
N2142

1

Fortran 2020 Feature Survey Results
As of October 8, 2017

Introduction

WG5 published a survey on SurveyMonkey (link: https://www.surveymonkey.com/r/7BTF5K8) to gather
input from the user community on possible new features in Fortran 2020. As of October 8, 2017, 92
responses have been recorded.

The format of the survey is necessarily constrained. A deliberate choice was made to lead off with a
“ranked choice” question naming several suggestions previously received, that required the user to rank
them in order of desirability. An open option was provided for the user to supply a suggestion not listed,
though these would naturally not get voted on by other users. Given the limited new feature set of
F2020, WG5 thought it would be helpful to gauge community support for known ideas, and to collect
suggestions WG5 might not have seen before.

The following sections list the suggestions in ranked order (as determined by SurveyMonkey), with the
score (a higher score indicates that more users rated that suggestion higher than others), with individual
comments. User suggestions are then listed, followed by open-ended “comments from the community”.
The users were asked, “For the feature you ranked highest, how would it help in development of your
applications? Have you used this feature in applications written in other languages?”

The survey asked for names and email addresses – most users opted to provide these – but they are not
included in this document.

This document will be updated again for the February 2018 J3 meeting.

Generic Programming or Templates
Score: 6.00

• Reduce the tedious generation of almost identical code for various datatypes. Reducing scope
for errors by not having different versions of the same routine for different types hidden behind
an interface.

Have made use of templating in C++. Should be possible to make Fortran equivalent lighter and
easier to use (if less powerful).

• I've used the facility in C++, C# and Java. The first example Jane and I use in our teaching (and
book) is based on sorting, and we provide 3 real and 4 integer implementations of the same sort
algorithm. The second example implements a generic statistics module for 32, 64 and 128 bit
reals. If a template facility existed in Fortran we would add generic container examples to our
books and teaching.

https://www.surveymonkey.com/r/7BTF5K8

N2142

2

• I went to the extent of writing my own SED/AWK preprocessor to handle templated source
code. Obviously, I would prefer to have a standard solution, but it has to be really usable, and it
has to play nicely with my OO code.

• Generic programming and templates will simplify much the structure of the code, avoiding
redundancy when the same routine is used for different kinds of variables. I currently use this
feature in C++ programming

• 1. No needs to write subroutines for different kinds, fixed size for vectors inside types
(parmeterized derived types, implemented in some compilers is terrible conserning execution
time). 2. Yes.

• I would regard templates to be a boon simply to keep repeated code for different types to a
minimum. Some of the suggestions that have appeared on clf are interesting for their syntactic
simplicity. In doing a little bit of research on templates, I kept coming across the remarks that D
templates are syntactically sweeter than C++. On reading the D template Tutorial by P Sigaud
(206 pages!), I think that I will start eating lemons.... KISS must rule.

My preference would be something along the lines of a generic type declaration to
mirror/supplement the existing generic language features. Once SELECT TYPE is rolled in, a
highly flexible language extension would have been enabled, which fits in nicely with existing
fortran features. By not insisting on dynamic dispatch of instances of templated procedures,
implementation would be straightforward too.

It is time that iterators made their way into fortran. Not only could these provide syntactic
advantages and improved flexibility compared with DO but then the way would be open to the
provision of a standard library like STL. Again, KISS must be kept in mind!

• Template like feature can be used with subroutine in F95, but with OOP coming in, I would like
polymorphic templates for many applications. I am not an OOP man, so more comment may not
be possible. F95 had many indirect ways of doing things, but making cleaner fast methods would
help.

• 1. It could save a lot of typing 2. I use it in C++ and Java programming
• Many times I'm writing the same routine for different types, or different kinds. I used templates

and STL containers in C++. I would like to see them in Fortran too. A sort of move semantic
should then be also implemented.

• OpenCoarrays provides a module that gives coarray Fortran programs access to Fortran 2015
features with compilers other than gfortran. Many of the functions in the module are just thin
wrappers around invocations of C functions. Quite often, we have to write multiple versions of
each wrapper wherein the only difference between the versions is in the type of the first
argument. All else in the procedure remains the same. An example, the co_sum collective
subroutine, is demonstrated at the URL below. Generic programming could allow reduce the
various versions of co_sum* to one implementation. Across all the functions that need to be
implemented in this manner, the reduction in the amount of code that must be written (or
generated), debugged, and maintain would shrink by an order of magnitude if we covered all of
the cases of interest (which we currently don't for this reason).
https://github.com/sourceryinstitute/OpenCoarrays/blob/b2b39f29031e00d6650f9af73522c8e
2e63c2a55/src/extensions/opencoarrays.F90#L661

https://github.com/sourceryinstitute/OpenCoarrays/blob/b2b39f29031e00d6650f9af73522c8e2e63c2a55/src/extensions/opencoarrays.F90#L661
https://github.com/sourceryinstitute/OpenCoarrays/blob/b2b39f29031e00d6650f9af73522c8e2e63c2a55/src/extensions/opencoarrays.F90#L661

N2142

3

• Fortran really needs support for generic programming and generic data structures and
algorithms. Something like C++ templates and the standard template library would be ideal,
whether provided as intrinsic (compiler-provided) modules or as user-written code.

Users should not need to implement common data structures like linked lists or binary trees
themselves, then have to cook up a way (invariably using nonstandard preprocessing and/or
abuse of the IMPLICIT statement) to avoid duplicating code for each type they want to use with
the data structure

• It would allow the community to implement a library of containers, like C++'s STL. Right now
something like that can only be done by abusing the C-preprocessor (see for example
https://github.com/robertrueger/ftl), which is not exactly pretty and requires manual template
instantiation. Even people who never write templates themselves would benefit a lot from these
template libraries, so I think it is really the single most important thing missing in Fortran.

• IMHO, the most annoying missing feature in Fortran is generic containers, i.e., the tools to
construct and use lists, stacks, trees, etc. without reference to the type of the elements, but
nevertheless type-safe at all stages. A significant fraction of our code, regarding data
management at any level, could be written more clearly, readable, and concise. To a lesser
extent, this applies also to generic algorithms such as sorting.

Partly for that reason, we use OCaml for algorithms that require formal, non-numerical
manipulation of data structures. OCaml is a strongly typed functional language that supports
type-parameterized types (such as "list of type x") and type-parameterized modules (a.k.a.
functors) in a very straightforward and entirely type-safe way. If such facilities had been
available in Fortran, coding such algorithms in Fortran - not just the numerical parts - would
have been a viable alternative.

• Writing generic code is painful and tedious. If it were easier, I would actually bother writing
reusable modules for lists, trees, etc. to use in my projects. Currently, it's too much trouble.

• c++ template meta programming
• Templates remove lots of duplicate coding. I used this extensively in C++.
• It is a feature that is often asked for (judiging from the number of reads of an old Fortran Forum

article of mine on the subject. I should really re-write it, as it is antiquated, even without formal
templates in F2020). I have seen it used in languages like Java and C#, especially with respect to
data containers like lists. It would help with libraries in various precisions.

