
N2181

1

ISO/IEC 1539-1:2018 Defect Report
January 12, 2021

This document lists all the reported defects in ISO/IEC 1539-1:2018 (Fortran 2018) that are to be
addressed by a planned Corrigendum 1. JTC1/SC22/WG5 voted on these and comments received follow
each item.

Defect F18/015 failed to win approval and is not reflected in this corrigendum

In this document, “J3” refers to INCITS PL22.3, the US TC, which is responsible for developing the
technical content of the Fortran standard.

See also the following WG5 documents:

• N2176 - WG5 letter ballot 1 on Fortran 2018 interpretations
• N2178 - Results of WG5 letter ballot 1 on Fortran 2018 interpretations

N2181

2

NUMBER: F18/001
TITLE: ACOSH principal value specification is wrong
KEYWORDS: ACOSH
DEFECT TYPE: Erratum
STATUS: Passed by J3 letter ballot

QUESTION:

Clause 16.9.5 ACOSH(X) p5 Result Value has:
 "If the result is complex the imaginary part is expressed in
 radians and lies in the range 0 <= AIMAG (ACOSH (X)) <= {pi}".

There is general agreement that the principal value of ACOSH should
have the real part non-negative which means the imaginary part must
range from -pi to +pi.

Is this a mistake in the definition of ACOSH?

ANSWER:

Yes, this is a mistake. Edits are included to correct this error.
This will be an incompatibility with Fortran 2008.

EDITS to 18-007r1:

[26:17+] 4.3.3 Fortran 2008 compatibility, p10+, insert new para
 "Fortran 2008 required ACOSH of a complex value to have the
 imaginary part nonnegative and had no requirement on
 the real part. This document requires ACOSH of a complex
 value to have a nonnegative real part and has no such
 requirement on the imaginary part."

[340:34-35] 16.9.5 ACOSH, p5 Result Value,
 after "is complex"
 insert "the real part is nonnegative and",
 change "range 0" to "range $-\pi$".
Making the whole p5 read
 "Result Value. The result has a value equal to a processor-
 dependent approximation to the inverse hyperbolic cosine
 function of X. If the result is complex the real part is non-
 negative, and the imaginary part is expressed in radians and
 lies in the range $-\pi$ <= AIMAG (ACOSH (X)) <= π."

SUBMITTED BY: Anton Shterenlikht

N2181

3

HISTORY: 18-236 m217 Submitted
 18-236r1 m217 Put into interp format, revised edits.
 18-236r2 m217 Revised draft - Passed by J3 meeting
 19-228 m220 Passed as amended by J3 letter ballot #35

No WG5 Comments

N2181

4

NUMBER: F18/002
TITLE: Internal procedures in generic interface blocks
KEYWORDS: Internal procedure, generic interface block
DEFECT TYPE: Erratum
STATUS: Passed by J3 letter ballot

QUESTION:

An internal procedure is allowed in a GENERIC statement, but
apparently it cannot appear in a generic interface block.

Section 15.4.3.4.1 (12.4.3.4.1 in F2008) Generic identifiers p1 states
 "A generic interface block specifies a generic interface for each
 of the procedures in the interface block. The PROCEDURE statement
 lists procedure pointers, external procedures, dummy procedures,
 or module procedures that have this generic interface."

Is the apparent prohibition of internal procedures in the PROCEDURE
statement intended?

ANSWER:

No, this was not intended. An internal procedure should be allowed
in a generic interface body. An edit is provided to correct this
mistake.

DISCUSSION:

In F2003, Section 12.3.2.1 Interface Block has rule R1206

 <procedure-stmt> is [MODULE] PROCEDURE <procedure-name-list>

with constraint C1270

 "A <procedure-name> shall have an explicit interface and shall
 refer to an accessible procedure pointer, external procedure,
 dummy-procedure, or module procedure."

Edits in paper 05-202r1 allowed internal procedures to be passed as
actual arguments and to be targets of procedure pointers. This meant
an internal procedure could be the target of a procedure pointer
which was specified in a generic interface body.

N2181

5

Paper 08-178 asked the question "What is the point of excluding
internal procedure in C1207?" and replaced C1207 with

 "A <procedure-name> shall be a nonintrinsic procedure that has an
 explicit interface."

The normative text cited in the question was not modified.
This was an oversight.

EDIT to 18-007r1:

[294:11-12] 15.4.3.4.1 Generic identifiers, p1, second sentence,
 Change "procedure pointers, external procedures, dummy
 procedures, or module procedures"
 to "nonintrinsic procedures with explicit interfaces".

This makes the sentence read:
 "The PROCEDURE statement lists nonintrinsic procedures with explicit
 interfaces that have this generic interface."

SUBMITTED BY: Jon Steidel

HISTORY: 18-251 m217 Submitted
 18-251r1 m217 Revised draft - Passed by J3 meeting
 n/a n/a Typos noted at meeting corrected by /Interp.
 19-228 m220 Passed by J3 letter ballot #35

No WG5 comments

N2181

6

NUMBER: F18/003
TITLE: Pointer association of component of non-definable selector
KEYWORDS: Pointer association, Associate name
DEFECT TYPE: Erratum
STATUS: Passed by J3 letter ballot

QUESTION:

Consider the following

 type :: T
 real, pointer :: X
 end type T

 type(t), external :: F
 real, target :: P

 associate (A => F(42))
 nullify (A%X) !***
 A%X => P !***
 end associate

The topic is whether the statements marked "!***" (the NULLIFY
statement and the pointer assignment statement) conform to the
standard.

11.1.3.3p5 ([175:18-21] of 18-007r1) has two requirements that are
relevant to this topic:
 "The associating entity itself is a variable, but if the selector
 is not a definable variable, the associating entity is not
 definable and shall not be defined or become undefined. If a
 selector is not permitted to appear in a variable definition
 context (19.6.7), neither the associate name nor any subobject
 thereof shall appear in a variable definition context."

With regards to the second sentence, neither NULLIFY nor a pointer
assignment statement is a variable definition context (19.6.7,
[516:12-30] lists fifteen variable definition context: neither
statement appears in the list. Therefore it seems that this
requirement is satisfied.

