
CAFe: A Unified PGAS Programming Model
for Heterogeneous Computing

Craig Rasmussen, Soren Rasmussen, William Dumas
University of Oregon

Matt Sottile, Galois Inc
Dan Nagle, NCAR

The Los Alamos Roadrunner Challenge — a forerunner
to tomorrow’s architectures?

• Roadrunner 2008

- hybrid design

- 6480 AMD Opteron dual-core processors

- 12,960 IBM PowerXCell accelerators

• Roadrunner presented a programming challenge

• Several teams were started to port important LANL apps to the IBM Cell

- essentially wrote applications entirely from scratch

• We wrote a Fortran source-to-source translator for algorithms using dense
arrays

- 29 X speedup

CAFe: Coarray Fortran Extensions for
Heterogeneous Computing

• Fortran is a parallel language. Fortran added coarrays for parallel computing
in 2008 (with additional features added in the 2015 standard).

- However, the coarray programming model does not support

- attached accelerator devices

- communication between distributed memory hierarchies

- remote execution of tasks

CAFe provides a unified parallel model —
not so when adding OpenMP/OpenACC directives

• Coarray Fortran has several parallel constructs

- process teams, synchronization, collectives, critical regions

- parallel loops (DO CONCURRENT)

- put and get of memory regions to/from remote processes, [] syntax

• Coarrays (or MPI) plus OpenMP/OpenACC have similar constructs

- However!

- a programmer must learn and use two separate parallel languages

- the two languages have different constructs to do the same thing

- the competing constructs are not compatible with each other

- num_gangs(), acc_malloc(), acc_memcpy_from_device_async()

- wait, reduction

CAFe adds three important concepts to parallel
Fortran

• Subimages

- A Fortran image (similar to an MPI process) may create one or more
subimages. A subimage could represent an attached accelerator device or a
cohort of threads running on a set of homogeneous cores.

• Explicit memory placement

- Coarray memory may be explicitly allocated and deallocated on a subimage
by its parent image.

- Provides memory affinity for NUMA shared memory multi-cores

• Remote execution and synchronization of tasks

- Tasks (functions or code blocks) may be executed on a subimage by its
parent image. Execution of these tasks may be synchronized with Fortran
2015 events.

CAFe syntax editions (shown in light blue)

• Obtain access to an accelerator device

 dev1 = get_subimage(dev_id, device_type=CUDA, err=)

• Memory allocation (also affinity) and deallocation on a device

 allocate(A(N)[*], subimage=dev1)
 deallocate(A)

• Transfer memory (after initialization)

 A(:)[dev1] = A(:); B(:)[dev2] = B(:)

• Remote execution and synchronization of tasks on two subimages using
memory previously allocated on the subimages

 call task1(A[dev1]) [[dev1, WITH_EVENT=evt]]
 call task2(B[dev2]) [[dev2, WITH_EVENT=evt]]
 event wait (evt, until_count=2)

Single-Source Shortest Path Algorithm:
Coding example

!! get the Fortran image selector(s) for the accelerator device
!
 dev = get_subimage(acc_id)

!! allocate space on the accelerator
!
 if (dev /= THIS_IMAGE()) then
 allocate(TT(NX,NY,NZ)[*]) [[dev]]
 allocate(Changed(NX,NY,NZ)[*]) [[dev]]
 end if

!! initialize and copy values to the device
!
 TT = INFINITY
 TT[dev] = TT

!! loop until converged
!
 do while (.NOT. done)
 call sweep(NX,NY,NZ, NFS, U[dev], TT[dev], Offset[dev], Changed[dev]) [[dev]]

 !! see if any travel times have changed
 !
 Changed = Changed[dev]
 if (sum(Changed) == 0) done = .TRUE.

 end do

OpenCL code automatically created by OFP
compiler from original CAFe source

!! WARNING - this code is not readable, portable nor maintainable

TYPE(CLBuffer) :: cl_TTBuf_
TYPE(CLBuffer) :: cl_Changed_
TYPE(CLKernel) :: cl_sweep_

cl_sweep_ = createKernel(cl_dev_,"sweep")

cl_size__ = 4*newNX*newNY*newNZ
cl_TT_ = createBuffer(cl_dev_,CL_MEM_READ_WRITE,cl_size__,C_NULL_PTR)
cl_Changed_ = createBuffer(cl_dev_,CL_MEM_READ_WRITE,cl_size__,C_NULL_PTR)

cl_status__ = writeBuffer(cl_TT_,C_LOC(TT),cl_size__)
cl_status__ = writeBuffer(cl_Changed_,C_LOC(Changed),cl_size__)

cl_status__ = setKernelArg(cl_sweep_,0,NX)
cl_status__ = setKernelArg(cl_sweep_,5,clMemObject(cl_TT_))
cl_status__ = setKernelArg(cl_sweep_,7,clMemObject(cl_Changed_))

DO WHILE(.not. done)
 cl_status__ = run(cl_sweep_,3,cl_gwo__,cl_gws__,cl_lws__)
 cl_status__ = clFinish(cl_sweep_%commands)

 cl_status__ = readBuffer(cl_Changed_,C_LOC(Changed),cl_size__)
 IF (sum(Changed) .le. 0) done = .TRUE.
 cl_status__ = setKernelArg(cl_sweep_, 9,stepsTaken)
END DO

CAFe publications

• C. Rasmussen, M. Sottile, S. Rasmussen, D. Nagle, and W. Dumars. CAFe:
Coarray Fortran extensions for heterogeneous computing. Paper to be
presented at High-Level Parallel Programming Models and Supportive
Environments, 21st International Workshop, IPDPS 2016, Chicago, IL, USA,
May 23, 2016.

• A. D. Malony, S. McCumsey, J. Byrnes, C. Rasmussen, S. Rasmussen, E.
Keever, and D. Toomey. A Data Parallel Algorithm for Seismic Raytracing.
Paper to be presented at The International Meeting on High-Performance
Computing for Computational Science, VECPAR 2016, Porto, Portugal, June
28th-30th, 2016.