• Adding generic programming would significantly simplify the creation of containers. At present,
a container has to be written for every type it is desired to contain. This means large sections of
code have to be repeated, e.g. a numeric linked list has to be coded for types integer, real(dp)
and complex(dp) at a minimum, not to mention writing a linked list of user defined types.

The ability to define types (in C++ syntax) as container<T>, rather than container_integer,
container_real etc. would reduce this to a single definition for each container.

I have used these features extensively in C++, although I feel that Rust does a better job of
implementing them.

N2142

4

• Easily making overloaded double and single types of functions without duplicating code. Being
able to have functions like "optimise(f, anyobject)" which will work by calling f(x, anyobject)
where anyobject is any type containing extra data used by f (without requiring tiresome
redundant select type.. statements inside f).

• A lot of algorithms are applicable to a wide variety of data types or kinds of a particular data
type. Using current features, a programmer has to write the procedure implementing the
algorithm over again for each data type and kind that the algorithm is implemented in. This
requires a tremendous amount of wasted time and effort and many opportunities for making
mistakes in one or more implementations of the same algorithm. Implementing procedure
templates would greatly reduce or eliminate this duplication and opportunity for defects.
Therefore the benefit-to-cost ratio to application developers of this feature is tremendous.

• I have written many containers to provide e.g. lists, sets and maps. To do this and avoid large
amounts of copied code I have used the c-preprocessor so that they can be used with
integer(2,4,8) read(4,8). This really seems to me to be a deficiancy in the language. I don't think
that the extensive way C++ has taken templated is the right way but some for of template
functionality is a must. It would also enable STL to be incorporated into Fortran, after all it
wasn't originally created for C++ it was just incorporated by it. Containers (including iterators)
are a natural way to program and it would be really nice if Fortran supported these paradigms
directly rather than through to cpp.

• Generic programming and/or templates is something that seems to get implemented in every
Fortran project through some other language (e.g. Python, Ruby or even IDL!). It is very often
the case that we need to perform exactly the same operation on arrays of rank 1, 2, 3, etc., or
arrays of different types -- e.g. I/O using an external library. The only way to avoid writing the
same thing over and over again is through some nature of templating. The current universal
polymorphic stuff does come in handy, but the requirement for type guards makes the code a)
much uglier and b) much less useful. I use this all the time in other languages, either explicitly
using templates as in C++, or "duck-typing" in Python.

• Reduce duplicate and boilerplate code leading to increased maintainability and flexibility. This
feature has proved very useful in applications written in other languages.

• It will let me and others implement resuable code. It will let us write a generic "collections"
library, for example.

• Generic programming or templates a'la C++ will definitely help me to better express some of the
abstract data types in my projects. For example static polimorphism of templated containers like
std::vector and std::valarray in C++ where the same class interface(procedure signatures) is
presented to user class.

• Generics would help avoid writing redundant code that differ only by argument type (i.e. single-
and double precision versions of the same function; data structures such as hash tables, trees,
and linked lists)

• An FTL like the C++ STL would be quite useful. While I agree that static programming is easier to
understand, generic programming can be more flexible.

• The code I work on makes extensive use the C pre-processor in places to create generic versions
of Fortran procedures via macros. Or we just write the code in C++... Unfortunately the current
Parameterized Derived Type facility, even if it were implemented by a majority of compilers, is
insufficient for our use.

N2142

5

• It would allow reuse of code. For example, a generic function for resizing an array would be very
useful. I use generic programming extensively in OCaml via parametrized modules.

• A generic list implementation is really lacking and this is not fully solved with unlimited
polymorphism

• Generic lists facilitate the book-keeping of a lot of applications.
• I have several procedures in various kind versions. Templates may allow one procedure for

various kinds. I use this feature frequently in C++
• It would dramatically simplify the programming of generic algorithms. I currently have to use a

preprocessor with many shortcomings.
• Reusing the same code for different data types. Parameterized modules are fine for me.
• We already implement template programming on our own. This would eliminate our need to do

this by hand on our own, with complex scripting and build mechanisms. Having this built into
the language would make this much easier.

• I could write generic containers, like lists, once and not have to keep writing nearly identical
code, or resort to ugly use of source pre-processing with includes and macros to automate the
source code generation. I've worked some in C++ and found this to be incredibly useful.

• Generic programming is the fundamental key to achieve a real Abstract Calculus by means of
which mathematical/physical programs achieve high conciseness, clearness, easy maintainability
and flexibility allowing to develop generic libraries the API of which strongly resemble high-level
math expression. I used generic programming in Python.

Automatic Allocation on READ into ALLOCATABLE character or array
Score: 5.21

• Simplify coding.
• I prefer to use allocatable arrays when possible. This would make my code cleaner and more

readable, since now I need to pre-allocate arrays.
• The "Automatic allocation on READ into ALLOCATABLE character/array" sounds like a capability

standard in many scripting languages. Getting data into a Fortran program reliably via current
standard mechanisms can be onerous.

• It would make it easier to write code.
• Get rid of tons of clutter and buffer variables in parts of the code that are not performance-

critical anyways: Reading human-generated input files etc.
• Automatic allocation would allow easier file processing. I am using this mainly in Python for file

I/O.
• Reading file header of unknown content. C# for example
• Hello, I use templates every day in my code (C++ and Java), I remember when they were

introduced in java 1.5, it was a really big change. Actually, it is preventing me from developing
some projects in Fortran, it will simply take too long to do it without them and the code
wouldn't be "correct" from a modern software development point of view.

N2142

6

• Use of allocatable character simplifies string handling and makes it more reliable, but it doesn't
work in many situations. Allowing automatic allocation in READ would be a good step; it would
simplify many of my programs.

• I have written work-arounds for the lack of this feature since allocatable arrays were first
available in Fortran 90. It would be very nice to not have to read the input line into a character
buffer, parse the string, count the number of elements, allocate the array (or character) and
then use an internal read statement to proceed. Not an life changing event, but a nice cleanup
of a "missing" feature.

Block Oriented or Structured Exceptions
Score: 5.00

• Exception handling is still a weakness of modern Fortran. Whilst there is some handling of IEEE
numerical conditions, a more general approach based upon throw/catch or similar would be
very helpful. It is common in other languages.

• It helps in handling exceptions. I use the feature in java
• The lack of a comprehensive approach to exception handling is probably one of the most

significant shortcomings of current Fortran. I've used this in C# and object Pascal / Delphi.
• My primary reason for wanting exceptions is to support unit testing. I use pFUnit for unit testing

my Fortran code, and I believe that having an exception mechanism in Fortran would make it
much easier to write unit tests of expected error conditions.

Unsigned INTEGER
Score: 4.48

• Unsigned integer data type is implemented almost modern languages. It helps us to count ,
compare numbers. So i want Fortran to have the feature.

• C interoperability - we make heavy use of mixed language application development. Have used
in other languages (notably C!).

• To improve interoperability with other languages, Fortran needs an unsigned integer type. The
current situation is confusing and misleading at best.