With regards to the first sentence, the associate-name A "shall not

N2181

7

be defined or become undefined". It appears that neither of these
statements cause A to be defined or become undefined, because
(a) An object of derived type is defined if and only all of its
 nonpointer components are defined (see 19.6.1p4, [511:11]).
 The pointer association status of the component A%X is thus
 irrelevant to the question of whether A is defined.
(b) Neither statement appears anywhere in the giant lists of "Events
 that cause variables to become defined" (or "undefined") in
 19.6.5 and 19.6.6.

Therefore we must reluctantly conclude that the requirements of the
first sentence also appear to be satisfied.

Against this, it is certainly true that the *value* of A is affected
by the statements in question: see 7.5.8 Derived-type values, which
states that the "component value" of a pointer component is its
association status, and
 "The set of values of a particular derived type consists of all
 possible sequences of the component values..."

However, there is no rule in 11.1.3.3 about changing the values, even
though it might seem contradictory that something that changes the
value of an undefinable object would be permitted.

So the question is, are the two statements standard-conforming?

ANSWER:

No, these statements were not intended to be standard-conforming.
The lack of an explicit rule is an error in the standard.
An edit is provided to correct this error.

EDIT to 18-007r1:

[175:21] 11.1.3.3 Other attributes of associate names, p5,
 After "variable definition context"
 insert " or a pointer association context",
making the whole paragraph read:
 "The associating entity itself is a variable, but if the selector
 is not a definable variable, the associating entity is not
 definable and shall not be defined or become undefined. If a
 selector is not permitted to appear in a variable definition
 context (19.6.7), neither the associate name nor any subobject
 thereof shall appear in a variable definition context or pointer

N2181

8

 association context."
{Prohibit the marked statements.
 The extra context is only relevant to pointer subobjects, but this
 need not be stated explicitly.}

{This might appear to be an incompatibility since the explicit
 prohibition is missing from Fortran 2003 and 2008, and thus should
 require an edit to the "compatibility" subclauses in clause 4.
 However as it seems somewhat contradictory, it is argued that those
 standards do not establish an unambiguous interpretation of the code
 in question, so no compatibility issue arises.}

SUBMITTED BY: Van Snyder

HISTORY: 18-262r1 m217 Submitted
 18-262r2 m217 Revised draft - Passed by J3 meeting
 19-228 m220 Passed by J3 letter ballot #35

No WG5 Comments

N2181

9

NUMBER: F18/004
TITLE: Program execution sequence with failed images
KEYWORDS: Program execution, Termination of execution, Failed image,
DEFECT TYPE: Erratum
STATUS: Passed by J3 letter ballot

QUESTION:

Consider execution of a program with more than one image, and some
image has failed (perhaps by execution of FAIL IMAGE, or perhaps by
some actual failure). Let us further suppose that all other images
have initiated normal termination.

According to 5.3.7 "Termination of execution", paragraph 1:
 "Termination of execution of the program occurs
 when all images have terminated execution."
This text is unchanged from Fortran 2008, which did not have failed
images.

As an image that has failed "has ceased participating in program
execution but has not terminated execution", it would seem that in
this situation, execution of the program has not terminated.

Should failed images cause execution of the program not to terminate?

ANSWER:

No, failed images have stopped participating in program execution and
therefore their existence should not prevent program termination.
That this definition is unchanged from Fortran 2008 is an oversight.

An edit is supplied to correct this.

EDIT to 18-007r1:

[38:8] 5.3.7 Termination of execution, p1,
 After "when all images have terminated execution"
 insert "or failed",
 making the last sentence of the paragraph read
 "Termination of execution of the program occurs when all images
 have terminated execution or failed."

N2181

10

SUBMITTED BY: Malcolm Cohen

HISTORY: 19-129 m218 Submitted
 19-129r1 m218 Revised draft - Passed by J3 meeting
 19-228 m220 Passed as amended by J3 letter ballot #25

No WG5 comments

N2181

11

NUMBER: F18/005
TITLE: Does INPUT_UNIT really identify the same unit as *?
KEYWORDS: Connection, INPUT_UNIT
DEFECT TYPE: Interpretation
STATUS: Passed by J3 letter ballot

QUESTION:

According to 16.10.2.13 INPUT_UNIT [429:8-9],
 "The value of the default integer scalar constant INPUT_UNIT
 identifies the same processor-dependent external unit
 preconnected for sequential formatted input as the one
 identified by an asterisk in a READ statement;"

Consider the program:

 PROGRAM input_unit_test
 USE iso_fortran_env
 CHARACTER(80) line
 OPEN(input_unit,FILE='test.dat',ACTION='read')
 READ(input_unit,'(a)') line
 PRINT *,TRIM(line)
 READ(*,'(a)') line
 PRINT *,TRIM(line)
 END PROGRAM

Furthermore, let us suppose the file test.dat contains the
following two lines:
dat line 1
dat line 2
and let us further suppose the file that was preconnected before the
OPEN statement contains the following single line:
inp line 1

Is the output of the program (1):
 dat line 1
 dat line 2
or is it (2):
 dat line 1
 inp line 1
?

N2181

12

The plain meaning of the words
 "identifies the same processor-dependent external unit...
 ...as the one identified by an asterisk in a READ"
would seem to imply that (1) is expected, not (2); however, only
some Fortran processors produce output (1), while others have been
observed to produce output (2).

ANSWER:

Output (1) is correct. According to the quoted words, using
INPUT_UNIT in a READ statement must have the same effect as UNIT=*
(which is the same effect as not having a input/output control list).

It is common for unit 5 to be effectively preconnected to stdin, but
on some processors changing the connection of unit 5 (e.g. with an
OPEN statement) does not affect unit=*. On such a processor, the
value of INPUT_UNIT should not be equal to 5, but to whatever value,
possibly negative, that will continue to connect to unit=*.

EDIT to 18-007r1:

None.

