value shall not be an array, a pointer, recursive, or pure.21

C419 (R425) The optional comma in a length-selector is permitted only in a declaration-type-spec in a type-declaration-22

stmt.23

C420 (R425) The optional comma in a length-selector is permitted only if no double-colon separator appears in the24

type-declaration-stmt.25

C421 (R424) The length speci�ed for a character statement function or for a statement function dummy argument of26

type character shall be an initialization expression.27

The char-selector in a CHARACTER intrinsic-type-spec and the * char-length in an entity-decl or in28

a component-decl of a type de�nition specify character length. The * char-length in an entity-decl or29

a component-decl speci�es an individual length and overrides the length speci�ed in the char-selector ,30

if any. If a * char-length is not speci�ed in an entity-decl or a component-decl , the length-selector or31

type-param-value speci�ed in the char-selector is the character length. If the length is not speci�ed in a32

char-selector or a * char-length, the length is 1.33

If the character length parameter value evaluates to a negative value, the length of character entities34

declared is zero. A character length parameter value of : indicates a deferred type parameter (4.2). A35

char-length type parameter value of * has the following meaning:36

(1) If used to declare a dummy argument of a procedure, the dummy argument assumes the37

length of the associated actual argument.38

(2) If used to declare a named constant, the length is that of the constant value.39

(3) If used in the type-spec of an ALLOCATE statement, each allocate-object assumes its length40

from the associated actual argument.41

(4) If used to specify the character length parameter of a function result, any scoping unit invoking the function42

shall declare the function name with a character length parameter value other than * or access such a43

de�nition by host or use association. When the function is invoked, the length of the result variable in the44

function is assumed from the value of this type parameter.45

30/JULY/2003 \E�ects of N1562" 41

WG5/N1563 \E�ects of N1562" 30/JULY/2003

4.4.4.2 Character literal constant1

A character literal constant is written as a sequence of characters, delimited by either apostrophes2

or quotation marks.3

R427 char-literal-constant is [kind-param] ' [rep-char] ... '4

or [kind-param] " [rep-char] ... "5

C422 (R427) The value of kind-param shall specify a representation method that exists on the pro-6

cessor.7

The optional kind type parameter preceding the leading delimiter speci�es the kind type parameter of8

the character constant; if it is not present, the constant is of type default character.9

For the type character with kind kind-param, if present, and for type default character otherwise, a10

representable character, rep-char , is de�ned as follows:11

(1) In free source form, it is any graphic character in the processor-dependent character set.12

(2) In �xed source form, it is any character in the processor-dependent character set. A processor may restrict13

the occurrence of some or all of the control characters.14

NOTE 4.12

Fortran 77 allowed any character to occur in a character context. This standard allows a source
program to contain characters of more than one kind. Some processors may identify characters of
nondefault kinds by control characters (called \escape" or \shift" characters). It is diÆcult, if not
impossible, to process, edit, and print �les where some instances of control characters have their
intended meaning and some instances may not. Almost all control characters have uses or e�ects
that e�ectively preclude their use in character contexts and this is why free source form allows only
graphic characters as representable characters. Nevertheless, for compatibility with Fortran 77, control

characters remain permitted in principle in �xed source form.

The delimiting apostrophes or quotation marks are not part of the value of the character literal constant.15

An apostrophe character within a character constant delimited by apostrophes is represented by two16

consecutive apostrophes (without intervening blanks); in this case, the two apostrophes are counted as17

one character. Similarly, a quotation mark character within a character constant delimited by quotation18

marks is represented by two consecutive quotation marks (without intervening blanks) and the two19

quotation marks are counted as one character.20

A zero-length character literal constant is represented by two consecutive apostrophes (without inter-21

vening blanks) or two consecutive quotation marks (without intervening blanks) outside of a character22

context.23

The intrinsic operation concatenation (//) is de�ned between two data entities of type character (7.2.2)24

with the same kind type parameter.25

NOTE 4.13

Examples of character literal constants are:

"DON'T"