• Would help with the development of various code features involving bit manipulation and in
particular inter-language features with C (where I have libraries that use unsigned integer bit
manipulation)

• implementing algorithms in fortran (network, cryptography, etc) similar to C
• With Window programming often an actual argument must be an unsigned integer. Although,

usually, a signed one can be used as well, it adds elegance to it and it is, formal speaking, more
correct to have unsigned integers to ones disposal.

• Reading detector data. Counts are always positive. Need C to read data now.

N2142

7

Bit Strings
Score: 3.70

• We use many flag fields in our codes, we use integers but this is not ideal as the access to the
bits is clunky, output is unhelpful without explicit formatting, problems with respect to the sign
bit, wasted space if there are only a few bits used, integers are insufficient if there are more
than 64 elements

• One use, amongst others is when I have to store the state of a system, in time, each site of
which is described using a logical variable. I currently use LOGICAL(KIND=1). No, do not use any
other language for scientific computing.

Easier Manipulation of NUL-terminated strings
Score: 3.61

• I have used C extensively for string and character manipulation. It would be really helpful if
Fortran could support automatic string-length (leading blank suppression) and null-terminated
strings to handle important text input and searching programs.

• String manipulation is the most elaborate part in our software (and most cumbersome). It takes
too many lines of code to do string manipulation. Using mostly C++ I am used to shorter
versions, especially not having to always explicitly putting the length of the string in a larger
character array.

Conditional Expressions (like C’s ? operator)
Score 3.47

Other suggestions
• EXCEPT clause in the USE statement (opposite of ONLY)
• coarray IO. I know it was discussed before, but I'd like to discuss it again as part of the F2020

process. Is MPI/IO (and libraries built on top of it) still the best advice? Are there any HPC IO
developments happening already or are expected to happen, which a new parallel IO (coarray
IO) feature could eventually harness? A direct access file with shared access from multiple
images has been implemented in Cray:

o https://pubs.cray.com/content/S-3901/8.5/cray-fortran-reference-manual-
85/enhanced-io-using-the-assign-environment

o however, the performance is a different issue.
o Is it even a good idea to write to a single massive file at exascale? Perhaps the

expectation is that the file systems will evolve to make IO from each image efficient?
etc. etc.

• Implicit typing: that is to say, when equating for example integers and characters such as k='a'
the k assumes the integer value of the ascii character code for a. Some compilers allow this;

N2142

8

gfortran (and presumably "correct" usage) does not. It would greatly help manipulating strings
along with suggestions (3) and (4), and perhaps (6) too. I have used such a feature in C
extensively, also with reals such as x=i which simplifies the line x=real(i)

• Also would like strings to be arbitrary length so that several variable names (for example) can be
used in an array e.g. parameters(10)=(/'vbe','nf','ikf',...) and not having to define equal sized
strings, so that string comparisons can be made easier.

• Also would like trim(adjustr(astring)) to truncate the string not keep the original length just
padded. All these issues can be worked around using character(1) arrays but is cumbersome
compared with C, which is very good on string handling.

• Formalise the full ASCII character codes (0-255), not just the old sub-set. Some compilers allow
an integer definition tab=9 and then printing tab using 'a1' format others don't. This also alludes
to the comments above about implicit typing when moving from reals to integers or integers to
characters etc. This is not to say that Fortran cannot be strongly typed just that it picks up C's
implicit typing capability.

• New symbol? As numbers can be positive or negative I am keen to see greater emphasis on the
unary minus. The standard result of -2**2 for example is -4 but if the -2 should be a negative
number the result should be +4. To save writing parentheses around a negative number can we
use a new symbol for the unary minus such as the tilde or tab character (or another). It does not
seem possible to interpret -2**2 as +4 just by making the subtraction sign a unary minus
because the problem shifts to using parentheses if -(2**2) is needed. But the unary minus
should have its own symbol. Then e.g. ¬2**2 would be +4.0 but maybe ~ or ^ is less easily
confused with -.

• I would like to see the use of nested parentheses allowed to use {} and [] to clarify longer
expressions; used in any sequence but in pairs, obviously. Example: exp(-((x/s)**2)) => exp{-
[(x/s)**2]}

• Automatic variable re- assignment like C to become standard. For example if i is an integer and x
is real*8, x=i converts i to real in variable x (and this would be ideally complemented with
unsigned integers).

• Unary minus is higher precedence than ** Example -6**2 is +36 (if compiler allowed integer
power)

• Duck typing of derived types (available in many modern languages), i.e. in some way a
subroutine declare arguments of a type that has specific methods and any type that has those
methods will satisfy the interface, no need for artifical inheritance trees. Ideally remove the
need for select type.

• Language level regular expression support.
• "UNLESS" as an opposite to "IF"/ "UNTIL" as an opposite to "WHILE"; a small thing that improves

clarity in some situations
• More built in containers:

o * Set
o * Vector (as in automatically growing array)
o * Queue

• A general standard of interoperability with python using dll route similar to ctypes in python for
C/C++ , I am using f2py for python-fortran integration, but it has its own limitation. C# Fortran
integration is also possible but C# lacks the flexibility python offers with libraries it is able to

N2142

9

provide. Earlier I used C/C++ route for interoperability but being a week C++ programmer, I
would prefer python route

• Make it possible to use % to access methods/members of derived types returned from type-
bound functions, e.g.:

i = object%functionReturningDerivedType()%someMemberOfThatType

Pretty much all object oriented languages allow that with the "." operator which can then be
chained indefinitely. That is very convenient since it makes it unnecessary to declare the types
of all the temporary values.

In Fortran something like that is already possible by nesting non type-bound functions (though
data members can not be accessed directly on the temporaries), but it seems strange that this
does not work with type-bound functions.

• heterogeneous arrays, i.e., arrays of objects with properties varying element by element (length
of allocatable strings, type of polymorphic objects). Currently, this is easy to emulate, but one
has to define a wrapper type in either case and make use of extra component % syntax to access
elements. This appears redundant, obscures code clarity, and needlessly introduces a source for
errors. Although we now have allocatable strings, string handling without heterogeneous arrays
is (still) a most annoying deficiency of Fortran.

• automatic delegation: Assuming that "foo" contains "component" which has a type-bound
procedure "bar", a simple syntax extension could tell the compiler to automatically convert "call
foo%bar(args)" to "call foo%component%bar(args)". That is, without a user-written trivial
subroutine bound to the type of "foo" that just exists to call foo%component%bar. Actually, this
feature is already supported, but it applies to the base type of a type extension, not to a
component. If it was available for components, type composition could be exchanged with type
inheritance in the implementation, and vice versa, without a syntax change in the caller. In
particular, in situations where one would like to emulate multiple inheritance.

• Both features are available in many languages, trivially because (1) arrays are one-dimensional
anyway - C/C++/.., or (2) multiple inheritance is allowed - C++/... My suggestion aims at
reconciling this with the underlying model of Fortran, from the perspective of the programmer.