SUBMITTED BY: Malcolm Cohen

HISTORY: 19-130 m218 Submitted
 19-130r1 m218 Revised draft - Passed by J3 meeting
 19-228 m220 Passed by J3 letter ballot #35

No WG5 comments

N2181

13

NUMBER: F18/006
TITLE: Connection of INPUT_UNIT on different images
KEYWORDS: Connection, INPUT_UNIT
DEFECT TYPE: Erratum
STATUS: Passed by J3 letter ballot

QUESTION:

According to 16.10.2.13 INPUT_UNIT [429:8-9],
 "The value of the default integer scalar constant INPUT_UNIT
 identifies the same processor-dependent external unit
 preconnected for sequential formatted input as the one
 identified by an asterisk in a READ statement;"
and according to 12.5.1 Referring to a file [217:10-11],
 "In a READ statement, an io-unit that is an asterisk identifies
 an external unit that is preconnected for sequential formatted
 input on image 1 in the initial team only (12.6.4.3)."

This leaves unanswered the status of the i/o unit identified by
INPUT_UNIT on images other that 1. Plausible interpretations are:
(a) it is not preconnected on other images;
(b) it is preconnected, but to a processor-dependent file;
(c) it is preconnected, but it is not standard-conforming for a
 program to use it;
(d) it is preconnected, but it raises an i/o error condition if a
 program attempts to use it;
(e) attempting to use INPUT_UNIT in any way, including connecting it
 to another file, is not conforming;
(f) INPUT_UNIT may be connected to another file, but it is still
 processor-dependent whether it may be used;
(g) on an image other than image 1,
 - it is processor-dependent whether it is preconnected,
 - if it is preconnected,
 * it is processor-dependent to what file,
 * it is processor-dependent whether use is permitted,
 - if it is subsequently connected, it is processor-dependent
 whether it may be used.

Q1. What is the preconnection status of INPUT_UNIT on images other
 than image one?

Q2. On an image other than image one, if INPUT_UNIT happens to be
 preconnected, may it be used?

N2181

14

Q3. On an image other than image one, if INPUT_UNIT is connected to
 a different file by an OPEN statement, may it be used?

Also, the definition text for INPUT_UNIT in 16.10.2.13 makes no
mention of any caveat, but implies it is preconnected on every image.
Perhaps this text could be clarified.

ANSWER:

A1. INPUT_UNIT (and thus the unit identified by an asterisk in a READ
 statement) was not intended to be preconnected on images other
 than image one in the initial team.

 An edit is supplied to correct this omission.

A2. Moot.

A3. Yes.

EDITS to 18-007r1:

[217:11] 12.5.1 Referring to a file, p4,
 After "on image 1 in the initial team only (12.6.4.3)"
 insert "; it is not preconnected on any other image".
{Clarify preconnection state on images other than one.}
{Editor notes that "image 1" should be "image one".}

[429:9,10] 16.10.2.13 INPUT_UNIT, p1,
 Delete "preconnected for sequential formatted input".
{This is a mere parenthetical remark which could confuse.}
 After "input/output control list (12.6.4.3)." insert new sentence
 "This unit is preconnected for sequential formatted input on
 image one in the initial team only, and is not preconnected
 on any other image."
{Make this match clause 12.}

SUBMITTED BY: Malcolm Cohen

HISTORY: 19-131 m218 Submitted
 19-131r1 m218 Revised draft - Passed by J3 meeting
 19-228 m220 Passed by J3 letter ballot #35

No WG5 comments

N2181

15

NUMBER: F18/008
TITLE: Contradictory assumed-rank requirements
KEYWORDS: Assumed rank
DEFECT TYPE: Erratum
STATUS: Passed by J3 letter ballot

QUESTION:

Paragraph 1 of subclause 8.5.8.7 (Assumed-rank entity) states that an
assumed-rank entity is a dummy data object ... or the associate name
of a RANK DEFAULT block in a SELECT RANK construct.

C837 requires an assumed-rank entity to be a dummy data object. It
does not permit an associate name of a RANK DEFAULT block in a SELECT
RANK construct to have assumed rank.

Is an associate name of a RANK DEFAULT block in a SELECT RANK
construct permitted to have assumed rank?

ANSWER:

Yes, the associate name of a RANK DEFAULT block may have assumed rank.

An edit is supplied to remove the contradiction.

EDIT to 18-007r1:

[101:13-14 C837 in 8.5.8.7 Assumed-rank entity]

At the end of C837, after "or VALUE attribute", insert
 ", or the associate name of a RANK DEFAULT block in a SELECT RANK
 construct whose selector has assumed rank",
making the whole constraint read:

C837 An assumed-rank entity shall be a dummy data object that does not
 have the CODIMENSION or VALUE attribute, or the associate name of
 a RANK DEFAULT block in a SELECT RANK construct whose selector
 has assumed rank.

SUBMITTED BY: Van Snyder

HISTORY: 19-119 m218 Submitted
 19-119r1 m218 Revised draft - Passed by J3 meeting

N2181

16

 19-228 m220 Passed by J3 letter ballot #35

No WG5 comments

N2181

17

NUMBER: F18/009
TITLE: Bad examples in IEEE_ARITHMETIC functions
KEYWORDS: IEEE_VALUE, IEEE_ARITHMETIC module, examples
DEFECT TYPE: Erratum
STATUS: Passed by J3 letter ballot

QUESTION:

In 17.11 the examples for IEEE_MAX_NUM, IEEE_MIN_NUM,
IEEE_QUIET_compare functions, and IEEE_SIGNALING_compare functions all
contain a call to IEEE_VALUE(IEEE_QUIET_NAN). IEEE_VALUE has two
non-optional arguments, not one. Should calls to IEEE_VALUE in each of
these examples have an additional X= argument?

ANSWER:

Yes, IEEE_VALUE has two non-optional arguments, X and CLASS.
The X argument was mistakenly omitted.

Edits are provided to fix these issues.