'DON''T'

both of which have the value DON'T and

42 \E�ects of N1562" 30/JULY/2003

30/JULY/2003 \E�ects of N1562" WG5/N1563

Section 5: Data object declarations and speci�cations1

Every data object has a type and rank and may have type parameters and other attributes that determine2

the uses of the object. Collectively, these properties are the attributes of the object. The type of a3

named data object is either speci�ed explicitly in a type declaration statement or determined implicitly4

by the �rst letter of its name (5.3). All of its attributes may be included in a type declaration statement5

or may be speci�ed individually in separate speci�cation statements.6

NOTE 5.1

For example:

INTEGER :: INCOME, EXPENDITURE

declares the two data objects named INCOME and EXPENDITURE to have the type integer.

REAL, DIMENSION (-5:+5) :: X, Y, Z

declares three data objects with names X, Y, and Z. These all have default real type and are
explicit-shape rank-one arrays with a lower bound of {5, an upper bound of +5, and therefore a
size of 11.

5.1 Type declaration statements7

R501 type-declaration-stmt is declaration-type-spec [[, attr-spec] ... ::] entity-decl -list8

R502 declaration-type-spec is intrinsic-type-spec9

or TYPE (derived-type-spec)10

or CLASS (derived-type-spec)11

or CLASS (*)12

C501 (R502) In a declaration-type-spec, every type-param-value that is not a colon or an asterisk shall13

be a speci�cation-expr .14

C502 (R502) In a declaration-type-spec that uses the CLASS keyword, derived-type-spec shall specify15

an extensible type.16

NOTE 5.2

A declaration-type-spec is used in a nonexecutable statement; a type-spec is used in an array
constructor, a SELECT TYPE construct, or an ALLOCATE statement.

C503 (R502) The TYPE(derived-type-spec) shall not specify an abstract type (4.5.3).17

R503 attr-spec is access-spec18

or ALLOCATABLE19

or ASYNCHRONOUS20

or DIMENSION (array-spec)21

or EXTERNAL22

or INTENT (intent-spec)23

or INTRINSIC24

or language-binding-spec25

30/JULY/2003 \E�ects of N1562" 71

WG5/N1563 \E�ects of N1562" 30/JULY/2003

or OPTIONAL1

or PARAMETER2

or POINTER3

or PROTECTED4

or SAVE5

or TARGET6

or VALUE7

or VOLATILE8

R504 entity-decl is object-name [(array-spec)] [* char-length] [initialization]9

or function-name [* char-length]10

C504 (R504) If a type-param-value in a char-length in an entity-decl is not a colon or an asterisk, it11

shall be a speci�cation-expr .12

R505 object-name is name13

C505 (R505) The object-name shall be the name of a data object.14

R506 initialization is = initialization-expr15

or => null-init16

R507 null-init is function-reference17

C506 (R507) The function-reference shall be a reference to the NULL intrinsic function with no18

arguments.19

C507 (R501) The same attr-spec shall not appear more than once in a given type-declaration-stmt .20

C508 An entity shall not be explicitly given any attribute more than once in a scoping unit.21

C509 (R501) An entity declared with the CLASS keyword shall be a dummy argument or have the22

ALLOCATABLE or POINTER attribute.23

C510 (R501) An array that has the POINTER or ALLOCATABLE attribute shall be speci�ed with24

an array-spec that is a deferred-shape-spec-list (5.1.2.5.3).25

C511 (R501) An array-spec for an object-name that is a function result that does not have the AL-26

LOCATABLE or POINTER attribute shall be an explicit-shape-spec-list.27

C512 (R501) If the POINTER attribute is speci�ed, the ALLOCATABLE, TARGET, EXTERNAL,28

or INTRINSIC attribute shall not be speci�ed.29

C513 (R501) If the TARGET attribute is speci�ed, the POINTER, EXTERNAL, INTRINSIC, or30

PARAMETER attribute shall not be speci�ed.31

C514 (R501) The PARAMETER attribute shall not be speci�ed for a dummy argument, a pointer,32

an allocatable entity, a function, or an object in a common block.33

C515 (R501) The INTENT, VALUE, and OPTIONAL attributes may be speci�ed only for dummy34

arguments.35

C516 (R501) The INTENT attribute shall not be speci�ed for a dummy procedure without the36