• Threads. Coarrays are not interoperable with any other language with relying on
implementation-defined behavior and are inadequate for many applications where threads are
used. Application of threads include asynchronous agents to hide latency in I/O (including
communication) and dealing with irregular workloads where dynamically scheduled threads
naturally deal with load-balancing.

See POSIX threads or the Solaris, Windows, C11, or C++11 equivalents. The use cases are too
many to enumerate but one compelling one is overlapping computation with communication.
Consider a Krylov solver that can overlap a dot product with local compute. How do I invoke
CO_REDUCE concurrently with computation? I know that Fortran has asynchronous file I/O, but
what if I want to do some compute along with my I/O and overlap all of this with something
else?

N2142

10

DO CONCURRENT is the only shared-memory concurrency mechanism in Fortran that I know of
and it is a toy compared to the myriad of concurrency features provided natively in C++ or
implementable in C11 using threads and atomics.

• general filesystem (c++17 std::experimental::filesystem)
• more convenient string manipulation (c++ std::string)
• Standard library, like linked list and hash table.
• Named arguments for procedures and functions. Supporting "out of order" optional arguments.

Makes developing code a lot easier. Several modern languages have this feature.
• A good set of standard libraries. Most important I would put string manipulation functions and

vector/array operations. Automatically resizing arrays would be very useful and prevent writing
some boilerplate code to query for the need of reallocation and the actual reallocation.
Furthermore, a few more types, like dictionary and linked list, would be helpful. And definitely a
standard sorting function (qsort).

• It is a minor issue, but a language like MATLAB has a special way to access the end of an array -
"end". One example:

 end = size(array)
 diff = array(2:end) - array(1:end-1)

Now we always need an extra variable or use size() inline. It is syntactic sugar, sure, but it might
help in cases like this.

• Being able to pass an array slice (e.g. a:b) around would simplify the access of type-bound
arrays. (It would also be nice to be able to define an anonymous function, to enable calls like

o type :: Vector
o integer :: contents(3)
o contains
o interface operator(())
o module procedure access_Vector
o end interface
o end type
o
o function access_Vector(this,slice_in) returns(output)
o class(Vector) :: this
o slice :: slice_in
o integer, allocatable :: output(:)
o
o output = this%contents(slice_in)
o end function
o
o type(Vector) :: vec
o vec = Vector([1,2,3])
o foo = vec(1:2)

N2142

11

o)

It would also be nice to perform operations on function returns, e.g.

o array = make_an_array(args)
o foo = bar(array(1,:))
o
o would be simplified to
o
o foo = bar(make_an_array(args)(1,:))
o
o This could also be applied to type-bound variables and procedures for functions which

return user-defined types.
o

• It would also be nice to be able to overload more existing keywords, e.g. being able to make a
read statement for user-defined types.

• PROMPT= keyword for "READ(*," statement. Example: OpenVMS DCL READ /PROMPT keyword
• Pointers that are not explicitly null'ed or associated currently have a undefined state, the

compiler should simple force all pointers to be null on declaration. For instance: integer, pointer
:: x if(associated(x)) is undefined and has causes issues on gfortran/ifort compilers. Now we can
declare x => null() or nullify(x) but that is just wasted effort and extra code that must be
remembered. Given there is no way to test for a non-defined state and it cant be used for
anything, why not remove the undefined state and force pointers to always be either null or
associated. Thus pointers when declared become x=>null(), and =>null() becomes unnecessary
and a no-op if present.

• Define a non-file based, (and would be nice to also be required to be thread-safe) interface for
converting ints/reals to a string and back. Currently to do the conversion requires a read/write
statement, however i have personally been hit with the case inside a openmp based code where
doing this conversion inside a parallel region caused a crash due to non-thread safe nature. I
also find the format confusing and non intuitive. The simplest option would be to extend the
int() and real() functions to accept a character as a possible argument with an extra optional
argument "format" to do a format conversion. If fomrat is not specified then some sensible
default should be assumed. result = int(A,[kind],[format]) where a can be a int, real, complex or
character and a string based function: result = str(A,[format],[len]) Where A is a integer, real or
complex, format a optional extra argument for specifying the conversion and result is a
character long enough to store the result, or as long as an optional integer argument len. Having
new functions/subroutines allows us to define that they must be thread-safe (not sure anyone
would ever want to depend on using read/write and them not being thread-safe but prevents us
form having to alter file reading code). Having an explicitly defined functions to do the
conversion would bring fortran more in line with other programming languages like python
(which has str(),int(),real() functions that take any object and try to convert to their respective
output) and make things easier to understand for users. Function based versions would also
make it easier to combine strings with numbers on one line: do i=1,10
read_file(‘file_’//str(i)//’.txt’) end do

N2142

12

• Adding a specifier to the READ statement that allows a specific delimiter (e.g., tab characte) to
be specified for list-directed input, bypassing the baroque rules for list-directed input (e.g., "/"
character being interpreted as end of record) would be most useful for processing real-world
text file formats.

• I've submitted a separate proposal (FLUSH statement SYNC= specifier) to a couple Fortran
standards committee members for consideration.

• Introduce alternative short-circuit boolean operators, like ||, && etc.Many redundant "if" at the
moment to avoid errors on things like this: "if (associated(P) .and. P==...)"

• Support for pipes for inter-process communication. E.g. read compressed file like this:
OPEN(NEWUNIT=U,PIPE='gunzip -c file.gz',ACTION='READ')

• Extended IF syntax than allows "short circut" evaluation. E.g. IF (logical-expr1) AND (logical-
expr2) THEN Where logical-expr2 is not evaluated if logical-expr1 is FALSE.

• New DO loop syntax to be consistent with DO CONCURRENT. E.g. DO LOOP (I = 1:N , J = 1:M)
• NOSAVE attribute that makes it possible to initialise a variable without giving it the SAVE

attribute. E.g. SUBROUTINE SUB INTEGER, NOSAVE :: N = 10 The integer N will be initialised at
each entry of the subroutine and the variable does not have the SAVE attribute.

• A means of supplying a default value for an OPTIONAL dummy argument.
• User-Defined Units of Measure (UDUOM). This feature is similar or identical to the proposals by

Van Snyder in previous versions of Fortran. While it is possible to specify units of measure data
types using the current capabilities of Fortran, the current capabilities are somewhat clumsy and
error-prone. Also, providers of procedure libraries almost always will concentrate on units of
measure that will be most demanded by most users and neglect those units of measure that
some users need badly but are not needed by many users. This feature is similar to other user-
defined capabilities, e.g., user-defined generic procedures, user-defined operators and
assignment, and user-defined derived-type input/output procedures. The methods used for
implementing these features should be applicable to implementing UDUOM. Thus,
implementing this feature should not be seriously burdensome to compiler developers. This
feature has numerous advantages for application developers. It would provide a feature not in
any other major programming languages. It would allow application developers to develop a set
of units applicable to their own application domains. It would allow for significant improvement
in programmer efficiency and effectiveness and reduction of cost, effort, and risk of defects.

