
ISO/IEC JTC1/SC22/WG5 N1972

Feature Proposals for Fortran
– A subset

by Espen Myklebust

Contents

1 Access specification in USE statements 2

2 Read-only variables 2

3 Extensions to IMPORT statements 4

4 Read-only components in derived types 6

5 Extension to the IF statement 7

6 Additional operator symbols 9

7 New intrinsic procedures 9

8 Extensions to intrinsic procedures 11

9 Initialization 12

10 Extension to the INTENT attribute 16

11 Extension to assignment statements 17

12 Object pseudo-components 18

13 Qualification of temporary objects 18

14 New syntax for iterated DO loops 20

15 Array of pointers to scalar entities 22

16 Implicit compatibility inheritance for derived types 24

2 READ-ONLY VARIABLES

1 Access specification in USE statements

1.1 Proposal

Possibility to prevent inheritance of USE associations

1.2 Rationale

• At present one of the following strategies is necessary to achieve the desired behavior

– Declare the MODULE to be PRIVATE and explicitly list all the entities in the MODULE in a PUBLIC
statement

∗ The preferred method, but may be cumbersome if there are many entities to list
– Declare all entities accessible by USE association in a PRIVATE statement

∗ Awkward as all entities from the USEd MODULE must be known unless an ONLY clause is used,
but that may be just as awkward if there are many entities that are needed

• Very useful when there are a lot of entities in both the host MODULE and the USEd MODULE which should
all be public

1.3 Proposed syntax

USE [[, module-nature] [,access-spec] ::] module-name [, ONLY: only-list]

USE [[, module-nature] [,access-spec] ::] module-name [, rename-list]

where access-spec is either PUBLIC or PRIVATE

1.4 Comments

• A PUBLIC attribute is default, just as for the MODULE itself

• PROTECTED could in principle also be allowed and would make PUBLIC data PROTECTED in scopes using
the module in which this was specified

– Affect access to shared data only
– This very “special” functionality might have limited practical application

2 Read-only variables

In this section a variable is understood as an object that is stored in memory and, hence, has a memory
address, without necessarily being mutable (in a particular scope). The reason is that the word constant
typically refers to a Fortran PARAMETER which, at least conceptually, does not have a memory address but is
“hard coded” into the program.

A similar feature proposal can be found at fortranwiki.org, and was proposed there by Joe Krahn.

2

http://fortranwiki.org/fortran/show/CONSTANT+attribute

2.1 Proposal 2 READ-ONLY VARIABLES

2.1 Proposal

Add an attribute to flag variables as read-only (immutable), but, in contrast to to PARAMETERs, with a
requirement that they be addressable to allow them as pointees. Also add a statement with the same token
to declare host- or USE-associated variables as read-only in the scope of the statement.

2.2 Rationale

• A variable declared with the read-only attribute would be allowed in initialization expressions

– Equivalent to PARAMETERs

• Read-only variables would be valid as POINTER TARGETs

– The POINTER could possibly be required to have the same attribute to help protecting the read-only
target

– This is disallowed for an entity with the PARAMETER attribute as it is not (required to be) address-
able

• A non-pointer dummy argument may not have the read-only attribute

– INTENT(IN) provides the same functionality
– combination with VALUE would be meaningless

• Applied to a POINTER, it would prevent assignment of a value since a read-only object is not allowed
on the lhs. of an assignment statement

– This can be very useful even if the TARGET is not read-only
∗ Data protection analogous to INTENT(IN) in procedures

– The POINTER should then be allowed to have a (USE-associated) TARGET with access specification
PROTECTED

– Allocation of the POINTER would only be meaningful if a SOURCE is provided since no (ordinary)
assignments would be allowed

– For dummy arguments the attribute would pertain to the target value and, hence, be orthogonal
to how the INTENT attribute applies to pointers

∗ The attribute would “cancel out” the POINTER attribute if combined with INTENT(IN)
· This specific attribute combination should still be allowed since it would make changes to
the INTENT straight forward without affecting the target protection

• The corresponding statement would make it possible to

– have data available through USE association behaving as PROTECTED in one scope and as PUBLIC
in another (as long it actually is PUBLIC)

– protect host associated variables in internal procedures and BLOCK constructs from being altered

• Makes it possible for the programmer to have large structures as read-only variables without risking
(as this is processor dependent) that the executable becomes excessively large (if it contains the whole
structure), while still maintaining the possibility to have “hard coded” data objects through usage of
PARAMETERs.

3

2.3 Proposed syntaxes 3 EXTENSIONS TO IMPORT STATEMENTS

2.3 Proposed syntaxes

2.3.1 Attribute name

• CONSTANT

– Used in the following

• PROTECTED

– Can cause confusion since a read-only variable may or may not be a PROTECTED variable from a
MODULE

2.4 Examples

REAL, CONSTANT :: const1 = 4.0, const2 = 5.0

REAL :: var1 = 7.3

REAL, CONSTANT, POINTER :: ptr

:

ptr => const1

ptr = 3.5 !Not allowed

ptr => const2

ptr => var1

ptr = 3.5 !Also not allowed

2.5 Comments

• A CONSTANT variable would always have a memory address

– A TARGET attribute would thus not alter the behavior, and could be implied (and hence omitted)

• Used as attribute for local variables in procedures the semantics could be different from that of
PARAMETERs in being “reinitializable” at every entry using (possibly non-scalar) specification expres-
sions

3 Extensions to IMPORT statements

3.1 Renaming

3.1.1 Proposal

Allow an import-rename-list in IMPORT statements as an alternative to the import-name-list.

