
ISO/IEC/JTC1/SC22/WG5-N2203-1

ISO/IEC 1539-1:2018 - TECHNICAL CORRIGENDUM 2
(ANNOTATED VERSION)

Notes for WG5:
Edits are included in this document from interpretations:
f18/007, f18/015, f18/019, f18/023,f18/024, f18/026, f18/027, f18/028, f18/029, f18/030, f18/031, f18/033,
f18/034, f18/035,f18/036 f18/037, f18/038, f18/039, f18/040, f18/041.

Interpretations approved without generating edits:
f18/032.

Page and line numbers on the right refer to 18-007r1. They, the interpretation references and notes in italics
are for WG5 use only and will be deleted before the document is submitted to ISO. The ISO version of the
standard has paragraph numbers but not line numbers.

[xiv:3] f18/007
Introduction
In the second paragraph, in the tenth sentence of bullet point “Intrinsic procedures and modules”, after
“C_F_POINTER” add “and C_F_PROCPOINTER”.

[xiv:24] f18/035
In the second paragraph, in the last sentence of bullet point “Program units and procedures”, after “dummy
argument” add “, or a coarray ultimate component of a dummy argument,”.

[41:25] f18/039
Subclause 5.4.7
Append a new sentence to the second paragraph:

“If a coarray is an unsaved local variable of a recursive procedure, its corresponding
coarrays are the ones at the same depth of recursion of that procedure on each image.”

[134:16-17] f18/039 and f18/040
Subclause 9.7.1.2
Delete the last sentence in the third paragraph, that is “If the coarray … on those images.”, and insert
the following three sentences:

“If the coarray is a dummy argument, the ultimate arguments (15.5.2.3) on those images
shall be corresponding coarrays. If the coarray is an ultimate component of a dummy
argument, the ultimate arguments on those images shall be declared with the same name in
the same scoping unit. If the coarray is an unsaved local variable of a recursive procedure,
the execution of the ALLOCATE statement shall be at the same depth of recursion of that
procedure on every active image in the current team.”

[158:4] f18/028
Subclause 10.1.11
At the end of the sixth paragraph, add the sentence:

“If a specification inquiry depends on the type of an object of derived type, that type shall be
previously defined.”

[181:18-24] f18/037
Subclause 11.1.7.2
In the first sentence of constraint C1128, after “of finalizable type,” insert “shall not have an ultimate
allocatable component,”

[225:29+] f18/038
Subclause 12.6.2.1
After constraint C1213 insert a new constraint:

“C1213a A SIZE= specifier shall not appear in a list-directed or namelist input statement.”

[264:35+] f18/033
Subclause 13.7.2.3.3
In table 13.1:

change row 1, column 1 from “Ew.d” to “Ew.d with w > 0”;
change row 3, column 1 from “Ew.d E0” to “Ew.d E0 or E0.d”;
change row 4, column 1 from “Dw.d” to “Dw.d with w > 0”;
add new row 5 with cells:

column 1: “D0.d”
column 2: “any”
column 3: “D±z1z2…zs or E±z1z2…zs”

[265:24+] f18/033
Subclause 13.7.2.3.4
In table 13.2:

change row 1, column 1 from “ENw.d” to “ENw.d with w > 0”;
change row 3, column 1 from “ENw.d E0” to “ENw.d E0 or EN0.d”;

[266:18+] f18/033
Subclause 13.7.2.3.5
In table 13.3:

change row 1, column 1 from “ESw.d” to “ESw.d with w > 0”;
change row 3, column 1 from “ESw.d E0” to “ESw.d E0 or ES0.d”;

[295:11] f18/023
Subclause 15.4.3.4.2
In the final sentence of the first paragraph, after “(10.1.5)” insert “, treating a CLASS(*) dummy
argument as not differing in type or kind”.

[310:14] f18/036
Subclause 15.5.2.11
In the second paragraph of the subclause delete the second and third sentences, that is “If the dummy
argument … array element order”. Insert a new (third) paragraph:

“If the dummy argument is not of type character with default or C character kind:
• if the actual argument is an array expression, the element sequence consists of the

elements in array element order;
• if the actual argument is an array element designator of a simply contiguous array, the

element sequence consists of that array element and each element that follows it in array
element order;

• otherwise, if the actual argument is scalar, the element sequence consists of that scalar.”

[310:19-21] f18/036
In the second bullet point of the third (now fourth) paragraph, after “substring designator” insert “of
a simply contiguous array”. In the third bullet point change “if the actual” to “otherwise, if the
actual” and delete “and not an array ... designator”.