POINTER attribute.37

C517 (R501) The SAVE attribute shall not be speci�ed for an object that is in a common block, a38

dummy argument, a procedure, a function result, an automatic data object, or an object with39

72 \E�ects of N1562" 30/JULY/2003

30/JULY/2003 \E�ects of N1562" WG5/N1563

the PARAMETER attribute.1

C518 An entity shall not have both the EXTERNAL attribute and the INTRINSIC attribute.2

C519 (R501) An entity in an entity-decl -list shall not have the EXTERNAL or INTRINSIC attribute3

speci�ed unless it is a function.4

C520 (R504) The * char-length option is permitted only if the type speci�ed is character.5

C521 (R504) The function-name shall be the name of an external function, an intrinsic function, a6

function dummy procedure, or a statement function.7

C522 (R501) The initialization shall appear if the statement contains a PARAMETER attribute8

(5.1.2.10).9

C523 (R501) If initialization appears, a double-colon separator shall appear before the entity-decl -list.10

C524 (R504)initialization shall not appear if object-name is a dummy argument, a function result, an11

object in a named common block unless the type declaration is in a block data program unit,12

an object in blank common, an allocatable variable, an external name, an intrinsic name, or an13

automatic object.14

C525 (R504) If => appears in initialization, the object shall have the POINTER attribute. If =15

appears in initialization, the object shall not have the POINTER attribute.16

C526 (R501) If the VOLATILE attribute is speci�ed, the PARAMETER, INTRINSIC, EXTERNAL,17

or INTENT(IN) attribute shall not be speci�ed.18

C527 (R501) If the VALUE attribute is speci�ed, the PARAMETER, EXTERNAL, POINTER,19

ALLOCATABLE, DIMENSION, VOLATILE, INTENT(INOUT), or INTENT(OUT) attribute20

shall not be speci�ed.21

C528 (R501) If the VALUE attribute is speci�ed for a dummy argument of type character, the length22

parameter shall be omitted or shall be speci�ed by an initialization expression with the value23

one.24

C529 (R501) The VALUE attribute shall not be speci�ed for a dummy procedure.25

C530 (R501) The ALLOCATABLE, POINTER, or OPTIONAL attribute shall not be speci�ed for a26

dummy argument of a procedure that has a proc-language-binding-spec.27

C531 (R503) A language-binding-spec shall appear only in the speci�cation part of a module.28

C532 (R501) If a language-binding-spec is speci�ed, the entity declared shall be an interoperable29

variable (15.2).30

C533 (R501) If a language-binding-spec with a NAME= speci�er appears, the entity-decl -list shall31

consist of a single entity-decl .32

C534 (R503) The PROTECTED attribute is permitted only in the speci�cation part of a module.33

C535 (R501) The PROTECTED attribute is permitted only for a procedure pointer or named variable34

that is not in a common block.35

C536 (R501) If the PROTECTED attribute is speci�ed, the EXTERNAL, INTRINSIC, or PARAM-36

ETER attribute shall not be speci�ed.37

C537 A nonpointer object that has the PROTECTED attribute and is accessed by use association38

shall not appear in a variable de�nition context (16.5.7) or as the data-target or proc-target in39

30/JULY/2003 \E�ects of N1562" 73

WG5/N1563 \E�ects of N1562" 30/JULY/2003

a pointer-assignment-stmt .1

C538 A pointer object that has the PROTECTED attribute and is accessed by use association shall2

not appear as3

(1) A pointer-object in a pointer-assignment-stmt or nullify-stmt ,4

(2) An allocate-object in an allocate-stmt or deallocate-stmt , or5

(3) An actual argument in a reference to a procedure if the associated dummy argument is a6

pointer with the INTENT(OUT) or INTENT(INOUT) attribute.7

A name that identi�es a speci�c intrinsic function in a scoping unit has a type as speci�ed in 13.6. An8

explicit type declaration statement is not required; however, it is permitted. Specifying a type for a9

generic intrinsic function name in a type declaration statement is not suÆcient, by itself, to remove the10

generic properties from that function.11

A function result may be declared to have the POINTER or ALLOCATABLE attribute.12