4

3.2 Restrict the available host objects 3 EXTENSIONS TO IMPORT STATEMENTS

3.1.2 Rationale

• If different names are used for an entity in the implementation and in the host which the entity is
imported from, one have to rename the imported entities in the interface after copying the subprogram
header from the code of the implementation

• A renaming facility minimizes the work by writing each name association only once

• Adds clearness by working as a “conversion table” so that when looking at the code of the procedure
implementation it is transparent which names are renamed and which ones are the same

3.1.3 Proposed syntax

INTERFACE

IMPORT :: implemented-entity-name => host-entity-name

interface-body

END INTERFACE

3.2 Restrict the available host objects

3.2.1 Proposal

Allow IMPORT statements in internal and MODULE procedures and BLOCK constructs to restrict which named
entities (or possibly only data objects) that are accessible. The default behavior (i.e. without an IMPORT
statement) would be as at present, implying an IMPORT statement without an import-name-list (or an import-
rename-list).

3.2.2 Rationale

• Data hiding is an important way of simplifying writing (and compiling?) of programs

• This would be an alternative to having an external or module procedure and a unit calling it sharing
(a restricted set of) entities through a MODULE

– When different procedures need access to different entities a similar functionality can be quite
complex to achieve through USE associations

3.2.3 Comment

• It could be a desirable behavior that an IMPORTed variable with either the ALLOCATABLE or POINTER
attribute would “lose” these, but that they can be re-obtained by naming the variable in an ALLOCATABLE
or POINTER statement.

– Similar to the case that the variable was provided as an actual argument to the (possibly non-
internal) procedure without these attributes being explicitly provided in the declaration of the
corresponding dummy argument

– To hinder for instance unintentional respecification of bounds on assignment
– This behavior could possibly (?) be achieved by using the variable as an selector in an associate

construct

5

4 READ-ONLY COMPONENTS IN DERIVED TYPES

∗ The associate name would necessarily differ from the original variable name which would make
the host association lose some of its convenience

· When desired, the above proposed renaming feature will furnish this functionality

3.2.4 Additional proposal

Allow the import statement to take the form

IMPORT NONE

This would provide the possibility to have non-host-associated procedures with explicit interfaces without
the need for a separate MODULE to “wrap” the procedure. This will lead to increased security and less writing
when no host associations are needed and it is judged that a MODULE is not strictly necessary.

3.2.4.1 Comment

• This would be the default behavior for INTERFACE blocks

4 Read-only components in derived types

4.1 Proposal

A method to make read-only access possible for a component in a derived type

4.2 Rationale

• At present “get and set” methods must be used in conjunction with a PRIVATE component attribute to
obtain a read-only behavior

– The “set” method would have to be PRIVATE in the scope(s) in which the component should have
read-only access

4.3 An example

TYPE [[,type-attribute-list] ::] type-name [(type-parameter-name-list)]

:

type-name , PROTECTED :: component-declaration-list

:

END TYPE [type-name]

4.4 Comment

• Basically adding the PROTECTED attribute to the presently allowed access-spec
in component-attribute-spec-list

6

5 EXTENSION TO THE IF STATEMENT

5 Extension to the IF statement

5.1 Proposal

Extend the IF statement to allow for specification of evaluation order of the logical expressions. Alternatively,
new logical operators that guarantee short-circuit evaluation of AND and OR can be added to provide an
equivalent (and more general) mechanism.

5.2 Rationale

• Having the possibility to perform short-circuit evaluation in IF constructs will at times significantly
simplify the code, and also make it more clear

– It is not possible to reach an ELSE block and/or ELSEIF block(s) if one must use nested IF
constructs to ensure that evaluation of the logical expressions are done in the correct order

• Short-circuit operators, although more general and flexible, might be of limited importance outside IF
constructs

– In this case the extension to the IF statement may be a better solution

5.3 Proposed syntaxes

5.3.1 Alternative IF statement syntax

[ELSE] IF (logical-expr 1) [op-token (logical-expr 2)...] THEN

where op-token is either AND or OR.

5.3.1.1 Comments

• op-token is not an operator per se, rather a part of the IF statement, and should therefore not have
the dots on each side

• A natural extension to the present IF statement in that op-token , in the case of AND, merely represents
“THEN; IF”

• The same extension may be allowed for DO WHILE loop statements:
DO WHILE (logical-expr 1) [op-token (logical-expr 2)...]

5.3.2 Additional operators

logical-expr1 .ANDTHEN. logical-expr2

logical-expr1 .ORELSE. logical-expr2

7

5.4 Examples with IF constructs 5 EXTENSION TO THE IF STATEMENT

5.3.2.1 Comment

• The proposed operators should be available for general logical expressions (not limited to those in IF
statements)

– How useful this will be is questionable and therefore the extended IF statement is preferred here

5.4 Examples with IF constructs

In the below block of code it is necessary to add an extra IF construct when expr2 can only be evaluated if
expr1 returns .TRUE.

lvar = .FALSE.

IF (logical-expr1) THEN

IF (logical-expr2) THEN

lvar = .TRUE.