[311:44-46] f18/035
Subclause 15.5.2.13
In the first paragraph, at the end of item (3) (c) delete “or”.
At the end of item (3) (d) replace “image.” by “image, or
(e) the dummy argument has a coarray ultimate component and the action is a coindexed

definition of the corresponding coarray by a different image.”.

[312:9-11] f18/035
In the first paragraph, at the end of item (4) (c) delete “or”.
At the end of item (4) (d) replace “image.” by “image, or
(e) the dummy argument has a coarray ultimate component and the reference is a coindexed

reference of the corresponding coarray by a different image.”.

[314:1-] f18/035
Replace the first sentence of Note 5 by:

“The exceptions to the aliasing restrictions for dummy arguments that are coarrays or have
coarray ultimate components enable cross-image access while the procedure is executing.”

[324:20-] f18/019
Subclause 15.7
In the second paragraph, following Note 1 and before constraint C1590, add a new constraint:

C1589a A named local entity or construct entity of a pure subprogram shall not be of a type
that has default initialization of a data pointer component to a target at any level of
component selection.

[325:8+] f18/007
In the second paragraph, following constraint C1599, add a new constraint:

C1599a A reference to the function C_FUNLOC from the intrinsic module
ISO_C_BINDING shall not appear in a pure subprogram if its argument is impure.

[355:19] f18/031
Subclause 16.9.46
In paragraph 3, Arguments, in the first sentence of the description for argument A delete “dynamic”.

[355:20] f18/031
In the second sentence, after “It shall not be” insert “polymorphic or”.

[355:22] f18/027
In the third paragraph, at the end of the final sentence of the description for argument A add:
“, including (re)allocation of any allocatable ultimate component, and setting the dynamic type of
any polymorphic allocatable ultimate component”.

[356:42] f18/029
Subclause 16.9.49
In paragraph 3, Arguments, after the first sentence of the description for argument A add the new
sentence:

“It shall not be of a type with an ultimate component that is allocatable or a pointer.”

[357:9] f18/030
In the same paragraph, in the first sentence of the description for argument OPERATION after
“nonallocatable, ” add “noncoarray, ”.

[400:33] f18/041
Subclause 16.9.144
Add a new sentence to the end of the sixth paragraph:

“If the context of the reference to NULL is an actual argument corresponding to an assumed-
rank dummy argument, MOLD shall be present."

[408:36] f18/030
Subclause 16.9.161
In paragraph 3, Arguments, in the first sentence of the description for argument OPERATION before
“nonpointer, ” add “noncoarray, ”.

[440:8] f18/034
Subclause 17.10
In the third paragraph change the description of ES to read:

“ES indicates that the procedure is a pure elemental subroutine”

[443:23] f18/034
Subclause 17.11.5
In paragraph 2, Class, change “Elemental” to “Pure elemental”.

[443:34] f18/034
Subclause 17.11.6
In paragraph 2, Class, change “Elemental” to “Pure elemental”.

[469:26-27] f18/007
Subclause 18.2.3.1
In the second sentence, change “C_F_POINTER subroutine is” to “C_F_POINTER and
C_F_PROCPOINTER subroutines are”.

[472:16] f18/007
Subclause 18.2.3.4
In paragraph 2, Class, change “Pure subroutine” to “Subroutine”.

[473:27] f18/026
Subclause 18.2.3.7
Replace paragraph 3, Argument, by:

Argument. X shall be of interoperable type and type parameters, and shall not be an
assumed-size array, an assumed-rank array that is associated with an assumed-size array, an
unallocated allocatable variable, or a pointer that is not associated.

[491:27] f18/024
Subclause 18.5.5.9
In paragraph 2, Formal Parameters, in the description of source, second sentence, delete
“elem_len, ” and delete the comma after “rank”.

[491:28+] f18/024
After the same sentence add a new sentence:

“If source is not a null pointer and the C descriptor with the address result does not
describe a deferred length character pointer, the corresponding values of the elem_len
member shall be the same in the C descriptors with the addresses source and result.”

[491:31] f18/024
In paragraph 3, Description, first sentence, replace “base_addr and dim” by “base_addr, dim and
possibly elem_len”.

[491:38] f18/024
At the end of the second bullet point of paragraph 3, Description, add the new sentence:

“If the C descriptor with the address result describes a character pointer of deferred length,
the value of its elem_len member is set to source->elem_len.”

