
Accelerated keyword

Alessandro Fanfarillo and Damian Rouson

fanfarillo@ing.uniroma2.it damian@sourceryinstitute.org

August 4th, 2015

Fanfarillo, Rouson Accelerated keyword August 4th, 2015 1 / 19



Introduction (to exascale)

In order to reach challenging performance goals, computer architecture will
change significantly in the near future.

The main limitations to performance growth have been identified as:

energy consumption

high degree of parallelism

fault resilience

memory size and speed

From the point programmer’s point of view, dealing with all these factors
means writing a more “hardware-aware” code.

Fanfarillo, Rouson Accelerated keyword August 4th, 2015 2 / 19



Energy consumption and its effects

Energy consumption is one of the most important limiting factor for
exascale computing.

Many and slower cores must be used in parallel in order to keep
energy consumption low.

Off-chip data transfers must be reduced as much as possible (energy
and technology reasons).

Memory has to expose enough bandwidth in order to feed all the
cores (memory wall).

In order to face all these effects, compute node’s architecture will expose
heterogeneous processing units, several levels of memory (based on
different technologies) and as much integration as possible.

The more you will tell the compiler, the higher performance you will get.

Fanfarillo, Rouson Accelerated keyword August 4th, 2015 3 / 19



Exascale compute node

Fat and thin cores.

Two kinds of memory (fast and slow).

Integrated NIC (lower power, higher message throughput).

Coherence protocol limited to small groups of cores.

Image taken from Abstract Machine Models and Proxy Architectures for Exascale

Computing

Fanfarillo, Rouson Accelerated keyword August 4th, 2015 4 / 19



Intel Xeon Phi Knights Landing (KNL)

In 2014, NERSC announced that its next supercomputer, named “Cori”,
will be a Cray system based on a next-generation Intel MIC architecture;
this machine will be a self-hosted architecture, neither a co-processor nor
an accelerator.

Features Edison (Ivy-Bridge) Cori (Knights-Landing)

Num. physical cores 12 cores per CPU 72 physical cores per CPU

Num. virtual cores 24 virtual cores per CPU 288 virtual cores per CPU

Processor frequency 2.4-3.2 GHz Much slower than 1 GHz

Num. OPs per cycle 4 double precision 8 double precision

Memory per core 2.5 GB Less than 0.3 GB of fast memo-
ry per core and less than 2 GB
of slow memory per core

Memory bandwidth ≈ 100 GB/s Fast memory has ≈ 5× DDR4

Fanfarillo, Rouson Accelerated keyword August 4th, 2015 5 / 19



Near memory on KNL

On KNL, the “near” memory (fast, on-package memory), can work in 3
modes:

Cache mode: the near memory works as a big L3 cache

Flat mode: the near memory acts as a separate memory. The
programmer has to allocate specifically into the fast memory.

Hybrid mode: Portions of the near memory acts as L3 cache.

The mode is selected at system boot time.

Rumors on Internet tell that Intel is tweaking its compilers so Fortran can
allocate into the near memory using the flat addressing mode.

Fanfarillo, Rouson Accelerated keyword August 4th, 2015 6 / 19



Parallel Programming Models for Exascale

On an exascale machine, programs and programmers will deal with:

heterogeneous processors

high degree of parallelism

unpredictable behaviours (faults and voltage/frequency throttling)

The high dinamicity exposed by such architectures will certainly require
new parallel programming models.

PGAS languages are good candidates for dealing with highly dynamic
parallel algorithms.

Fanfarillo, Rouson Accelerated keyword August 4th, 2015 7 / 19



Fortran and Exascale

Fortran 2008 has already two features that can be used for improving
performance on an exascale node: DO CONCURRENT and coarrays.

DO CONCURRENT tells the compiler that the loop is safe to
parallelize/vectorize. Such statement can also be expressed using
directives, defined by OpenMP or by a specific compiler.

On KNL, using vectorization is critical for getting high performance, but
an efficient vectorization requires more conditions to be satisfied.

Non-aligned data are more expensive to load than aligned, padding can
also play a significant role in getting better performance.

Coarrays provide the PGAS support suitable for exascale nodes.

Fanfarillo, Rouson Accelerated keyword August 4th, 2015 8 / 19



Accelerated keyword

Providing a way to declare a specific variable as “suitable for acceleration”
would certainly help the compiler to set the best conditions for an effective
execution.

On KNL, declaring a variable as “accelerated” would tell the compiler to
allocate space in the near memory when working in Flat Mode or Hybrid
Mode.