END IF

END IF

IF (lvar) THEN

:

ELSE

:

This could however, using the proposed syntax, be vastly simplified into

IF (logical-expr 1) AND (logical-expr 1) THEN

:

ELSE

:

Similarly, in the case that the op-token above was OR it would be equivalent to the following block of code:

lvar = .FALSE.

IF (logical-expr1) THEN

lvar = .TRUE.

ELSEIF (logical-expr2) THEN

lvar = .TRUE.

END IF

IF (lvar) THEN

:

ELSE

:

8

7 NEW INTRINSIC PROCEDURES

6 Additional operator symbols

6.1 Proposal

Extend the set of possible operator symbols that can be used for user-defined operators to include some, or
all, of the F03 special characters. Allowing composites/aggregates of the added characters and the defined
operator symbols should be considered

6.2 Rationale

• This significantly enhances the expressiveness of the language

6.3 Comments

• At least the following special characters should be considered: \ ~ ^

• Would it be possible to include the colon (:) as a symbol for using in an operator definition?

– It has no other use in the execution section of a program (?)

7 New intrinsic procedures

7.1 A PRINT function

7.1.1 Proposal

Add a function for converting scalar numeric variables to character representation

7.1.2 Rationale

• At present this must be done through a WRITE statement which can be somewhat inconvenient when
building a character string by concatenation

– Must write numbers to a temporary character variable and concatenate sequentially using the
TRIM function

• Such a function should return the shortest possible string containing the number to be converted,
optionally using a format specifier

– Equivalent to if TRIM was applied to the string

7.1.3 Proposed syntax

PRINT(numeric-expr [,fmt-spec])

where numeric-expr is a scalar expression of numeric type, and fmt-spec is an ordinary Fortran format
descriptor which may be an asterisk or, equivalently, may be omitted. A field width in the descriptor is
always ignored and is allowed to be and asterisk or a question mark, and the same goes for a repeat count as
only a single numeric data entity is allowed

9

7.2 A function for testing sign 7 NEW INTRINSIC PROCEDURES

7.1.3.1 Comments

• Should the type of numeric-expr be limited to only intrinsic ones?

• Possible to also allow arguments of CHARACTER type?

– Functionality?

7.1.4 Example

PRINT *, ’Here comes a number! ’//PRINT(3.14,’(F4.2)’)// &

’, and this is the same number in scientific format’//PRINT(3.14,’(ES7.2)’)

7.1.5 Addition: Allow array arguments

It could be allowed to provide array arguments to the function and an additional separator argument, a scalar
character expression giving the separator between the array elements. For instance:

’This is a list of ’//PRINT(size(v))//’ numbers separated by “_”:’//PRINT(v,*,’_’)

where the format specification asterisk defaults the formatting.

7.2 A function for testing sign

7.2.1 Proposal

Add an elemental function for testing the sign bit of (intrinsic) numeric types, returning a logical value
corresponding to the sign

7.2.2 Rationale

• Often it is necessary to know the sign of a value (examples should be unnecessary), and so a simple
function to test the sign bit of a numeric value should be available

– It would be faster and more explanatory than comparing to zero
– Checking the sign bit explicitly is possible using BTEST, but not portable as the interpretation of

bits is processor dependent ([2])
∗ The sign bit of integers are typically the last bit, requiring the slightly awkward

syntax BTEST(I,BIT_SIZE(I)-1)

∗ If this is to be done with REALs, the TRANSFER intrinsic must be used (?) producing even more
cryptic code

• For COMPLEX the result should be a 2 element rank 1 array corresponding to the sign of the real and
imaginary components

– If the sign of only one component is desired that is easily achievable through pseudo-component
qualification

10

8 EXTENSIONS TO INTRINSIC PROCEDURES

7.2.3 Proposed syntax

• STEST(X)

– Resembles BTEST
– Short, but the meaning may not be obvious
– Used in the following

• TEST_SIGN(X)

– More explanatory
– Somewhat lengthy

7.2.4 Proposed return value

• .TRUE. if the value is negative (i.e. sign bit is set) and .FALSE. otherwise

– Same as if BTEST was used for integers
– STEST(0) will return .FALSE. which is common in languages where where numeric values can be

used interchangeably with logical values (if existent)
∗ Signed zeros will return the values according to their signs

7.2.5 Examples

In an iteration using the logarithm for computing the relative difference between two consecutive values

DO WHILE (STEST(var_1) .EQV. STEST(var_2)) AND (LOG(var_1/var_2) .GT. tol)

:

where the syntax proposed in section 5 has been used. To test if two complex numbers are in the same
quadrant would amount to

ALL(STEST(Z1) .EQV. STEST(Z2))

8 Extensions to intrinsic procedures

8.1 Extend the FINDLOC function

8.1.1 Proposal

Allow a POINTER argument as an alternative to VALUE. The function result should be the vector of subscript
positions identifying the element associated with the POINTER. The argument associated with the POINTER
argument must be a scalar pointer.