• parameter-ized types. By this I mean user-defined types that can be parameters. This would also
provide enum-type capability. For example: type, parameter :: planets integer :: mercury = 1
integer :: venus = 2 integer :: earth = 3 ... end type planets making the type planets a compile-
time constant. Then the code could use planets%venus and could also pass the type around
although only intent(in) would be valid, e.g. subroutine mysub(ss) type(planets), intent(in) :: ss
...

• an alternative to alternate returns. There are situations where these are by far the best option
for handling error conditions: cluttering the code with logicals or error codes is not necessarily a
good thing. Since the facility os now obsolescent it would be good to have a real altenrative. This
might be what's meant by 'Structured Exceptions' above, but if it isn't it should definitely be
added to the list.

• Better handling of optional arguments. One thing that Fortran does better than C++ is keyword
arguments. These are great, especially as they essentially allow documentation at the callee

N2142

13

location. However, one *major* failing is how Fortran handles optional/default arguments. In
e.g. Python, one can simply assign a default value to an argument in the function signature:

o
o def foo(a, b=5):
o return a + b
o
o print(foo(4))
o
o would print 9. In Fortran, this is possible to achieve, but is much, much uglier:
o
o integer function foo(a, b)
o integer, intent(in) :: a
o integer, intent(in), optional :: b
o integer, parameter :: b_default
o integer :: b_value
o
o if (present(b)) then
o b_value = b
o else
o b_value = b_default
o end if
o
o foo = a + b_value
o end function

This quickly gets absurd when you want to have multiple optional arguments with default
values. I'm not sure what the syntax should look like, but just assignment in the signature
like Python could work.

• Assumed type arguments to subroutines with explicit interfaces, just like assumed size and
assumed shape.

• It would be nice if FORTRAN itself had pre-processor directives. I currently use -cpp with
gfortran, when I put use an #ifdef. But is this some thing under FORTRAN's control?

• I think some old useless features should be dropped and a more clean and fast language is
required.

• Please introduce standard template libraries (STL). I would to be able to use vector and tree
classes that are present in other languages such as C++. Introduce type auto that is present in
C++ which is very useful for finalizers. Shared Pointers are another great feature present in STL
for C++. I have use all of these features in C++ application written with STL.

• Namespaces in the C++ style or packages in the Java style, something to differentiate two
thing of the same name.

• "Proper" Constructors Normally constructors are recursive, starting at the root parent class
and bubbling up to the leaf child class. This way each level constructs itself and other classes

N2142

14

needn't know how their parents work. They can still call parent methods to aid in their own
construction. If there is syntax for passing arguments down the tree, children can influence
how their parents are built. Again without having to know their inner workings. This is
common to all OO languages I have come across but for specific reference look at C++ or Java.
In particular the current "initialiser" falls short because children need to know how to
construct their parents or there needs to be a mess of potentially dangerous "mess with my
contents" functions.

• "Proper" Enumerations Having first class enumerated types would be a great boon over knife-
and-forking it with an integer and a stack of parameters. Even C's approach of some syntactic
sugar around the integer and stack of constants is an improvement. Ideally, though, would be
a proper enumeration whereby the compiler enforces holding only those values allowed for
the enumeration. Being able to specify "one of these things but nothing else" is extremely
useful when implementing state machines and for configuration options.

• Standard collections Particularly in conjunction with generics/templates a standard set of
collections would really save effort. In particular a linked list and hash-map. (dictionary) These
are commonly used data structures and having to write your own implementation each time
you need one is obviously less than ideal. All the normal arguments in favour of libraries
pertain.

• A text-handling standard library including case-conversion, regular expressions, and
read/write capability for common data formats such as CSV and JSON. Consider the Python
standard libraries csv & json and the external library regex (also the Perl Compatible Regular
Expression library, PCRE) A substantial amount of our coding goes into processing user input
and formatting output.

• A standard library for unit testing, preferably something that supports continuous integration
and can work with mainstream IDEs such as Eclipse or Visual Studio. Testing is critical and
there are almost no language features or libraries which support unit testing in Fortran.
Considering we develop nuclear safety software to the NQA-1 standard, it's frightening how
few and poor the tools are in the Fortran ecosystem. Many other language maintainers make
testability a major focus (see Rust, Go, Python, Perl, Ruby, Lua, Java, Ada/Spark, Racket, etc.,
etc.) The applications developed & maintained in Fortran are too important to not have
committee-level attention devoted to improving testability.

• Something similar to 'final' variables which are set once at run time but are otherwise treated
as constants. The use case for this is semi-static array allocation at run time to allow a code's
data space to be configured early in a run while preserving the speed and safety of static
allocation. The alternative is a massive amount of manual array allocation and risk of
accidentally changing what is intended as a read-only variable.

• Standardized exposure of the application's symbol table to allow application programmability.
e.g. SYM("Z") = 1.0 would be treated as Z = 1.0. This can be accomplished now by
preprocessing the code to extract symbols and using generated code to create hash tables
containing POINTERs to variables or indices into COMMON blocks.

• Native support for physical units in variable types and compile and run-time exceptions for
improper unit combination (e.g. adding two absolute temperatures). This improves code
safety and reliability by detecting errors by dimensional analysis.

N2142

15

• Ada-like constraints on variables. For example, if a physical correlation function is only defined
for temperatures between 200 K and 800 K, an argument could be constrained to throw an
exception if an out-of-range temperature (150 K, 2000 K) was supplied.

• We should be considering lambdas, similar to Python.
• Default values for optional arguments.
• Easier and better handling of strings. Having arrays of strings with different lengths etc.
• Static member or class member. All objects of one class shares a single value for class

members
• Short-circuit logical operators. I believe there was a proposition by Van Snyder but I could find

the document (it should be somewhere on WG5 or J3 site). This proposition introduced
operators "and then" and "or else", that already exist in Ada. This would be very useful to
check bounds before doing a test on an array element. A workaround could be to use nested
IF or in the case of a WHILE, doing an additional IF/EXIT inside the loop, which is not very
pretty.

• Another suggestion would be unlimited nested functions (I mean function inside a function
inside a function...). Not that it's used very often, but the current limitation looks awkward,
and sometimes it would help to modularize code, and maybe also to optimize.

• I would like to suggest a very simple coarray-related extension to the Fortran 2008 language:
A build-in counter to track the execution segments, just counting locally on each coarray
image (i.e. the number of times the SYNC MEMORY statement gets executed - explicitly as
well as implicitly -): Something like a THIS_SEGMENT intrinsic. I did develop such a counter
myself, easily in less than 5 minutes using few lines of F2008 syntax. (The working code can be
found here, see STEP 1 and the 161125_src subfolder:
https://github.com/MichaelSiehl/Using-Atomic-Subroutines-and-Sync-Memory-to-Restore-
Segment-Ordering). It works, but the disadvantage is that the whole application can only
make use of a single SYNC MEMORY statement (not really a disadvantage) and no other build-
in synchronization method can be used (that is a minor disadvantage). The main disadvantage
of the user-defined implementation of such a segment counter is that it does prevent
independent development of the distinct parts of a parallel application (e.g. independent
coarray-based library development) which is my main reason for demanding such a feature:
All parts of a parallel application must use the same user-defined segment counter. A build-in
segment counter could allow largely independent development of the distinct parts of a
coarray-based parallel application.

