Coscalars

A suggestion for supporting
distributed structures in Fortran

Declaration / establishment

e coarray:

e exists on every image

e dynamic memory:
requires program-wide
synchronization

X - scalar coscalar
y - array coscalar

Corank is zero

e coscalar:

e exists on exactly one image

(,host image®)
integer :: nJ]

dynamic memory: exactly one
Image allocates

— becomes the host image

real, allocatable :: x[],
y(:)I[]
allocate(x[5],(v(20)[7])

— No sync, atomic semantics
(invoke ALLOCATED())

— same image deallocates

Definition / Reference

* Explicit bracket * Synchronization rule

 always present e same as for coarrays
(,statistics”)

e all accesses coindexed

integer :: n[]

if (this image(n) == this image()) then
n[i] = ..
sync images(*)
else
sync images(this image(n))
. =n[] ..
end if

Coscalar pointer

* add the attribute e expensive operations
real, pointer :: p[) — 3 (or more) images
involved

* itself a coscalar . .
* host image of pointer

« target: must be image X executing the

coindexed . .
pointer assignment
real :: tl1[*] _
real :: t2[] e host image of target

if (X0 p[] => t1[5] (to some extent, have this

sync images (X) problem also for coarrays)
w = P[] .
sync all e require TARGET

if (..) pl[]l => t2[] attribute?

Distributed binary tree

type :: tree
type(lock type) :: lk
type(content) :: entry

! entities of type content have ,<”
! and possibly assignment overloaded

logical :: defined = .false.

type(tree), pointer :: left[] => null()

type(tree), pointer :: right[] => null()
end type

all entities must be coscalars (then %lock is)
support a tasking-like, recursive programming style

* lock needed for population, not read-only traversal
» therefore preference for read operations
allocation and deallocation remain purely local operations

with coarrays, implementation much more clumsy

Rice ,CAF 2.0" Copointers

A more full-featured approach

Declaration / establishment

« uses the COPOINTER e Copointer association
attribute

real, dimension(:), & if (this_image() == 1) &
copointer :: px s = o
* entity exists on one
iImage only

o additional attributes like

target must have the

COTARGET attribute CONTIGUOUS are also
real, dimension(10), & allowed
LIS BE « dynamic (de)allocation
of anonymous cotarget
» exists on one image (shared area, one

only image only) is possible

Copointers to coarrays

real, dimension(:), copointer :: px
real, dimension(10), cotarget :: x[*]

* local portion e coindexed entity
px => X px => X[9]

(remote operation wrt. copointer

location)
Copointers to local pointers
real, dimension(:), pointer :: lpx
lpx => x ! cotarget implies target (?)

px => 1lpx ! converts local pointer to copointer

. ocal casts

e remote RHS for local LHS remains disallowed
lpx => px[] ! forbidden

* Only allowed if RHS target is local

if (imageof(px) == this image()) then
lpx => px ! OK
end if

this also illustrates how target location is identified

Copointers that are coarrays

e gives you a bunch of num_images() copointers,
each hosted on an image of its own

real, dimension(:), copointer :: pxc[*]

 make each of these point to a coarray

real, dimension(10), cotarget :: xc[*]

pxc => xc ! all images execute

Referencing / defining

* Requires the co-dereference operator

real, dimension(:), copointer :: px
real, dimension(10) :: a

if (this image() == 1) then
allocate(px(4))
Px(1)[]1 = a(5)

px(2:)[] = a(1l:3)
end if
! same for RHS

* Exception: target is local to the executing image

Conclusion

* Feature is for functionality, not for performance

 better support for implementation of object-
based parallel software patterns

* mostly of the kind write rarely, read often
* e.g. load balancing algorithms

* Locks, Events may be more flexibly used

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12