11

9 INITIALIZATION

8.1.2 Rationale

• When a (scalar) pointer is associated with an array element there is no way of easily determining the
indices of the element besides testing the status of ASSOCIATED for each array element

– an intrinsic implementation could be much more efficient since it’s probably possible to go “the
opposite way” because the memory addresses of the POINTER and the array elements are known
to the program

• The ASSOCIATED function cannot be used in testing for the whole array du to the semantics of that
function

8.1.2.1 Comment

• It may perhaps seem odd to have this situation in the first place, but it occurs for instance when having
two-way connectivity between elements (objects) and nodes (objects) in a finite element program

9 Initialization

Below are some proposals regarding the initialization of values to variables in procedures. There might be
a more far-reaching meaning attached to the word “initialize” when used in relation with Fortran, possibly
regarding if it is possible to accomplish at compile-time or not. Here, though, it is used in the meaning “the
first/initial value” a variable has when referenced in the executable part of a (sub-) program.

9.1 Dummy arguments

9.1.1 Proposal

Allow initialization for dummy arguments with INTENT(OUT), and for any OPTIONAL argument with the effect
that a missing argument is initialized to the assigned value. The behavior will differ from other (explicit)
initializations by not having an implied SAVE attribute.

9.1.2 Rationale

• As initialization is not presently allowed for dummy arguments the proposed feature will not break any
existing (standard conforming) code

• Dummy arguments with INTENT(OUT) are often used to hold diagnostic information, such as a status
indicator, which usually have some default value in the sense that if nothing exceptionally happens it
should assume this value

– At present this value must be assigned through an ordinary assignment which may happen any-
where in the execution part

– Performing this initiation to a default value (not to be confused with default initiation!) in the
declaration makes it clear which value that is

12

9.2 Regarding implied SAVE 9 INITIALIZATION

• An OPTIONAL argument can be used to add some parameter to a procedure that otherwise take a
default value, or to hold diagnostic information (cf. e.g. with the STATUS argument of many intrinsic
SUBROUTINES)

– Frequently there exists a local variable that will be assigned the value of the optional argument,
in the case that the latter is present

– If it was possible to assign the OPTIONAL argument a default value when missing, this “duplicate”
local variable is not needed as the dummy argument would always be defined

• In neither of the two cases an implied SAVE attribute makes any sense

• For an argument with both OPTIONAL and INTENT(OUT) specified the dummy is initialized even if it is
associated with an actual argument

– as if the INTENT(OUT) behavior takes precedence over OPTIONAL

9.1.3 Comment

• When a dummy argument has a default value as proposed, it should be allowed in a restricted (also
called general) specification expression

9.2 Regarding implied SAVE

The present rules about (explicit) initialization of variables and the implied SAVE attribute, as well as default
initialization, creates considerable confusion among many Fortran users (and not only the newbies!), which
is apparent from the many lengthy Internet forum discussions. Presented below are two alternatives to help
sort this out.

9.2.1 Alternative 1

Add a constraint in the standard that compilers must be able to issue a warning or error (depending on
the option/switch) for any initialized variable (that implicitly acquires the SAVE attribute) that do not have
the SAVE attribute. It must be considered good programming practice to explicitly declare all variables that
are saved with the SAVE attribute, especially to assist (code) readers not familiar with all fine details of the
language. This would be the same behavior as for default initialized module variables at present (at least up
to F03).

9.2.2 Alternative 2

Add a constraint in the standard that compiles must have an option to choose whether or not to add an
implicit SAVE attribute to non-module variables, so that this attribute must be added explicitly to obtain the
present behavior. This is the more radical alternative, but should be the preferred as it is the most logical
behavior (judging by most forum posts from users unaware of the present behavior) as the SAVE attribute
actually exists in the language. As the present behavior would still be available through the proposed option,
all existing code would still be compilable, and it could be combined with another option to issue a warning
when unsaved variables are initialized in the declaration in order to help the transition for users that are
accustomed to the now standard behavior.

13

9.2 Regarding implied SAVE 9 INITIALIZATION

9.2.2.1 Comments

• The F08 behavior that all module data objects (implicitly?) have the SAVE attribute seems logical since
a MODULE is not called in the sense that a subprogram is.

– As a mental construct, a MODULE could be considered as existing from the program initiation, but
only accessible when being USEd; while a subprogram (at least a RECURSIVE one) is “instantiated”
each time it is called.

9.2.3 Additional proposal to alternative 2

If SAVE is not implied by initialization one could allow restricted expressions (termed general specification
expressions in [2]) to be used for value initializations

• A larger class of variables can then be initialized without using an assignment expression

– Fewer variables will be in a “undefined” state

• Encourages a programming style where variables that is initializable by only input arguments and
possibly (valid) functions of such ones, instead of deferring the initialization to the point where the
variable is actually needed

– Makes it easier to understand a program
– Deferring the initialization may also be error prone

∗ If the arguments used for computing it is not declared with INTENT(IN)
∗ If it is forgotten all together so that the value is undefined
∗ A programming language should discourage this

– It makes it clear which values belong to the “problem definition” of the subprogram
∗ Analogous to how a mathematical problem is stated, e.g. initial value problems and boundary
value problems

• This would allow (among several useful things) more straight forward usage of automatic arrays (as
an alternative to ALLOCATABLE ones) when the extents are given by expressions that depend on the
value(s) of already declared variables

SUBROUTINE sub(a,b)
:

INTEGER :: c = F(a,b), d = G(a,c), e = H(b,c)
REAL, DIMENSION(d-c,d+e) :: array

:
END SUBROUTINE sub

– It makes the relation between the variables and the array extents apparent, in addition to being
much more compact than having to initiate and allocate the local variables in the execution part

– If, in addition, c, d and e were allowed to be declared with the CONSTANT attribute (cf. comment
in section 2) they would serve merely as place holders for the expressions

• The legacy behavior, with only initialization expressions allowed for value initialization, would be
regained if the variable was declared with the SAVE attribute

14

9.3 Automatic arrays 9 INITIALIZATION

9.3 Automatic arrays

9.3.1 Proposal & rationale

Allow scalar initialization expressions (or scalar restricted expressions if the previous proposal in this section
is approved) to be used to initialize automatic arrays since the expression would be compatible with the
variable regardless of the array extents. The same would probably be possible for default initialization of
array components in derived types with extents given by LEN type parameters.