EDITS to 18-007r1:

[448:12] 17.11.17 IEEE_MAX_NUM p8
Change "IEEE_VALUE (IEEE_QUIET_NAN)" to
 "IEEE_VALUE (1.0, IEEE_QUIET_NAN)"

[449:9] 17.11.19 IEEE_MIN_NUM p8
Change "IEEE_VALUE (IEEE_QUIET_NAN)" to
 "IEEE_VALUE (1.0, IEEE_QUIET_NAN)"

[451:4] 17.11.24 IEEE_QUIET_EQ p7
Change "IEEE_VALUE (IEEE_QUIET_NAN)" to
 "IEEE_VALUE (1.0, IEEE_QUIET_NAN)"

[451:18] 17.11.25 IEEE_QUIET_GE p7
Change "IEEE_VALUE (IEEE_QUIET_NAN)" to
 "IEEE_VALUE (1.0, IEEE_QUIET_NAN)"

[451:32] 17.11.26 IEEE_QUIET_GT p7
Change "IEEE_VALUE (IEEE_QUIET_NAN)" to
 "IEEE_VALUE (1.0, IEEE_QUIET_NAN)"

[452:10] 17.11.27 IEEE_QUIET_LE p7

N2181

18

Change "IEEE_VALUE (IEEE_QUIET_NAN)" to
 "IEEE_VALUE (1.0, IEEE_QUIET_NAN)"

[452:24] 17.11.28 IEEE_QUIET_LT p7
Change "IEEE_VALUE (IEEE_QUIET_NAN)" to
 "IEEE_VALUE (1.0, IEEE_QUIET_NAN)"

[452:38] 17.11.29 IEEE_QUIET_NE p7
Change "IEEE_VALUE (IEEE_QUIET_NAN)" to
 "IEEE_VALUE (1.0, IEEE_QUIET_NAN)"

[457:37] 17.11.41 IEEE_SIGNALING_EQ p7
Change "IEEE_VALUE (IEEE_QUIET_NAN)" to
 "IEEE_VALUE (1.0, IEEE_QUIET_NAN)"

[458:13] 17.11.42 IEEE_SIGNALING_GE p7
Change "IEEE_VALUE (IEEE_QUIET_NAN)" to
 "IEEE_VALUE (1.0, IEEE_QUIET_NAN)"

[458:27] 17.11.43 IEEE_SIGNALING_GT p7
Change "IEEE_VALUE (IEEE_QUIET_NAN)" to
 "IEEE_VALUE (1.0, IEEE_QUIET_NAN)"

[459:4] 17.11.44 IEEE_SIGNALING_LE p7
Change "IEEE_VALUE (IEEE_QUIET_NAN)" to
 "IEEE_VALUE (1.0, IEEE_QUIET_NAN)"

[459:18] 17.11.45 IEEE_SIGNALING_LT p7
Change "IEEE_VALUE (IEEE_QUIET_NAN)" to
 "IEEE_VALUE (1.0, IEEE_QUIET_NAN)"

[459:32] 17.11.46 IEEE_SIGNALING_NE p7
Change "IEEE_VALUE (IEEE_QUIET_NAN)" to
 "IEEE_VALUE (1.0, IEEE_QUIET_NAN)"

SUBMITTED BY: Jon Steidel

HISTORY: 19-124 m218 Submitted - Passed by J3 meeting
 19-228 m220 Passed by J3 letter ballot #35

No WG5 comments

N2181

19

NUMBER: F18/010
TITLE: Categories of pure procedures
KEYWORDS: pure
DEFECT TYPE: Erratum
STATUS: Passed by J3 letter ballot

QUESTION:

Subclause 15.7 Pure procedures begins with a list of categories of
pure procedures. The list does not include procedure pointers or
type-bound procedures. Dummy procedures are included in the list, and
so dummy procedure pointers are allowed, but other procedure pointers
are not.

Q1. Can procedure pointers that are not dummy procedures be pure?

Q2: Can type-bound procedures be pure?

ANSWER:

A1. Procedure pointers that are not dummy procedures are allowed to
 be pure. The absence of procedure pointers in the list in
 Subclause 15.7 is an oversight. An edit to correct the oversight
 is provided.

A2. Type-bound procedures that are bound to pure procedures are pure.
 The absence of type-bound procedures in Subclause 15.7 is an
 oversight. An edit to correct the oversight is provided.

EDITS to 18-007r1:

[324:1, 15.7 "Pure procedures" p1]
 Replace
 "specified to be PURE, or"
 with
 "specified to be PURE,
 * a procedure pointer that has been specified to be PURE,
 * a type-bound procedure that is bound to a pure procedure, or"
{ Add missing entries to the list in Subclause 15.7. }

SUBMITTED BY: Robert Corbett

HISTORY: 19-151 m218 Submitted - Passed by J3 meeting

N2181

20

 19-228 m220 Passed by J3 letter ballot #35

No WG5 comments

N2181

21

NUMBER: F18/011
TITLE: Categories of elemental procedures
KEYWORDS: elemental
DEFECT TYPE: Erratum
STATUS: Passed by J3 letter ballot

QUESTION:

The list of categories of elemental procedures at the start of
Subclause 15.8 "Elemental procedures" [325:11-12] is incomplete.
Procedures that are defined to be elemental in intrinsic modules
are not included. Type-bound procedures are not included.
Dummy procedures and procedure pointers are not included, but
there is evidence that those omissions were intentional.

The standard intrinsic modules specify several procedures to be
elemental. The omission of module procedures declared in intrinsic
modules from the list in Subclause 15.8 creates a contradiction.

Subclause 7.5.6.2 [80:5-8] and Subclause 7.5.7.3 [82:16] both
assume that type-bound procedures may be elemental.

Nonintrinsic elemental procedures cannot be used as actual arguments
[301: 29, 15.5.1 "Syntax of a procedure reference" p1]. Elemental
procedures specified in the standard intrinsic modules are generic,
and so they cannot be passed as actual arguments. Elemental intrinsic
procedures can be passed as actual arguments [309: 2-5, 15.5.2.9
"Actual arguments associated with dummy procedure entities" p1], but
the text cited indicates that dummy procedures cannot be elemental.