[543:42-545:17] f18/015
Subclause C.6.8
In the second paragraph replace the entire sample program, that is:

PROGRAM ... END PROGRAM possibly_recoverable_simulation

by the following:

PROGRAM possibly_recoverable_simulation
 USE, INTRINSIC :: ISO_FORTRAN_ENV, ONLY:TEAM_TYPE, STAT_FAILED_IMAGE
 IMPLICIT NONE
 INTEGER, ALLOCATABLE :: failures (:) ! Indices of the failed images.
 INTEGER, ALLOCATABLE :: old_failures(:) ! Previous failures.
 INTEGER, ALLOCATABLE :: map(:) ! For each spare image k in use,
 ! map(k) holds the index of the failed image it replaces.
 INTEGER :: images_spare ! No. spare images.
 ! Not altered in main loop.
 INTEGER :: images_used [*] ! On image 1, max index of image in use.
 INTEGER :: failed ! Index of a failed image.
 INTEGER :: i, j, k ! Temporaries
 INTEGER :: status ! stat= value
 INTEGER :: team_number [*] ! 1 if in working team; 2 otherwise.
 INTEGER :: local_index [*] ! Index of the image in the team.
 TYPE (TEAM_TYPE) :: simulation_team
 LOGICAL :: done [*] ! True if computation finished on the image.

 ! Keep 1% spare images if we have a lot, just 1 if 10-199 images,
 ! 0 if <10.
 images_spare = MAX(NUM_IMAGES()/100,0,MIN(NUM_IMAGES()-9,1))
 images_used = NUM_IMAGES () - images_spare
 ALLOCATE (old_failures(0), map(images_used+1:NUM_IMAGES()))
 SYNC ALL (STAT=status)

 outer : DO
 local_index = THIS_IMAGE ()
 team_number = MERGE (1, 2, local_index<=images_used[1])
 SYNC ALL (STAT = status)
 IF (status/=0 .AND. status/=STAT_FAILED_IMAGE) EXIT outer
 IF (IMAGE_STATUS (1) == STAT_FAILED_IMAGE) &
 ERROR STOP "cannot recover"
 IF (THIS_IMAGE () == 1) THEN
 ! For each newly failed image in team 1, move into team 1 a
 ! non-failed image of team 2.
 failures = FAILED_IMAGES () ! Note that the values
 ! returned by FAILED_IMAGES increase monotonically.
 k = images_used
 j = 1
 DO i = 1, SIZE (failures)
 IF (failures(i) > images_used) EXIT ! This failed image and
 ! all further failed images are in team 2 and do not matter.
 failed = failures(i)
 ! Check whether this is an old failed image.
 IF (j <= SIZE (old_failures)) THEN
 IF (failed == old_failures(j)) THEN
 j = j+1
 CYCLE ! No action needed for old failed image.
 END IF
 END IF
 ! Allow for the failed image being a replacement image.
 IF (failed > NUM_IMAGES()-images_spare) failed = map(failed)
 ! Seek a non-failed image
 DO k = k+1, NUM_IMAGES ()
 IF (IMAGE_STATUS (k) == 0) EXIT
 END DO
 IF (k > NUM_IMAGES ()) ERROR STOP "cannot recover"
 local_index [k] = failed
 team_number [k] = 1

 map(k) = failed
 END DO
 old_failures = failures
 images_used = k
 ! Find the local indices of team 2
 j = 0
 DO k = k+1, NUM_IMAGES ()
 IF (IMAGE_STATUS (k) == 0) THEN
 j = j+1
 local_index[k] = j
 END IF
 END DO
 END IF
 SYNC ALL (STAT = status)
 IF (status/=0 .AND. status/=STAT_FAILED_IMAGE) EXIT outer
 !
 ! Set up a simulation team of constant size.
 ! Team 2 is the set of spares, so does not participate.
 FORM TEAM (team_number, simulation_team, NEW_INDEX=local_index, &
 STAT=status)
 IF (status/=0 .AND. status/=STAT_FAILED_IMAGE) EXIT outer

 simulation : CHANGE TEAM (simulation_team, STAT=status)
 IF (status == STAT_FAILED_IMAGE) EXIT simulation
 IF (team_number == 1) THEN
 iter : DO
 CALL simulation_procedure (status, done)
 ! The simulation_procedure:
 ! - sets up and performs some part of the simulation;
 ! - starts from checkpoint data if these are available;
 ! - stores checkpoint data for all images from time to
 ! - time and always before return;
 ! - sets status from its internal synchronizations;
 ! - sets done to .TRUE. when the simulation has completed.
 IF (status == STAT_FAILED_IMAGE) THEN
 EXIT simulation
 ELSE IF (done) THEN
 EXIT iter
 END IF
 END DO iter
 END IF
 END TEAM (STAT=status) simulation

 SYNC ALL (STAT=status)
 IF (team_number == 2) done = done[1]
 IF (done) EXIT outer
 END DO outer
 IF (status/=0 .AND. status/=STAT_FAILED_IMAGE) &
 PRINT *,'Unexpected failure',status
END PROGRAM possibly_recoverable_simulation