9.3.2 Example

FUNCTION foo(a,b)

INTEGER, INTENT(IN) :: a,b

REAL, DIMENSION(a,b) :: c = 1.

:

END FUNCTION foo

9.3.3 Additional proposal 1

Allow a MOLD argument in the DIMENSION attribute of an automatic array instead of explicit specification of
the array extents, similar to how allocatable arrays may be ALLOCATEd using a MOLD argument. The array
used as MOLD must be a local or an explicit or non-OPTIONAL assumed shape dummy argument array that was
declared before. Functionality similar to the SOURCE argument of ALLOCATE would be to specify the initial
value of the automatic array to be equal to the array given as the MOLD argument. Example:

FUNCTION foo(arr)

INTEGER, DIMENSION(:,:), INTENT(IN) :: arr

REAL, DIMENSION([MOLD =] arr) :: temp [= arr]

:

END FUNCTION foo

9.3.3.1 Comments

• If an automatic object is initialized using the with the same array as specified as the MOLD object, it
could be allowed to use an asterisk instead since it would be redundant

– This is analogous to the F08 syntax for PARAMETERs

9.3.4 Additional proposal 2

Require that compilers have (at least) an option to allocate automatic arrays in the pool/heap/? if they are
too large for the stack. Put differently: require safe memory allocation for automatic arrays.

15

10 EXTENSION TO THE INTENT ATTRIBUTE

10 Extension to the INTENT attribute

This feature proposal is more or less “snipped” from the Feature Proposals page at fortranwiki.org, and was
proposed there by the user Max.

10.1 Proposal

Allow INTENT(NONE) to signal a dummy dummy-argument.

10.2 Rationale

• This sounds silly at first, but it is already used in some intrinsic procedures, such as the MOLD argument
of the TRANSFER statement

• Generally, it is useful for aiding generic-to-specific procedure mapping, as in the TRANSFER example

• It could also be used to flag intentionally-unused arguments, which are occasionally useful

– This is for instance the case when commenting lines of code, i.e. not using some variables, for
debugging purpose, while not wishing all the verbose of the compiler saying “this or that has been
declared but not used”

10.3 Additional extension

In the case that specification expressions are allowed in value initializations (see section 9.2.3) dummy argu-
ments with INTENT(NONE) could be allowed used in the specification part still, and usage would be prohibited
only in the execution part.

10.3.1 Comment

• This might not actually be an additional extension, as it is analogous to how the MOLD argument is used
in the TRANSFER function, but rather an illustration of how the extension could be used.

10.3.2 Example

Often it is desired to use a specific (typically higher than default) precision and/or range in the internals of
a procedure, such as when numeric iterations are performed or when intermediate results are expected to be
much larger than the final result.

FUNCTION func(a,b,c)

REAL(lp) :: func

REAL(lp), INTENT(NONE) :: a,b !low precision

INTEGER,INTENT(IN) :: c ! c > 0 ^ |LOG(c)| >�> 0

REAL(hp) :: a_hp = a !or REAL(a,hp)

REAL(hp) :: b_hp = b !or REAL(b,hp)

:

func = (a_hp**c + b_hp**c)**(1./c)

END FUNCTION func

16

http://fortranwiki.org/fortran/show/INTENT%28NONE%29
http://fortranwiki.org/

11 EXTENSION TO ASSIGNMENT STATEMENTS

11 Extension to assignment statements

11.1 Proposal

Allow a special character to be used in place of the designator for the variable on the l.h.s. of an assignment
statement in the expression on the r.h.s.

11.2 Rationale

• Explicates that one of the arguments/primaries is being changed

• Eases optimization (in obvious ways)

– These optimizations are hopefully done in all major Fortran compilers, but it may still be useful
as a crutch for those whose analysis capabilities are very limited

• When used with “reallocation on assignment” it could be required that the any pointers to the object
was kept intact

• If the variable designator is long it saves space and enhances clearness

• Makes it less error prone to duplicate expressions where the assignment variable designator is a sub-
object and the sub-object qualifiers differ among the expressions

11.3 Proposed character

• ~

– Used for the exact same purpose by Burroughs for ALGOL
– Should be reserved to be used as an operator symbol (cf. with section 6)

• @

– Reference to the variable at the l.h.s. of the assignment sign
– The symbol is not used in Fortran and is not easily confused with any operator

11.3.1 Examples

Listed below is three assignments with plausibly increasing difficulty of optimization:

idx = @ + 5

arr(3:idx) = @*2

arr = [@, -@]

from a trivial case (I hope!), via an array operation on an array section, to a reallocation where, when the
proposed syntax is used, it should be obvious to the compiler that an optimization should be attempted.