Procedure pointers pose a bit of a problem. A nonintrinsic elemental
procedure cannot be the target of a pointer assignment [165:34,
10.2.2.2 "Syntax of the pointer assignment statement"]. However,
Subclause 10.2.2.4 "Pointer procedure assignment" paragraph 3 states

 If the pointer object has an explicit interface, its
 characteristics shall be the same as the pointer target except
 that the pointer target may be pure even if the pointer object
 is not pure and the pointer target may be an elemental intrinsic
 procedure even if the pointer object is not elemental.

The final phrase suggests that a pointer object might be elemental,
but it does not say that it can be elemental.

N2181

22

Q1. Is a procedure in an intrinsic module that is specified
 to be elemental an elemental procedure?

Q2. Can a type-bound procedure be elemental?

Q3. Can a dummy procedure be specified to be elemental?

Q4. Can a procedure pointer be specified to be elemental?

ANSWER:

A1. Procedures in intrinsic modules that are specified to be elemental
 are elemental. An edit is provided to correct the omission in
 Subclause 15.8.

A2. A type-bound procedure that is bound to an elemental
 procedure is elemental. An edit is provided to correct
 the omission in Subclause 15.8.

A3. A dummy procedure cannot be specified to be elemental.
 An edit is provided to make this restriction explicit.

A4. A procedure pointer cannot be specified to be elemental.
 An edit is provided to make this restriction explicit.

The edits provided are intended to make the impact on the existing
standard small. More extensive changes are probably desirable, and
could be made in a revision of the standard. In particular, the
restrictions on dummy arguments and procedure pointers could be made
constraints.

EDITS to 18-007r1:

[167:8] 10.2.4.4 Procedure pointer assignment, p3, Replace
 "elemental intrinsic procedure even if the pointer object
 is not elemental."
 with
 "elemental intrinsic procedure, even though the pointer
 object is not elemental."
{ Remove the suggestion that a procedure pointer might
 be elemental.}

[325:11-12] 15.8.1 Elemental procedure declaration and interface, p1,
 Replace the sentence

N2181

23

 "An elemental procedure is ... an elemental subprogram."
 with
 "An elemental procedure is
 * an elemental intrinsic procedure (16.1),
 * a module procedure in an intrinsic module, if it is
 specified to be elemental,
 * a procedure that is defined by an elemental subprogram, or
 * a type-bound procedure that is bound to an elemental
 procedure."
 and insert a new paragraph following it:
 "A dummy procedure or procedure pointer shall not be
 specified to be ELEMENTAL."
{ Add missing items to the list in Subclause 15.8. Add a
 missing restriction to Subclause 15.8. }

SUBMITTED BY: Robert Corbett

HISTORY: 19-153 m218 Submitted
 19-153r1 m218 Amended - Passed by J3 meeting
 19-228 m220 Passed by J3 letter ballot #35

No WG5 comments

N2181

24

NUMBER: F18/012
TITLE: Internal procedure in a generic interface
KEYWORDS: Internal procedure, Generic interface
DEFECT TYPE: Clarification
STATUS: Passed by J3 letter ballot

QUESTION:

In Fortran 2003, an internal subprogram was not allowed to define a
specific procedure for a generic identifier:

Fortran 2003 [285:14-15]
C1207 (R1206) A <procedure-name> shall have an explicit interface and
 shall refer to an accessible procedure pointer, external
 procedure, dummy procedure, or module procedure.

Paper 08-178 proposed the new feature of permitting an internal
procedure in this context, and this was included in Fortran 2008:

[Fortran 2008 281:8]
C1207 (R1206) A <procedure-name> shall be a nonintrinsic procedure
 that has an explicit interface.

However, this new feature was not mentioned in the Introduction of
Fortran 2008, nor is it mentioned in Annex C.1 of Fortran 2018
(which lists Fortran 2008 features not originally mentioned in its
Introduction).

Should this be mentioned in Annex C.1?

ANSWER:

Yes, this new feature should be mentioned in Annex C.1.

An edit is provided.

EDIT:

[528:22+] C.1 Fortran 2008 features not mentioned in its
 Introduction, p1,
 Insert an item at the end of the bullet list:
 "- An internal procedure name can appear in a
 <procedure-stmt> in a generic interface block."

N2181

25

SUBMITTED BY: Van Snyder

HISTORY: 19-179 m219 Submitted - Passed by J3 meeting
 19-228 m220 Passed by J3 letter ballot #35

No WG5 comments

N2181

26

NUMBER: F18/013
TITLE: TEAM_NUMBER arguments and intrinsic function are ambiguous
KEYWORDS: NUM_IMAGES, IMAGE_INDEX, TEAM_NUMBER, teams
DEFECT TYPE: Erratum
STATUS: Passed by J3 letter ballot

QUESTION:

Consider

PROGRAM p
 n = NUM_IMAGES()
 n1 = MERGE(1,2,THIS_IMAGE()<2)
 n2 = MERGE(1,3,THIS_IMAGE()<3)
 FORM TEAM(n1,x)
 FORM TEAM(n2,y)
 IF (n1==1) THEN
 CHANGE TEAM (x)
 PRINT *,NUM_IMAGES(TEAM_NUMBER=1) !(A)
 PRINT *,NUM_IMAGES(TEAM_NUMBER=3) !(B)
 END TEAM
 END IF
END PROGRAM

According to 16.9.145 NUM_IMAGES, the TEAM_NUMBER argument
 "shall identify the initial team or a team whose parent is the
 same as that of the current team".

However, at (A), there are two teams with team number 1 and the same
parent, one created by the FORM TEAM with "n1", the other created by
the FORM TEAM with "n2".

At (B), there is only one team with team number 3 and the same parent
as the current team, however, it is not a "sibling" team in that it
was not created by the same FORM TEAM statement.

Referring to the definition of the term "team number" at 3.145.4:
 "-1 which identifies the initial team, or positive integer that
 identifies a team within its parent team"
which has the same flaw in that there could be multiple teams within
the parent team that have that number.

Q1. Was TEAM_NUMBER in NUM_IMAGES, and the "team number" definition,
 intended to limit the identification to teams created by

N2181

27

 corresponding FORM TEAM statement executions?