Practical use for a segment counter: The practical use of such a segment counter is strongly
related to the use of SYNC MEMORY and atomic subroutines and thus, also to the
implementation of customized synchronization procedures. In practice, tracking the execution
segments on the images is required for checking and for restoring the segment order among
coarray images. A simple but working example program to restore segment ordering among a
number of coarray images, using Fortran 2008 source code, can be found here:
https://github.com/MichaelSiehl/Atomic_Subroutines--
How_the_Parallel_Codes_may_look_like--Part_1 . Here, the segment order among the images
gets restored just by executing the SYNC IMAGES statement the required times, like this: ... !
restore the segment order (among the involved images) for this image: do intCount = 1,

N2142

16

intNumberOfSyncMemoryStatementsToExecute ! call OOOPimsc_subSyncMemory
(Object_CA) ! execute sync memory ! end do ...

The Fortran 95 base language together with (only a small subset of) the Fortran 2008 coarray-
related language features might be already the promise for an highly flexible and nearly
unlimited parallel programming. Applying some simple programming 'tricks' does already
allow to make safe use of the SYNC MEMORY statement together with atomic subroutines to
implement customized synchronizations programmed as procedures. Moreover, due to a
simple programming technique, we can easily transmit two (limited-size) integer values within
a single call to an atomic subroutine. This allows, at the same time, to transmit and to
synchronize the remote transfer of an atomic (limited-size) integer value. We should be able
to use this to process (integer) array data atomically, just by synchronizing each array element
separately. And with the ability to process array data atomically, even with unordered
(customized) segment ordering, there are virtually no limitations for the development of
parallel applications using Fortran 2008 already. (The only hardware-related limitation might
be that atomicity may not be guaranteed between distinct processor types). With, otherwise,
safe use of SYNC MEMORY and atomic subroutines, the implementation of all the required
synchronization primitives can be accomplished by the Fortran 2008 programmer her-
/himself. Further research is required for the design of spin-wait loop synchronizations:
nested spin-wait loops do allow for the implementation of NON-BLOCKING customized
synchronization primitives.

• I've never quite understood why in this day and age we cannot use 'ɑ'instead of 'alpha'. Or, if I
liked, name a variable 'jalapeño'. Or even '東京'. Sure, that is facetious, but there are good
reasons to actually use 'π' instead of 'pi'. The character exists and is well known. Languages
like Go, C#, Java, Haskell, Perl, Python, etc. do allow you to use, say, Greek letters as variables
(by following UAX 15, I think?)

• Also, I'd love a regex built in to Fortran, but that's a bit farfetched as Fortran isn't exactly built
for string handling, and one could implement it as a library.

• Intrinsic sorting procedures. Should handle intrinsic types (e.g., integer and real arrays,
character string arrays, etc.) with optional user-provided comparison procedure for arrays of
derived type objects. Both a subroutine version for 'in-place' sorts and a function version for
use in expressions would be desirable. Almost all other languages have these. Almost all
Fortran environments offer these - but the spellings and use vary considerably. (Likewise, a
matching binary search intrinsic function would also be useful for some applications.)

• Make 'implicit none' the default. Eliminates a whole layer of potential accidental
programming errors at compile time.

• Require explicit interfaces be available for all procedure calls. Eliminates another whole layer
of potential accidental programming errors at compile time.

• Fortran's ability to define inner functions and subroutines contained in a subroutine or
function is very welcome, however it is currently restricted to code defined in a module
(annoying but not a big problem), to only one level of nesting and must be defined in a
contains section. Allowing lightweight syntax for defining local functions that can be passed to
other subroutines would be very helpful, especially with generic programming. For example a
generic sort routine would be parametrized by the type of the array elements and would

N2142

17

accept a comparison function. This is available in all functional languages (OCaml) as well as
Python and now C++.

• The ability to pass read-only variables out of subroutines or to put them in derived data types,
like C or C++'s const feature. This is important to prevent accidental corruption of data
structures. Currently the only way to do this kind of thing would be to encapsulate the data as
a private element of a derived type and provide accessor methods, making it impossible to
use with other code that just expects arrays.

• Please consider embracing, EQUIVALENCE and other storage size & order functionalities
within Fortran. Star notation, as in real*4, is simple and clear for machines with byte-size
representation--all machines that matter now and in the practical future. Explicit storage size
and order functionality is crucial. Fortran is useless without it for applications which can run
well on specific machines--and still can with Fortran.

• The C#-style Interface is a very convenient way to implement different, yet uniform, kinds of
capabilities into a variety of not necessarily related classes. E.g. one could write a
SelfDocumenting interface that classes could inherit/implement. In C# a class can inherit from
/ implement multiple interfaces. It provides a nice flexibility.

• enum is too primitive. A more advanced version which treats a named enum as a data type
would be useful. Modern C++ supports this.

• intrinsic resize(array) that keeps the old data while resizing the array.
• Intrinsic change_case(character) invert, to_lower, to_upper, Title_Style
• Dimension of static array declarable by parameter
• Intrinsic hash table, sort, FFT and iFFT
• Parameterized derived types and use of other parameters inside derived types
• read(select_explicit_delimiter) so I can pick something weird if I want
• Intent(none) for dummy variables
• I often have an array with long expressions for the indices on the LHS of an assignment and I

would strongly appreciate a way to refer to the LHS on the RHS or some other way to achieve
effect similar to += and *= operators from C.

• Interfaces as used in Java can provide safe limited multiple inheritance without many
drawbacks of full multiple inheritance. One would only provide an interface for a type-bound
procedure for which the implementing type must provide a conforming procedure.

• Optional XML format in NAMELIST. I use namelist in configuration files. Supporting XML as an
alternative will make the feature compatible with common practice. No need to support full
XML: just a subset that offer the same functionality as the current NAMELIST would suffice.

• Default values for optional arguments. Currently, subroutines that use optional arguments
generally require code like this: if (present(arg)) then local_arg = arg else local_arg = <default
value> end if There are at least three problems with this: (1) The default value is buried in the
implementation of the subroutine. Code is more self-documenting in languages that allow you
to list the default value in the "interface" header of the subroutine. (2) It's easy to accidentally
refer to arg rather than local_arg in the body of the routine. This error can go undetected for a
while if you're only testing in contexts where the optional argument is present. (3) I
sometimes come across incorrect variations on the above code snippet I have used this
feature in python.

N2142

18

• My group (developing the Community Earth System Model at the National Center for
Atmospheric Research) is struggling with the tension between modularity and vectorization-
friendly code: The desire for modularity leads us to extract routines into separate modules
(increasingly in an object-oriented fashion). However, most (all?) compilers are then unable to
vectorize loops that call these extracted routines. I know that intel offers the '-ipo' option (and
there are probably similar options for other compilers), but this kills our compilation times.
We would really benefit from some ability to selectively inline small functions declared in
other modules - either via some keyword that provides an inlining directive to compilers,
and/or via more smarts in the compilers so they can auto-detect good inlining candidates
across modules, without greatly sacrificing compilation times.