The following lengthy assignments

17

13 QUALIFICATION OF TEMPORARY OBJECTS

array(i,j)%comp1(k,l)%value1 = ABS(array(i,j)%comp1(k,l)%value1 &

- SQRT(array(i,j)%comp1(k,l)%value1))

array(i,k)%comp1(j,l)%value2 = ABS(array(i,k)%comp1(j,l)%value2 &

- SQRT(array(i,k)%comp1(j,l)%value2))

would be written simply as

array(i,j)%comp1(k,l)%value1 = ABS(@ - SQRT(@))

array(i,k)%comp1(j,l)%value2 = ABS(@ - SQRT(@))

The chance of producing a typo if the second statement is made by copying the first statement and just
altering the subscripts, is practically eliminated.

12 Object pseudo-components

Allow intrinsic inquiry functions to be accessed through pseudo-component syntax when no optional argu-
ments are needed (along the same lines as the F08 %re and %im pseudo components for COMPLEX variables)

12.1 Array pseudo-components

• array%ubound

• array%shape

• array%allocated

12.2 String pseudo-components

• string%len

• string%len_trim

13 Qualification of temporary objects

13.1 Function-result qualification

13.1.1 Proposal

Allow referencing an array element or a type component from a function result without storing it to a
temporary variable first.

18

13.1 Function-result qualification 13 QUALIFICATION OF TEMPORARY OBJECTS

13.1.2 Rationale

• According to [1] “An array section, a function reference, or an array expression in parentheses must not
be qualified by a subscript list.”

– and likewise for a component designation in the latter two cases(?)

• This leads to the need for temporary variables that may not be needed for anything besides storing the
result in order to allow access to an array element or type component

– For various reasons such temporary variables should be allocatable and so would need to be
deallocated manually (if they are large) after use unless they go out of scope

– Alternatively an ASSOCIATE block can be used, and this is probably a better alternative, but the
syntax is still elaborous if only a single reference is needed

• To automatically let the compiler (i.e. the “system”) deal with this should be straight forward as the
temporary objects are created and destroyed automatically as needed

13.1.3 Proposed syntax

array_valued_fun(arg-list)|[subscript-list]

array_valued_fun(arg-list)|(subscript-list)

derived_type_valued_fun(arg-list)|%component-spec

where the pipe character is used to “pipe the result” entity to a (hidden) temporary variable that can be
qualified as usual.

13.1.3.1 Comment

• In the first line the proposed new array qualifier syntax is used

13.1.4 Example

If a procedure returns a derived type which has a bound function a function composition can be performed
which is not otherwise possible without using explicit temporary objects. For instance:

c = fun1(arg-list1)|%tb-fun2(arg-list2)|%tb-fun3(arg-list3)

would be equivalent to the following code:

a = fun1(arg-list1)

b = a%tb-fun2(arg-list2)

c = b%tb-fun3(arg-list3)

19

13.2 Array constructor qualification 14 NEW SYNTAX FOR ITERATED DO LOOPS

13.2 Array constructor qualification

13.2.1 Proposal & rationale

• In the same manner as for function results it should be possible to use the same syntax for array
constructors

• Effectively allow so-called linear indexing, i.e using a single subscript to access an array object

– even more versatile since it is not limited to a single, whole array

• For relatively simple constructors and subscript there is no need to make a temporary array copy

– Some of the functionality can be obtained using storage association, but
∗ arbitrary data objects cannot be combined,
∗ it is limited to static variables, i.e. excludes ALLOCATABLEs, function results and constants,

and
∗ is generally advised against

13.2.2 Proposed syntax

[ac-value-list]|[subscript-list]

[ac-value-list]|%component-spec

14 New syntax for iterated DO loops

14.1 Proposal

Add a new syntax for declaring a DO statement loop-control that follows the pattern of modern Fortran. This
syntax will be further enhanced with subsequent syntax proposals

14.2 Rationale

• The “regular” DO construct index/control specification has a completely different form than the modern
Fortran constructs

– A comma separated list specifying the control variable (instead of a triplet)
– a label (legacy from non-block DO)
– no parenthesized expression or specification

• It also lacks some additional features of the DO CONCURRENT and FORALL index specifications

• A consistent notation should be pursued

– extremely helpful when learning the language

20

14.3 Proposed syntax 14 NEW SYNTAX FOR ITERATED DO LOOPS

14.3 Proposed syntax

[do-construct-name :] DO [,] FOR([type-spec ::] index-spec-list &

[, scalar-mask-expr])

:

END DO [do-construct-name]

This matches the DO CONCURRENT syntax exactly, with the obvious difference in the “DO-keyword.” However,
if more than one index variable is specified there must be a rule for determining in which order the indices
are incremented, in contrast to the case for a DO CONCURRENT construct where this does not matter. The
following rule is suggested:

The leftmost index declared is incremented first, then the second leftmost and so on.

This is consistent with how the subscript order value increases in array element order which have a pleasant
implication when looping through arrays.