Q2. The TEAM_NUMBER argument of IMAGE_INDEX suffers from similar
 wording. Was this also intended to be limited to "sibling" teams?

ANSWER:

Yes, this is the intention. Edits are provided.

The edits use the terminology "corresponding" executions, as execution
on more than one image can hardly be the "same" execution.

The edits also use the term "sibling teams". As sibling teams are
always created as a group, and really only have meaning when there are
more than one, the plural form is probably most appropriate.

EDITS:

[20:27+] Terms and definitions:
 Insert after the definition of "parent team"
 "3.145.3+
 sibling teams
 teams created by a single set of corresponding executions of the
 FORM TEAM statement (11.6.9)"

[20:30] 3.145.4 team number, definition, change
 "within its parent team" -> "among its sibling teams"
making the definition read
 "-1 which identifies the initial team, or a positive integer that
 identifies a team among its sibling teams (5.3.4)

[36:23] 5.3.4 Program execution, para 2, final sentence
 Replace "Within its parent team,"
 with "Among its sibling teams,"
making the whole sentence read
 "Among its sibling teams, each team is identified by its
 team_number; this is the integer value that was specified in the
 FORM TEAM statement."
{This is just waffle, no need to index "sibling teams".}

[131:18-19] In 9.6 Image selectors, p3 second sentence
 Replace "one of the teams that were formed by execution of
 the FORM TEAM statement for"
 with "a sibling team of"

N2181

28

making the whole sentence read
 "If a TEAM_NUMBER= specifier appears in an image-selector and the
 current team is not the initial team, the value of scalar-int-expr
 shall be equal to the value of a team number for a sibling team of
 the current team, and the team of the image selector is that team;
 the object shall be an established coarray in an ancestor team of
 the current team, or an associating entity of the CHANGE TEAM
 construct."

[204:35] 11.6.9 FORM TEAM statement, p1,
 change "creates new teams"
 to "creates a set of sibling teams"
 and index "sibling teams" here.
This makes that whole paragraph read:
 "The FORM TEAM statement creates a set of sibling teams whose
 parent team is the current team."

[380:12-13] In 16.9.97 IMAGE_INDEX, p3 TEAM_NUMBER
 Change
 "team whose parent is the same as that of the current team"
 to
 "sibling team of the current team"
 and index "sibling teams" here.
making the whole argument read:
 "TEAM_NUMBER shall be an integer scalar. It shall identify the
 initial team or a sibling team of the current team."

[401:24-25] 16.9.145 NUM_IMAGES, p3 Arguments, TEAM_NUMBER argument,
 Change
 "team whose parent is the same as that of the current team"
 to
 "sibling team of the current team"
 and index "sibling teams" here.
This makes that whole argument read:
 "TEAM_NUMBER shall be an integer scalar. It shall identify the
 initial team or a sibling team of the current team."

[421:9]16.9.189 TEAM_NUMBER([TEAM]), p5 Result Value,
 Change "within its parent team"
 to "among its sibling teams",
 and index "sibling teams" here.
This makes that whole paragraph read:
 "The result has the value -1 if the specified team is the initial
 team; otherwise, the result value is equal to the positive integer

N2181

29

 that identifies the specified team among its sibling teams."

SUBMITTED BY: Malcolm Cohen, Jon Steidel, and John Reid

HISTORY: 19-190 m219 Submitted
 19-190r1 m219 Merged with 19-178 - Passed by J3 meeting
 19-228 m220 Passed as amended by J3 letter ballot #35

WG5 Comments:

Edit for [20:30] 3.145.4 team number, definition.
The edit and its expanded version are not consistent. I suggest
removing "(5.3.4)" from the expanded version. I think that this
reference is unnecessary with the term "sibling teams" defined
(see edit for [20:27+] Terms and definitions).

N2181

30

NUMBER: F18/014
TITLE: Type of OPERATION arguments to the REDUCE intrinsic
KEYWORDS: REDUCE, OPERATION, polymorphic, type
DEFECT TYPE: Erratum
STATUS: Passed by J3 letter ballot

QUESTION:

Section 16.9.161 REDUCE p3 describes the arguments to the intrinsic
subroutine CO_REDUCE.

The description of the ARRAY argument states:
 "ARRAY shall be an array of any type."

It describes the OPERATION argument as:

 "OPERATION shall be a pure function with exactly two arguments; each
 argument shall be a scalar, nonallocatable, nonpointer, nonoptional
 dummy data object with the same type and type parameters as ARRAY.
 If one argument has the ASYNCHRONUS, TARGET, or VALUE attribute, the
 other shall have that attribute. Its result shall be a non-
 polymorphic scalar and have the same type and type parameters as
 ARRAY. OPERATION should implement a mathematically associative
 operation. It need not be commutative."

The function result of OPERATION cannot be polymorphic. The arguments
to OPERATION must have the same type as its result, and thus cannot be
polymorphic. However, ARRAY can be polymorphic. This means the dynamic
type of ARRAY must be the same type as the arguments and result of
OPERATION. This seems like an unfortunate requirement.

Was it intended that the dynamic type of ARRAY be required to match
the type and type parameters of the arguments of OPERATION?

ANSWER:

No, this requirement was not intended. Edits are provided to correct
the problem.

EDITS:
[408:36] change "type and type parameters"
 to "declared type and type parameters"

N2181

31

[408:39] change "type and type parameters"
 to "declared type and type parameters"

so that the description of OPERATION reads:
 "shall be a pure function with exactly two arguments; each argument
 shall be a scalar, nonallocatable, nonpointer, nonoptional dummy
 data object with the same declared type and type parameters as
 ARRAY. If one argument has the ASYNCHRONOUS, TARGET, or VALUE
 attribute, the other shall have the attribute. Its result shall be
 a non-polymorphic scalar and have the same declared type and type
 parameters as ARRAY. OPERATION should implement a mathematically
 associative operation. It need not be commutative."

[409:5] change "type and type parameters"
 to "declared type and type parameters"

so that the first sentence of Result Characteristics reads:
 "The result is of the same declared type and type parameters as
 ARRAY."