A speci�cation-expr in an array-spec, in a type-param-value in a declaration-type-spec corresponding to13

a length type parameter, or in a char-length in an entity-decl shall be an initialization expression unless14

it is in an interface body (12.3.2.1), the speci�cation part of a subprogram, or the declaration-type-spec15

of a FUNCTION statement (12.5.2.1). If the data object being declared depends on the value of a16

speci�cation-expr that is not an initialization expression, and it is not a dummy argument, such an17

object is called an automatic data object.18

NOTE 5.3

An automatic object shall neither appear in a SAVE or DATA statement nor be declared with a
SAVE attribute nor be initially de�ned by an initialization.

If a type parameter in a declaration-type-spec or in a char-length in an entity-decl is de�ned by an19

expression that is not an initialization expression, the type parameter value is established on entry to20

the procedure and is not a�ected by any rede�nition or unde�nition of the variables in the speci�cation21

expression during execution of the procedure.22

If an entity-decl contains initialization and the object-name does not have the PARAMETER attribute,23

the entity is a variable with explicit initialization. Explicit initialization alternativelymay be speci�ed24

in a DATA statement unless the variable is of a derived type for which default initialization is speci�ed.25

If initialization is =initialization-expr , the object-name is initially de�ned with the value speci�ed by26

the initialization-expr ; if necessary, the value is converted according to the rules of intrinsic assignment27

(7.4.1.3) to a value that agrees in type, type parameters, and shape with the object-name. A variable,28

or part of a variable, shall not be explicitly initialized more than once in a program. If the variable is an29

array, it shall have its shape speci�ed in either the type declaration statement or a previous attribute30

speci�cation statement in the same scoping unit.31

If initialization is =>null-init , object-name shall be a pointer, and its initial association status is disas-32

sociated.33

The presence of initialization implies that object-name is saved, except for an object-name in a named34

common block or an object-name with the PARAMETER attribute. The implied SAVE attribute may35

be reaÆrmed by explicit use of the SAVE attribute in the type declaration statement, by inclusion of36

the object-name in a SAVE statement (5.2.12), or by the appearance of a SAVE statement without a37

saved-entity-list in the same scoping unit.38

NOTE 5.4

Examples of type declaration statements are:

74 \E�ects of N1562" 30/JULY/2003

30/JULY/2003 \E�ects of N1562" WG5/N1563

NOTE 5.4 (cont.)

REAL A (10)

LOGICAL, DIMENSION (5, 5) :: MASK1, MASK2

COMPLEX :: CUBE_ROOT = (-0.5, 0.866)

INTEGER, PARAMETER :: SHORT = SELECTED_INT_KIND (4)

INTEGER (SHORT) K ! Range at least -9999 to 9999.

REAL (KIND (0.0D0)) A

REAL (KIND = 2) B

COMPLEX (KIND = KIND (0.0D0)) :: C

CHARACTER (LEN = 10, KIND = 2) A

CHARACTER B, C *20

TYPE (PERSON) :: CHAIRMAN

TYPE(NODE), POINTER :: HEAD => NULL ()

TYPE (humongous_matrix (k=8, d=1000)) :: mat

(The last line above uses a type de�nition from Note 4.25.)

5.1.1 Declaration type speci�ers1

The declaration-type-spec in a type declaration statement speci�es the type of the entities in the entity2

declaration list. This explicit type declaration may override or con�rm the implicit type that could3

otherwise be indicated by the �rst letter of an entity name (5.3).4

An intrinsic-type-spec in a type declaration statement is used to declare entities of intrinsic type.5