Such declaration would also set all the conditions (data alignment,
padding, unitstride, etc) for getting the best performance.

Having such expressivity inside the language would also allow to merge the
concept of “computational variable” with the existing parallel features like
coarrays and do concurrent.

Fanfarillo, Rouson Accelerated keyword August 4th, 2015 9 / 19



Language attribute vs. directive

Why should I use a language keyword instead of a directive?

There are several good reasons:

The compiler (which knows the architecture) can pick the right set of
optimizations to apply to the “special” variable (think about
heterogeneous execution).

The programmer is relieved from expressing architecture-related
concepts.

A directive could be hard to integrate with language features
(coarrays).

Fanfarillo, Rouson Accelerated keyword August 4th, 2015 10 / 19



Current heterogeneous architecture

Currently, accelerators and CPUs reside on different devices.

Anyway, they have the same memory address space and memory transfers
can be performed transparently.

We used such architecture for simulating an exascale node and test the
bahaviour of the accelerated keyword combining coarrays and CUDA.

Fanfarillo, Rouson Accelerated keyword August 4th, 2015 11 / 19



Managed memory and Zero-copy memory in CUDA

Zero-copy memory was introduced in CUDA 2.0.

Such mechanims allows to “pin” some host memory and make it accessible
to the GPU directly.

The transfer from/to host/device is started when the memory is accessed.

Managed memory has been introduced in CUDA 6.0.

It allows to allocate a portion of memory completely managed by the
CUDA runtime system.

The transfer is totally transparent to the user and happens immediately
before the launch and after the kernel termination.

Managed memory is much more complex than zero-copy and it can
improve temporal and spatial locality.

Fanfarillo, Rouson Accelerated keyword August 4th, 2015 12 / 19



Accelerated keyword in GNU Fortran

In order to use coarrays and CUDA we modified GFortran for allocating
CUDA memory when a (allocatable) variable is declared as accelerated
(passing through OpenCoarrays).

Since OpenCoarrays is based on MPI one-sided, we are implementing a
one-sided device-to-device communication using native CUDA features.

Some MPI implementations, like OpenMPI, are CUDA-Aware and can be
used for this purpose as well.

Implementing the “accelerated” keyword in GFortran took me 3 hours.

Fanfarillo, Rouson Accelerated keyword August 4th, 2015 13 / 19



SUMMA Algorithm

SUMMA stands for Scalable Universal Matrix Multiplication Algorithm.

It is particularly suitable for PGAS languages because of the one-sided
nature of the transfers involved.

Instead of performing inner products, SUMMA performs n partial outer
products.

With coarrays no multicast is required; each image can get the
row/column needed with a one-sided operation.

Fanfarillo, Rouson Accelerated keyword August 4th, 2015 14 / 19



Machine Description and Test Configuration

We have run the tests on Eurora, a heterogeneous cluster provided by
CINECA, equipped with Tesla K20 and Intel Xeon Eight-Core E5-2658.

We used the pre-release GCC-6.0, with OpenCoarrays 0.9.0 and
IntelMPI-5.

IntelMPI is the best MPI implementation provided on Eurora.

CublasDgemm provided by Nvidia has been used as computational CUDA
kernel.

The test has been repeated 10 times using a matrix of size 4096x4096.

Fanfarillo, Rouson Accelerated keyword August 4th, 2015 15 / 19



Results

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

2 4 8 16

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

GPUs

MPI
CAF_PIN
CAF_UM

Fanfarillo, Rouson Accelerated keyword August 4th, 2015 16 / 19



Test Conclusions

The integration of coarrays and accelerators can provide significant
speedup.

The current implementation of Managed Memory is not always better than
the usual zero-copy approach.

On systems with RDMA protocols (like Cray), Managed Memory does not
work well.

Nvidia claims that they will improve Managed Memory in the next CUDA
releases.

Fanfarillo, Rouson Accelerated keyword August 4th, 2015 17 / 19



Conclusions

A language attribute can be useful on any heterogeneous architecture:

It relieves the programmer from deeply knowing the architecture.

It allows to run the code in the most efficient way on different devices
(accelerated on CPU may have a different setting than on Intel MIC).

It does not substitute directives, it can live with them without
interfering.

It is easy to implement for compiler vendors.

Fanfarillo, Rouson Accelerated keyword August 4th, 2015 18 / 19



Thanks

Suggestions/Feedback/Questions?

Fanfarillo, Rouson Accelerated keyword August 4th, 2015 19 / 19