14.3.1 Example

The following loop

DO j=1,m

DO i=1,n

IF (i.LT.n .AND. j.LT.m) THEN

a[i,j] = a[i,j] + a[i+1,j+1]

END IF

END DO

END DO

could be written much more compactly as

DO FOR(i=1:n, j=1:m, i.LT.n .AND. j.LT.m)

a[i,j] = a[i,j] + a[i+1,j+1]

END DO

In both loops the indices are specified in the order that should(?) achieve the best performance, but whereas
for the present syntax the outermost construct (usually declared first?) must have the last index and the
innermost construct the first one, the proposed syntax declares the indices in the same order as they (should!)
appear in the array qualifier. This is perhaps a minor detail (that some compilers automatically mend), but
in the writers experience, at least beginners and those that are not aware of this, tend to declare the nested
loops “in the reverse order.” Of course it would also be possible to maintain the structure of the first code
block, only changing the loop-control parts to the new syntax, as shown below

DO FOR(j=1:m)

DO FOR(i=1:n)

:

21

14.4 Additional extensions 15 ARRAY OF POINTERS TO SCALAR ENTITIES

14.3.2 Comments

• The proposed syntax makes it easy to switch between a CONCURRENT and regular DO by just changing
the token, as opposed to having to respecify the whole statement

• Compared to the present “legacy” DO construct it also adds the possibility

– to declare multiple index/control variables,
– their type parameter, and
– for a mask expression

• The token FOR is widely used for this kind of loop

• In the last code block it could be possible to include the masking expression since the loop control
variables would be equally well known to the program as in the middle code block.

14.4 Additional extensions

14.4.1 Modern implied DO

The modern triplet syntax could also be used in an implied DO specification, with the obvious candidate
syntax

(do-value-object-list , do-variable = int-expr :int-expr [:int-expr])

where the do-value-object-list can be another implied DO specification or a list of values or objects (with
the same rules as for the present types of implied DO specifications).

15 Array of pointers to scalar entities

15.1 Proposal

Add an attribute to declare that a pointer’s target(s) is (are) scalar. Specifically, in the case that a DIMENSION
or RANK attribute is given, it is associated with the pointer structure itself.

15.2 Rationale

• Often it is desired to have an array of pointers pointing to scalar entities, as opposed to an array pointer
pointing to an array (subsection)

– For example individual elements of an array that are impossible to designate using a subscript
triplet

• At present this can be done by creating a derived type containing a POINTER component and the declare
an array of this type.

– The dummy derived type that has to be made complicates the code unnecessary, and can be
confusing

22

15.3 Proposed syntax 15 ARRAY OF POINTERS TO SCALAR ENTITIES

– This scheme introduces an unnecessary extra component identifier to access the TARGET
∗ The argument is analogous to how type embedding results in a more awkward syntax compared

to type extension
– Typically the TARGETs will be derived types themselves, and then accessing the components can

become quite lengthy

• Pointers declared with this attribute may not be associated with (unnamed) memory locations, only
with TARGET variables

• A pointer structure as proposed here will be referred to as a pointer array, whereas a a pointer to an
array will be referred to as an array pointer

15.3 Proposed syntax

15.3.1 Attribute name

• SCALAR

– An established Fortran token (it is also used as a keyword for in the inquiry function ALLOCATED)
– Used in the following

• SCALARTARGET

– More clear about the meaning, but somewhat lengthy
∗ The meaning should be clear enough with only SCALAR since a POINTER necessarily has a
TARGET

– The literal meaning of the word implies a single target which has to be interpreted as to pertain
to each element of an array

• SCALARPOINTER

– Should replace the POINTER attribute and any of the above all together
– Signals in a clear way that this is not the standard POINTER (by replacing it)

15.3.2 Examples of declarations

A special attribute list, the scal-attr-list , is used in the following examples which differs from any other
valid attribute list only in that it cannot include DIMENSION (or RANK). This is intentional to emphasize the
the array cases which are the important ones here.

type-spec , [scal-attr-list ,] , POINTER, SCALAR :: variable-declaration-list

which is no different than the present scalar pointer declaration apart from the SCALAR attribute which is
allowed for consistency. Next the array cases:

type-spec , [scal-attr-list ,] , DIMENSION(colon-list), POINTER, SCALAR :: var-decl-list

type-spec , [scal-attr-list ,] , RANK(rank), POINTER, SCALAR :: var-decl-list

Specifically, the scal-attr-list may include an ALLOCATABLE attribute, which naturally pertains to the
pointer structure.

23

15.4 Examples 16 IMPLICIT COMPATIBILITY INHERITANCE FOR DERIVED TYPES

15.4 Examples

TYPE :: real_ptr

REAL, POINTER :: num

END TYPE real_ptr

:

REAL :: a

TYPE(real_ptr), DIMENSION(n) :: real_ptr_arr

REAL, DIMENSION(n), POINTER, SCALAR :: real_ptrs

:

real_ptr_arr(1)%num => a

real_ptrs(1) => a

The num component lengthens the statement and it seems artificial when what is desired is just an array of
(pointers to) REALs. Likewise, if the derived type POINTER component was a derived type, the actual TARGET
component would have to be preceded by the actual POINTER component name, and this is easily forgotten
when the “path” becomes long (which, almost ironically, may be the result of the very issue addressed here).

15.5 Comments

• When a POINTER is declared with both the SCALAR and DIMENSION (or RANK) attribute, it cannot have
the CONTIGUOUS attribute

• When a derived type object has scalar data and/or procedure POINTER components, if this object is
array-valued a reference to such components will be an array of scalar pointers

16 Implicit compatibility inheritance for derived types

16.1 Proposal

An attribute to declare a component of a derived type to hold the “main data.” The derived type should
(implicitly) inherit all applicable/compatible (and available) procedures and operators, both intrinsic and non-
intrinsic, from this component. For a composite derived type, the remaining components could be considered,
in a broad sense, as “meta data.”