SUBMITTED BY: Jon Steidel

HISTORY: 19-192 m219 Submitted
 19-192r1 m219 Revised draft - Passed by J3 meeting
 19-228 m220 Passed by J3 letter ballot #35

No WG5 comments

N2181

32

NUMBER: F18/016
TITLE: Host association changes in Fortran 2018
KEYWORDS: Host association
DEFECT TYPE: Erratum
STATUS: Passed by J3 letter ballot

QUESTION:

The default semantics for accessing entities by host association from
an interface body appear to be different in Fortran 2018 than in
Fortran 2008.

Problem 1:
In Fortran 2008, an interface body that is not a module procedure
interface body cannot access entities in its host by host association
unless an IMPORT statement is present in the interface body. The same
rule applies by default in Fortran 2018 if the interface body is for
an external or dummy procedure, but not if the interface body is for
an abstract interface or a procedure pointer that is not a dummy
procedure pointer (see 8.8 "IMPORT statement" [117:17-19]).

For example, in
 DOUBLE PRECISION X
 ABSTRACT INTERFACE
 SUBROUTINE SUB(A)
 REAL(KIND(X)) A
 END SUBROUTINE
 END INTERFACE
Fortran 2008 specifies that X is default REAL, and that therefore so
is argument A, but Fortran 2018 specifies that X is accessed by host
association and so argument A is double precision.

Problem 2:
The Fortran 2008 standard specified that a submodule has access to
host entities, but the Fortran 2018 standard does not specify any
default host association semantics for a submodule (it specifies
IMPORT semantics only for nested scoping units (see 8.8 "IMPORT
statement" [117:23-26]). That makes submodules using host association
not conforming.

For example, in
 MODULE mod
 INTERFACE

N2181

33

 MODULE SUBROUTINE S
 END SUBROUTINE
 END INTERFACE
 INTEGER,PARAMETER :: WP = KIND(0.0)
 END MODULE
 SUBMODULE (mod) submod
 REAL(WP) X
 END SUBMODULE
the submodule references WP by host association in Fortran 2008, but
Fortran 2018 does not specify any semantics and so the whole thing is
not conforming.

Problem 3:
The Fortran 2008 standard specified that generic identifiers were
accessible by host association, but the Fortran 2018 standard specifies
that host association is for named entities.

For example, in
 INTERFACE OPERATOR(.plus.)
 PROCEDURE plusfun
 END INTERFACE
 ...
 CONTAINS
 SUBROUTINE SUB(a,b,c)
 ...
 c = a.plus.b
Fortran 2018 would not permit access to the user-defined operator.

Problem 4:
The Fortran 2018 standard specifies that BLOCK constructs access named
entities in their hosts by host association. This makes no sense
because BLOCK constructs already have access to entities in their
hosts through inclusive scoping.

Were these changes intended?

ANSWER:

No, none of these changes were intended.

Edits are provided to restore the semantics specified in the Fortran
2008 standard.

EDITS to 18-007r1:

N2181

34

[117:18-19] 8.8 IMPORT statement, p2, second sentence,
 Replace "interface body for an ... procedure."
 with
 "interface body that is not a module procedure
 interface body."

 making the sentence read

 "This is the default for an interface body that is not
 a module procedure interface body."

[117:25-26] 8.8 IMPORT statement, p4, second sentence,
 Change "for a nested scoping unit ... procedure"
 to "for a derived-type definition, internal subprogram,
 module procedure interface body, module subprogram, or
 submodule"
 making the sentence read
 "This is the default for a derived-type definition,
 internal subprogram, module procedure interface body,
 module subprogram, or submodule."

[502:7] 19.5.1.4 "Host association", p1, first sentence
 Change "nested scoping unit"
 to "derived-type definition, interface body, internal
 subprogram, module subprogram, or submodule",
 Delete "named",
 Making the sentence read
 "A derived-type definition, interface body, internal
 subprogram, module subprogram, or submodule has access to
 entities from its host as specified in 8.8."

SUBMITTED BY: Robert Corbett

HISTORY: 19-257 m220 F18/016 Submitted
 19-257r1 m220 Revised draft - Passed by J3 meeting
 20-132 m222 Passed by J3 letter ballot #36

No WG5 comments

N2181

35

NUMBER: F18/017
TITLE: Final subroutine invocation order
KEYWORDS: FINAL ALLOCATABLE
DEFECT TYPE: Erratum
STATUS: Passed by J3 letter ballot

QUESTION:

Consider

 Module m
 Type base
 Contains
 Final basef
 End Type
 Type other
 Contains
 Final otherf
 End Type
 Type,Extends(base) :: t
 Type(other),Allocatable :: comp
 Contains
 Final tf
 End Type
 Contains
 Subroutine basef(a)
 Type(base),Intent(InOut) :: a
 Print *,'basef'
 End Subroutine
 Subroutine otherf(b)
 Type(other),Intent(InOut) :: b
 Print *,'otherf'
 End Subroutine
 Subroutine tf(c)
 Type(t),Intent(InOut) :: c
 Print *,'tf'
 End Subroutine
 End Module
 Program test
 Use m
 Call sub
 Contains
 Subroutine sub

N2181

36

 Type(t) x
 Allocate(x%comp)
 End Subroutine
 End Program

When the subroutine is executed, it will finalize X on exit,
so what is the expected output?

Finalization of X occurs before auto-deallocation of X%COMP;
this follows from 9.7.3.2 paragraph 9.

According to 7.5.6.2, in sequence
 (1) the object's final procedure is invoked, i.e. TF is called,
 (2) finalizable components are finalized, i.e. OTHERF is called,
 (3) the parent is finalized, i.e. BASEF is called.
And according to 7.5.6.3, deallocating X%COMP finalizes it,
and so
 (4) OTHERF is called.
I.e. the output is
 TF
 OTHERF
 BASEF
 OTHERF

However, this violates the principle that you only finalize something
once.

Q1. Is X%COMP actually finalized twice?

It could be argued that "finalizing X before deallocating X%COMP"
only puts an order on invocation of TF, and in particular, finalizing
the parent pseudo-component need not precede the deallocation. But
this would still invoke OTHERF twice.