5.1.1.1 TYPE6

A TYPE type speci�er is used to declare entities of a derived type.7

Where a data entity is declared explicitly using the TYPE type speci�er, the speci�ed derived type shall8

have been de�ned previously in the scoping unit or be accessible there by use or host association. If9

the data entity is a function result, the derived type may be speci�ed in the FUNCTION statement10

provided the derived type is de�ned within the body of the function or is accessible there by use or host11

association. If the derived type is speci�ed in the FUNCTION statement and is de�ned within the body12

of the function, it is as if the function result variable was declared with that derived type immediately13

following the derived-type-def of the speci�ed derived type.14

A scalar entity of derived type is a structure. If a derived type has the SEQUENCE property, a scalar15

entity of the type is a sequence structure.16

5.1.1.2 CLASS17

A polymorphic entity is a data entity that is able to be of di�ering types during program execution.18

The type of a data entity at a particular point during execution of a program is its dynamic type. The19

declared type of a data entity is the type that it is declared to have, either explicitly or implicitly.20

A CLASS type speci�er is used to declare polymorphic objects. The declared type of a polymorphic21

object is the speci�ed type if the CLASS type speci�er contains a type name.22

An object declared with the CLASS(*) speci�er is an unlimited polymorphic object. An unlimited23

polymorphic entity is not declared to have a type. It is not considered to have the same declared type24

as any other entity, including another unlimited polymorphic entity.25

A nonpolymorphic entity is type compatible only with entities of the same type. For a polymorphic26

entity, type compatibility is based on its declared type. A polymorphic entity that is not an unlimited27

30/JULY/2003 \E�ects of N1562" 75

WG5/N1563 \E�ects of N1562" 30/JULY/2003

polymorphic entity is type compatible with entities of the same type or any of its extensions. Even1

though an unlimited polymorphic entity is not considered to have a declared type, it is type compatible2

with all entities. An entity is said to be type compatible with a type if it is type compatible with entities3

of that type.4

Two entities are type incompatible if neither is type compatible with the other.5

An entity is type, kind, and rank compatible, or TKR compatible, with another entity if the �rst6

entity is type compatible with the second, the kind type parameters of the �rst entity have the same7

values as corresponding kind type parameters of the second, and both entities have the same rank.8

A polymorphic allocatable object may be allocated to be of any type with which it is type compatible.9

A polymorphic pointer or dummy argument may, during program execution, be associated with objects10

with which it is type compatible.11

The dynamic type of an allocated allocatable polymorphic object is the type with which it was allocated.12

The dynamic type of an associated polymorphic pointer is the dynamic type of its target. The dynamic13

type of a nonallocatable nonpointer polymorphic dummy argument is the dynamic type of its associated14

actual argument. The dynamic type of an unallocated allocatable or a disassociated pointer is the same15

as its declared type. The dynamic type of an entity identi�ed by an associate name (8.1.4) is the dynamic16

type of the selector with which it is associated. The dynamic type of an object that is not polymorphic17

is its declared type.18

NOTE 5.5

Only components of the declared type of a polymorphic object may be designated by component
selection (6.1.2).

5.1.2 Attributes19

The additional attributes that may appear in the attribute speci�cation of a type declaration statement20

further specify the nature of the entities being declared or specify restrictions on their use in the program.21

5.1.2.1 Accessibility attribute22

The accessibility attribute speci�es the accessibility of an entity via a particular identi�er.23

R508 access-spec is PUBLIC24

or PRIVATE25

C539 (R508) An access-spec shall appear only in the speci�cation-part of a module.26

Identi�ers that are speci�ed in a module or accessible in that module by use association have either27

the PUBLIC or PRIVATE attribute. Identi�ers for which an access-spec is not explicitly speci�ed in28

that module have the default accessibility attribute for that module. The default accessibility attribute29

for a module is PUBLIC unless it has been changed by a PRIVATE statement (5.2.1). Only identi�ers30

that have the PUBLIC attribute in that module are available to be accessed from that module by use31

association.32

NOTE 5.6

In order for an identi�er to be accessed by use association, it must have the PUBLIC attribute in
the module from which it is accessed. It can nonetheless have the PRIVATE attribute in a module
in which it is accessed by use association, and therefore not be available for use association from
a module where it is PRIVATE.

76 \E�ects of N1562" 30/JULY/2003