This particular component will be referred to as the data-component from here on.

16.2 Rationale

• Often it is desirable to group data and meta data together in a composite type; or

• to make special cases of intrinsic arrays (e.g. rank 1 arrays of extent 3 for spatial vectors) which is used
frequently.

– It is also an appealing way to gather data objects to make arrays of such types, instead of creating
higher rank and/or extent arrays.

24

16.3 Proposed syntax 16 IMPLICIT COMPATIBILITY INHERITANCE FOR DERIVED TYPES

• To operate on the data-component one must use component syntax, i.e. variable%component, but
that is neither efficient (when programming), nor does it have an appealing look

– the alternative is then to write type-bound procedures for all needed procedures and operators,
which can be a considerable amount of work

• The type can be used anywhere the data-component otherwise could be used

• The result of a usage of the type where it is not otherwise applicable, but where the data-component
is, is just the same as if the data-component was used specifically through component syntax

16.2.1 Comments

• The component can be of any type

– intrinsic or derived
– scalar or array

• There can be no more than one data-component in a type definition

• It could be beneficial in an implementation to store an array of a type containing a data-component in
a separate (parallel) array to optimize performance

16.3 Proposed syntax

16.3.1 Attribute name

• DATA

– Preferred as it underlines the component’s role of the component holding the Data

• PASS

– To signal that the particular component is passed, implicitly, to any procedure (including those
associated with an operator) not specifically written for the type.

– May cause confusion with the PASS attribute of a type-bound procedure in that the latter passes
the whole entity, which may well be a composite

16.3.2 An example

TYPE [[,type-attribute-list] ::] type-name [(type-parameter-name-list)]

:

type-name , DATA :: component-declaration-list

:

END TYPE [type-name]

25

16.4 Examples of use 16 IMPLICIT COMPATIBILITY INHERITANCE FOR DERIVED TYPES

16.4 Examples of use

TYPE :: sqmat(n)

INTEGER, LEN :: n

REAL, DIMENSION(n,n), DATA :: mat

REAL, DIMENSION(n) :: eigvals

TYPE(vec(n)), DIMENSION(n) :: eigvecs

:

END TYPE sqmat

All intrinsic array procedures and operators, and in addition all available non-intrinsic with argument(s)
compatible with the mat component, will be applicable to an instance of the sqmat type. One might of
course define type-bound procedures in addition or as substitutes for one or more of the intrinsic ones as
usual.

TYPE(sqmat(3)) :: sqmat3

REAL, DIMENSION(3,3) :: a3by3array

sqmat3 = a3by3array*sqmat3

sqmat3 = SIN(sqmat3)

sqmat3%mat is first multiplied (in the standard element-wise manner) with a3by3array, and the resulting
3-by-3 array is assigned back to sqmat3%mat. The result is the same as if the mat component would be
explicitly specified each time sqmat3 is used. Then the intrinsic ELEMENTAL function SIN is applied to all
the elements of sqmat3%mat which is then assign back to the same array. Furthermore, the following two
statements are equivalent and they will both print a scalar which is the sum of all the elements of sqmat3%mat

PRINT *, SUM(sqmat3)

PRINT *, SUM(sqmat3%mat)

16.4.1 Comments

• The main thrust of this feature proposal is the inheritance of procedure and operator compatibility, not
the “syntactic sugar” of omitting the reference to (what is here called) the data-component explicitly

– Although there is just a principal difference between the two notions here, the difference will be
essential if extended to arrays, as discussed in [4]

• Specifically, the ASSIGNMENT(=) operator is, if it is defined for the data-component, implicitly inherited
from it, which is very convenient as it is not necessary to use a structure constructor as long as a specific
ASSIGNMENT procedure is not defined

– It should also be possible to use a derived type with a compatible DATA component in an assignment
statement, even when the types themselves are not the same

26

REFERENCES REFERENCES

References

[1] Michael Metcalf, John Reid and Malcolm Cohen, Modern Fortran Explained, OUP Oxford, Mar 24, 2011

[2] J. C. Adams et al., The Fortran 2003 Handbook: The Complete Syntax, Features and Procedures, Springer,
2009

[3] Fortran Language Reference Manual, Volume 1 - S-3692-51, Chapter 4. Data Types, docs.cray.com

[4] Espen Myklebust, Fortran Feature Proposals (– The complete set), 2013, PDF or XHTML

27

http://docs.cray.com/books/S-3692-51/html-S-3692-51/z970507905n9123.html
http://folk.ntnu.no/espenm/Fortran/Fortran_feature_proposals.pdf
http://folk.ntnu.no/espenm/Fortran/Fortran_feature_proposals.xhtml

	1 Access specification in USE statements
	2 Read-only variables
	3 Extensions to IMPORT statements
	4 Read-only components in derived types
	5 Extension to the IF statement
	6 Additional operator symbols
	7 New intrinsic procedures
	8 Extensions to intrinsic procedures
	9 Initialization
	10 Extension to the INTENT attribute
	11 Extension to assignment statements
	12 Object pseudo-components
	13 Qualification of temporary objects
	14 New syntax for iterated DO loops
	15 Array of pointers to scalar entities
	16 Implicit compatibility inheritance for derived types