Q3. Is the auto-deallocation of an allocatable component required to
 follow the finalization of other components and the parent
 pseudo-component?

Now consider the case where X%COMP is not allocated (i.e. delete the
ALLOCATE statement). According to 7.5.6.2, it should invoke
 (1) TF on X
 (2) OTHERF on X%COMP
 (3) BASEF on X%BASE
however, as X%COMP is unallocated, the invocation in step (2) does

N2181

37

not conform to the procedure reference requirements, i.e. the program
is not conforming.

Q2. Is X%COMP required to be allocated when X is finalized?

DISCUSSION:

An object is only finalized in situations listed in 7.5.6.3.
Every such situation would also unconditionally deallocate any
allocatable component, and if that component were finalizable,
such deallocation would also unconditionally finalize the
component (* except for intrinsic assignment, where a previous
interpretation added an exclusion).

Therefore it seems to be broken to finalize any allocatable component
during finalization of the object it is contained in, as either it
will be non-conforming, or will be finalized twice (* except for the
previously-added exception).

The design where allocatable entities are finalized at the time of
deallocation would seem to be simpler, easier to understand, and less
buggy.

Perhaps the finalization of allocatable components in 7.5.6.2 step
(2) should be removed, and the exclusion for intrinsic assignment for
deallocation-finalization should also be removed?

ANSWER:

A1. No object should be finalized twice.
A2. No, a finalizable allocatable component should not be required to
 be allocated when its containing object is finalized.

The inclusion of allocatable components in 7.5.6.2 step (2) is an
error in the standard, and the intrinsic assignment exception for
finalization on deallocation is likewise an error.

Edits are provided to correct these errors.

A3. An allocatable component should be able to be finalized as soon
 as the object's final subroutine returns, i.e. there should be no
 requirement on the processor to produce a particular invocation
 order here.

N2181

38

The ambiguity in whether component deallocation and component
finalization should be ordered is inadvertent. An edit is provided
to remove any implication that these need to have a specific order.

FURTHER ELUCIDATION:

Finalization ordering is a partial ordering. When final subroutines
will be executed for a type (TFIN), an allocated allocatable component
thereof (AFIN), an ordinary (viz nonallocatable nonpointer) component
thereof (OFIN), and the type's parent type (PFIN), the orderings are:
 TFIN<AFIN
 TFIN<OFIN<PFINAL
Note there is no ordering between AFIN and OFIN, and no ordering
between AFIN and PFIN. Thus, after applying the edits below to the
standard, the following execution orders are valid:
 TFIN, AFIN, OFIN, PFIN
 TFIN, OFIN, AFIN, PFIN
 TFIN, OFIN, PFIN, AFIN

EDITS to 18-007r1:

[80:9] 7.5.6.2 The finalization process, p1, item (2),
 "All finalizable" -> "All nonallocatable finalizable".
{Remove redundant finalization.}

[80:22] 7.5.6.3 When finalization occurs, p2,
 After
 "unless it is the variable in an intrinsic assignment statement"
 Delete "or a subobject thereof".
{Remove allocatable component exclusion in intrinsic assignment.}

[137:28] 9.7.3.2 Deallocation of allocatable variables, p9,
 Change "that object is finalized"
 To "any final subroutine for that object is executed",
 Making the whole paragraph read
 "If an allocatable component is a subobject of a finalizable
 object, any final subroutine for that object is executed before
 the component is automatically deallocated."

SUBMITTED BY: Malcolm Cohen

HISTORY: 20-117 m221 F18/017 Submitted - Passed by J3 meeting
 20-132 m222 Passed as amended by J3 letter ballot

N2181

39

No WG5 comments

N2181

40

NUMBER: F18/018
TITLE: Public namelist and private variable
KEYWORDS: NAMELIST PUBLIC PRIVATE
DEFECT TYPE: Clarification
STATUS: Passed by J3 letter ballot

QUESTION:

Consider

 Module m1
 Real,Public :: x
 End Module
 Module m2
 Use m1
 Private x
 Namelist/nml/x
 End Module

On the face of it, module M2 appears to violate
 C8105 (R868) A namelist-group-object shall not have the PRIVATE
 attribute if the namelist-group-name has the PUBLIC attribute.
as the local X indeed has the PRIVATE attribute. On the other hand,
it is just a local name for the remote X which is PUBLIC, which
raises doubts.

Comment: This seems to be a very old constraint dating back to when
 the standard was much more restrictive about such things.
 It is not clear why this should be disallowed.
 Even if X were a local variable of M2, it is not clear what
 purpose this constraint serves.

A quick compiler survey revealed that most but not all compilers
think that it is where the variable is defined that matters, i.e.
many accept the example code.

Q1. Should PRIVATE local variables really be prohibited from a PUBLIC
 namelist?

If the answer to Q1 is yes,
Q2. Is it PRIVATE on the local name that matters, or PRIVATE on the
 variable where it is defined?

N2181

41

COMMENT:

A NAMELIST statement can contain several namelist-group-names, so it
is also somewhat ambiguous as to which namelist-group-objects this
constraint applies to.

ANSWER:

A1. Yes. Although it would be reasonable to lift this restriction in
 a future standard, it is a deliberate restriction in this standard.

A2. It is whether the local name has the PRIVATE attribute that
 matters, not where the variable is declared.

An edit is provided.

EDIT to 18-007r1:

[119:8-9] 8.9 NAMELIST statement, C8105,
 After "PRIVATE attribute" insert "in the local scope",
 and change "the namelist-group-name" to "its namelist-group-name",
 making the whole constraint read
 "C8105 (R868) A namelist-group-object shall not have the PRIVATE
 attribute in the local scope if its namelist-group-name
 has the PUBLIC attribute."

SUBMITTED BY: Malcolm Cohen

HISTORY: 20-127 m221 F18/018 Submitted
 20-127r1 m221 Passed by J3 meeting
 20-132 m222 Passed as amended by J3 letter ballot #36

No WG5 comments

	January 12, 2021