• A 'fix variable' property. The PARAMETER keyword sets a non-changing variable within the
compiled code. However, often there are occasions where one cannot use that as the value of
the variable needs to be read in at the start of the program via a namelist or read but once it
has been set it must not be changed again. It would be useful to be able to specify this to
prevent an accidental change. This would need to be a runtime check rather than a compiler
check.

• Currently it is not easy to distribute libraries. It will be great that mod files where compiler
independent or some other way to distribute libraries.

• Degree trigonometric functions,
• a subroutine SWAP_ALLOCS that swaps the allocations of allocatable variables,
• a simple generic constructor function for complex values named COMPLEX,
• a Fortran preprocessor modeled after the C preprocessor
• A standard Fortran pre-processor that includes concatenation and stringify operators, and

that will automatically split too-long source lines resulting from macro substitution. I use a
macro-based assertion system, and the lack of these features has been a continual thorn in
my side.

• Fix the useless SAME_TYPE_AS intrinsic so that it does what its name implies -- comparing
type and kind just as SELECT TYPE does -- so that it can be used on polymorphic variables with
intrinsic dynamic types.

• Compatibility with oldest Fortrans. Do not delete or remove things so old code still keeps
working.

• I suggest a routine to read a single keystroke from the keyboard (standard input). This is easy
to do in other languages like C, but impossible in a portable way in Fortran

• A working string class and easier way to manipulate strings. This is a pain in Fortran currently!
• Scope for variables: I wish that we can declare variables in any construct. I mean inside do-

loop, if-construct..., So we have not to declare variables that we use only one time inside one
construct in the top of the program. This feature is used in c/c++ and many other languages
even in Fortran77 by using implicit-type. My suggestion include declaring integers for do-loop.
Example: program main implicit none real :: d integer :: i do (integer :: i=1,10) complex :: d if (i
<=5) then logical :: d else character :: d ... end if end do end do end program main I
know it exists Block-endBlock but it is annoying.

• For the application areas I deal with the most, Computational Fluid and Structural dynamics
and their associated solution algorithms (Finite Element, Finite Volume, "meshless" methods
etc.) support for handling unstructured mesh data structures is critical. Therefore, abstract

N2142

19

data types such as lists, stacks, dequeues, maps, binary trees, hash tables and hash maps and
associated sorting and searching algorithms are as necessary for developing CFD and CSD
codes as arrays are. Unlike C++ or Python, which provides support for these through
standarized templates or packages, Fortran leaves developers to fend for themselves. One of
the major reasons the Finite Element community moved to C++ is the availability of these
features and static polymorphism available through templates. Granted there are several
examples of how to implement many of the desired ADTs in texts and there are 3rd party
packages, but both of these approaches come with the potential for license or copywrite
restrictions. Another issue is by nature implementing ADTs usually require the manipulation of
recursive pointers which in my experience is a major source of bugs. By providing an intrinsic
capability that hides the recursive pointers from the programmer and removes his/her need
to ever reference thme will remove one of the major barriers to efficient use of these types of
ADTs in real world applications.

•
• Specifically, in the the case of a list, I think it should be as easy to use as the current character

string facility and mimic many of the existing features for appending/prepending data and
iterating through the string. Here is an example.

•
• 1. Fortran should define either a dedicated list type defined by a LIST keyword or an intrinsic

extensible type define by the current TYPE or CLASS keywords. A list of integers could then be
defined

• as either
•
• TYPE alist
• Integer :: n
• End Type
•
• List(Alist) :: mylist
•
• or
•
• Type, EXTENDS(Intrinsic_list) :: a list
• Integer :: n
• End Type
•
• Type(alist) :: mylist
•
• 2. Prepending and appending to the list could be as easy as
•
• mylist = mylist//alist(1)
• mylist = alist(3)//mylist
•
• 3. Iterating would also follow the string facility convention

N2142

20

• mylist = mylist(1:4)//alist(3)//mylist(5:*)
• or
• Do i=1, mylist%len
• if (mylist(i:i)%n = 1) then
• do something
• EndDo
•
• 4. There could be analogs to the string LEN, LEN_TRIM, VERIFY, SCAN, ADJUSTL and ADJUSTR

for searching the list and recovering unused memory etc.
•
• This approach has the following advantages.
•
• 1. Recursive pointers are never needed or referenced explicitly
• which will reduce the possiblity of programmer errors and
• memory leaks
•
• 2. The facility is built on and shares many of the same ideas and syntax as the existing

character string facility which makes it immediately familiar to programmers
•
• 3. The burden of optimization etc is shifted to the compiler where it belongs.
•
• 4. It is immediately transportable and removes the necessity of distributing 3rd party software

with your own software and reduces the potential complexity of build/make files etc.
•
• 5 and finally, by making the list an intrinsic type it removes the need for a full blown template

facility which I oppose and don't see as necessary because in my experience most of the
"generic" programming you see in C++ based codes are really just using the STL facilities for
ADTs and vectors. Again, by having an intrinisic capability for these types of data structures
the need for templating is diminished.

• I would also like to see some thought given to defining a portable module format (maybe in
some markup language) that could be generated in addition to a compiler specific format. This
would enable libraries (say a plot library) to generate the portable format with one compiler
(say GCC) and users could then specify the compiler look for the portable module and compile
it into its native module format prior to any USE association. This would greatly enhance the
use of these types of libraries and eliminate the need to maintain a different version for each
different compiler a user might have on his/her system.

• I would like to see the need to precede a subroutine reference with the CALL statement made
optional. Obviously, it is needed for legacy codes but I don't see any reason to require it for
modern codes where there is probably an explicit interface available

• I would also like to see an "almost equal" logical operator for comparison of floating point
numbers. I still see a lot of code thatdoes

•
o If (a == 0.0) Then

N2142

21

o
o or if (a==b) then

•
o when you should be testing if the two numbers are within some tolerance or epsilon
o
o Examples would be
o
o If (a.AEQ.B) or if (A~=B) etc.
o
o The tolerance could be precision dependent or set by the user with an intrinsic

function.
• Facilities to compute and check consistency of units of measurement in expressions, to check

consistency in assignments, to check and convert units in the same family (e.g. length) during
formatted input, and to output units during formatted output. The largest program for which I
am responsible is an interpreter of a little language in which every input is type checked, and
every number is units checked. Units checking in that input has saved significant amounts of
time and prevented numerous errors.

• My number one suggestion is improved support for object-oriented programming via
EXTENSIBLE MODULES that allow improved scope.arrangements for data beyond the current
ones of private and public with a 3rd option, INTERNAL! I will put together a separate
communication on this. A companion feature to include is SCOPED enumerations ala C++.

Comments for the committee

• We are very sympathetic about the cost of implementation. We maintain compiler conformance
tables and are very aware of the timescales required to get features from 2003 and 2008
implemented in the compilers currently available.

• Fresh from the experience of implementing PDTs in gfortran, I strongly suggest that new
features be introduced with a list of associated changes in the text and, if possible, pertinent
constraints and restrictions. Better still would be a suite of standard testcases, including errors
as well as code that should run.

• The time lag between Fortran standards being published and full compiler support for those
standards has to be reduced somehow. The lag in support for F2003 has stunted its adoption. I
would go so far as to say that significant new features should be introduced via TR's and
subsequently incorporated into Fortran standards. This gives compiler vendors time to
implement features in advance of the "big name" release. For example, the TR after F95 that
allowed allocatable arrays in derived types. If features aren't widely implemented, have low
benefit to implementation cost ratios, or just turn out to be bad ideas, don't be afraid to remove
them from the standard. More than likely no one uses them anyway. Think: parameterized
derived types, FORALL, etc.

• I happen to write entire Fortran projects in an object-oriented style: abstract base types,
procedures called as TBP, etc. Making regular use of alternative type extensions for creating
test types and test code, for instance. Also, C++ is the contender for most of our applications. If

N2142

22

the committee plans for major additions to the language, such as generic programming tools, I
think that any additions should be designed from the beginning to seamlessly collaborate with
OO Fortran, at all levels of complexity.

Also, I would prefer generic and versatile solutions (such as type extension and procedure
binding in F2003) to solutions that solve just a particular case (such as parameterized derived
types in F2003).

• I'm sure you all will hate my suggestion of threads. However, OpenMP adoption is three orders-
of-magnitude greater than coarrays and I don't see any evidence that this will ever change. I
understand why multithreading is bad and CSP (or PGAS) is good, but programmers have spoken
with their fingers: threads won and PGAS lost. No amount of OpenMP bashing is ever going to
change this.

• Nothing specific, except "good work!" - it is easy enough to complain about things, but it is hard
work to get the necessary work done.

• Please resist bloat. There is no point adding new features to the standard that are slow to
appear in real compilers, or which unnecessarily bloat the language. I fear that this is a trend
that has been happening in recent years - many of the new features that have been added are
of marginal use and just bloat the compiler and introduce new bugs into a complex piece of
software (the compiler).

• It's been a problem for a while that the standard is way ahead of compilers. For example, object
oriented features from the 2003 standard are often still buggy with modern compilers. Is there
something we can do to improve integration with compilers?

• Thanks for your great work!!
• It's getting increasingly common for people to write the main program in Python and just use

Fortran for the heavy lifting. Better/easier interoperability with Python would be great.
• A successful language is much more than a Language Reference Manual; we need a scientific

programming ecosystem which supports robust user input processing, testing, and software
safety. HPC features do us no good if the risk of re-engineering our code is too great to migrate
to an HPC-compatible architecture. The lack of a standard library means effort is wasted
reinventing data structures and utility routines which other languages have shipped with for
decades. Fortran has been improving but it still has a long way to go.

• I hope that features aren't added for the express purpose of driving out free compilers from the
market.

• Live long and prosper, Fortran :) More seriously, some of the suggestions above seem related to
existing features in Ada (generics, exceptions...), and I warmly welcome any addition to Fortran
that makes it to somehow converge to the Ada language. Rather than C++.

• The more potential errors that can be discovered at compile time, the better.
• I have started using Fortran about 6 months ago to accelerate bits of numerical code. I know

that code I write today will compile next year, and I don't need a fancy header library to have
basic arrays with bounds checking (unlike C++.) Nevertheless, the semantics of classes, pointers
and allocation/automatic deallocation are unclear and confusing.

• Most of the offered suggestions under 1. above are things one might use C/C++ for, extraneous
clutter. Why not just use C/C++ if such features are important? There is risk in

N2142

23

removing/depreciating unique non-C/C++-like Fortran features; these were initiated by Fortran
vendors who served users who actually write and use Fortran in their work.

• Thank you for your work and for considering public feedback on the planned features.
• Continue the good work.
• The committee has tried adding half of the suggested features before. The results of those

efforts were not satisfactory. I hope any new proposals are not rehashes of those earlier
proposals.

• Thanks for the great work!
• Please don't go overboard. The language is getting bloated, and with each revision, a greater

fraction of the language features are rarely used. The compiler writers can't get caught up, so
the standard looks like a joke since the features are not available.

• You are great, your work is really appreciated, thank you very much. In my opinion your
approach is very sane, Fortran is currently a great language. The only minor suggestion that I
humbly propose is to be more "open" to new "technologies". For example, GitHub is a great
"hub" to collect, share, test, propose... new idea, resources, connect Fortraners, etc... just to see
what are doing our "brothers" the C++ standard committee lives on GitHub.

• I would not be supportive a full blown templating facility because I don't think its necessary for
scientific code development IF the data types etc that templating is commonly used to create in
other languages are provided as INTRINSIC types.

• One issue I've had with recent standard development is what I perceive as a tendency to define
a new feature and then put so many restrictions on it as to make it unusable outside a very
narrow range of applications (assumed TYPE would be an example). I can think of a variety of
uses for both assumed TYPE and assumed RANK that have nothing to do with C-Interoperability.

• One idea I have for speeding development and implementation of new features would be for
WG5 to find funding and a process (maybe through the national labs of the various voting
countries) to develop and maintain a "reference" compiler that provides an initial
implementation (and it does not necessarily have to be the most efficient implementation) of
new features that the commercial and open-source compiler developers can use as a standard
reference. The COTS and open-source developers would be free to use the reference compiler
implementation as an interim while they develop optimized versions for their specific compilers.

• I would also like to see some thought given to defining a portable module format (maybe in
some markup language) that could be generated in addition to a compiler specific format. This
would enable libraries (say a plot library) to generate the portable format with one compiler
(say GCC) and users could then specify the compiler look for the portable module and compile it
into its native module format prior to any USE association. This would greatly enhance the use
of these types of libraries and eliminate the need to maintain a different version for each
different compiler a user might have on his/her system.

• Don't continue to fall behind contemporary ideas widely available in other languages. This only
adds to the "Fortran is obsolete" chorus.

• I have many suggestions:
•

o 1. Listen to those who are coding actively, particularly in industry. This site and survey
are a great start, great job.

o

N2142

24

o 2. Help Fortran first achieve parity with languages such as Ada, C++, etc. when it comes
to generic and object-oriented programming facilities, PRONTO!

o
o 3. Only pay any attention to compiler vendors such as Intel, Cray, and NAG (and to

some extent IBM) that consistently show commitment and progress in implementing
newer features from newer standard revisions. Opinions of stagnant compiler
implementations should carry little weight, they are doing a great disservice to the
world of Fortran.

	Introduction
	Generic Programming or Templates
	Score: 6.00

	Automatic Allocation on READ into ALLOCATABLE character or array
	Score: 5.21

	Block Oriented or Structured Exceptions
	Score: 5.00

	Unsigned INTEGER
	Score: 4.48

	Bit Strings
	Score: 3.70

	Easier Manipulation of NUL-terminated strings
	Score: 3.61

	Conditional Expressions (like C’s ? operator)
	Score 3.47

	Other suggestions
	Comments for the committee

