
N2205

ISO/IEC 1539-1:2018 Defect Report for
Corrigendum 2
August 11, 2022

This document lists all the reported defects in ISO/IEC 1539-1:2018 (Fortran 2018) that are to be
addressed by a planned Corrigendum 2. JTC1/SC22/WG5 voted on these and comments received follow
each item. In this document, “J3” refers to INCITS PL22.3, the US TC, which is responsible for developing
the technical content of the Fortran standard. See also the following WG5 documents:

• N2195 WG5 letter ballot 2 on Fortran 2018 interpretations
• N2197 Results of WG5 letter ballot 2 on Fortran 2018 interpretations

N2205

NUMBER: F18/007
TITLE: Problems with C_FUNLOC and C_F_PROCPOINTER being PURE
KEYWORDS: C_FUNLOC, C_F_PROCPOINTER, ISO_C_BINDING
DEFECT TYPE: Erratum
STATUS: Passed by J3 letter ballot

QUESTION:

1) Regarding C_FUNLOC (X),

In 15.7 Pure procedures, constraint C1590 is:

"C1590 The specification-part of a pure subprogram shall specify
that all its dummy procedures are pure."

In 15.5.2.9 Actual arguments associated with dummy procedure entities,
the first paragraph says

"If the interface of a dummy procedure is explicit, its
characteristics as a procedure (15.3.1) shall be the same as those
of its effective argument, except that a pure effective argument
may be associated with a dummy argument that is not pure and an
elemental intrinsic actual procedure may be associated with a dummy
procedure (which cannot be elemental)."

If C_FUNLOC is PURE, then these together imply that the actual
argument, X, has to be a PURE procedure. This is not stated in the
specification of this function in 18.2.3.5. This has the effect of
limiting the uses of C_FUNLOC compared to the specification in Fortran
2008. This is not indicated in 4.3.3 Fortran 2008 compatibility. Was
this an intentional change, or was making C_FUNLOC PURE a mistake?

2) Regarding C_F_PROCPOINTER (CPTR, FPTR), a similar argument to that
above implies that the INTENT(OUT) procedure pointer, FPTR, is a PURE
procedure. However, there is no stated requirement that the input
argument CPTR be PURE, and indeed there is no specification of what
that even means if CPTR is a pointer to an interoperable C function.
This suggests that C_F_PROCPOINTER provides a backdoor allowing an
impure procedure to appear to be pure, invalidating the assumptions
that are associated with a pure procedure. Was making C_F_PROCPOINTER
PURE a mistake?

ANSWER:

1) It was not an error to make C_FUNLOC pure in principle. But if a
reference to C_FUNLOC appears in a pure procedure, its argument should
have been required to be pure.

It is noted that constraint C1590 does not apply to C_FUNLOC as it is
a procedure from an intrinsic module, and as such is not defined by a
subprogram. The only question is whether its argument is required to
be pure, and in what circumstances.

2) Making C_F_PROCPOINTER pure was a mistake.

Edits are included to correct these errors.

N2205

EDITS to 18-007r1:

[325:8+] In 15.7 Pure Procedures, following constraint C1599, add a
new constraint:

"C1599a A reference to the function C_FUNLOC from the intrinsic module
ISO_C_BINDING shall not appear in a pure subprogram if its argument is
impure."

[469:26-27] In 18.2.3 Procedures in the module, 18.2.3.1 General,
second sentence, change "C_F_POINTER subroutine is" to "C_F_POINTER
and C_F_PROCPOINTER subroutines are".

Making the whole sentence read

"The C_F_POINTER and C_F_PROCPOINTER subroutines are impure; all
other procedures in the module are pure."

[472:16] In 18.2.3.4 C_F_PROCPOINTER (CPTR, FPTR), Class paragraph,
Change "Pure subroutine" to "Subroutine".

SUBMITTED BY: Bill Long

HISTORY: 19-114 m218 Submitted
 19-114r1 m218 Revised draft
 19-114r2 m218 Passed as amended by J3 meeting
 19-228 m220 Failed J3 letter ballot #35
 21-124 m223 Repair edits to satisfy objections raised in
 letter ballot, passed by J3 meeting 223, 11-2.
 21-184 m225 Passed by J3 letter ballot #37

Comment:
F18/007
Muxworthy:
Also [xiv:3] after "C_F_POINTER" add "and C_F_PROCPOINTER".

--

--
NUMBER: F18/015
TITLE: Example in C.6.8 is wrong
KEYWORDS: failed images
DEFECT TYPE: Erratum
STATUS: Passed by J3 letter ballot

The example code for failed images in C.6.8 raises several issues about
its correctness.

QUESTION:

Q1.A: In the example in C.6.8, the assignments
 me[k] = failures(i)
 id[k] = 1
 are made by image 1 and the assignments

N2205

 me = THIS_IMAGE ()
 id = MERGE (1, 2, me<=images_used)
 are made by image k in unordered segments. Was this intended?

 B: In the example in C.6.8, the assignment
 me[k] = failures(i)
 is made by image 1 and me[k] is referenced on other images in
 the FORM TEAM statement in unordered segments. Was this
 intended?

Q2. Suppose the program in C.6.8 is executed by 11 images, so 1 is
 intended to be a spare. If image 9 in the initial team fails
 immediately before it executes the first FORM TEAM statement, then
 image 10 in the initial team, which executes FORM TEAM with a
 team-number == 1 and NEW_INDEX == 10 (== me), will have specified
 a NEW_INDEX= value greater than the number of images in the new
 team. Should there be a test for this in the code?

Q3.A: If a replacement image has failed, its image index will be the
 value of an element of the array failures, a replacement for it
 will be found, and the replacement will be placed in team 1. Was
 this intended?

 B: The value of images_used increases each time the setup loop is
 executed. However, the array failures will contain the image
 indices of all the failed images and allocate all of them fresh
 replacements. Was this intended?

Q4. The variable images_used is incremented only on image 1 but is
 referenced by other images near the beginning and end of DO setup.
 Was this intended?

Q5. The intention is that on each cycle of the DO iter loop, a
 calculation is performed on the worker images and if any of them
 fail during this, the calculation is resumed from a checkpoint with
 the failed images replaced by spares. On resumption, the variable
 read_checkpoint has the value true on all the old worker images
 to indicate that they should access the checkpoint data. On a
 replacement image, this variable will still have its initial value
 of false. Was this intended?

Q6. The code for choosing the number of spares does not correspond to
 the comment for it. Was this intended?

ANSWER:

1-A: No. An image control statement that provides segment ordering is
 needed.

1-B: No.

2: This is quite a low-probability event, so exiting with the error
 condition seems appropriate.

3-A: No.

3_B: No. It was intended to allocate replacements only for the newly

N2205

 failed images.

Furthermore, the example contains more errors than in the list above.
Therefore an edit is provided that replaces the entire example with
a complete rewrite, involving correction of additional errors, a
better choice of names, and more comments.

4: No. The problem near the end of DO setup may be avoided by replacing
the statement
 IF (THIS_IMAGE () > images_used) done = done[1]
by
 IF (team_number == 2) done = done[1]
The problem near the beginning of DO setup may be avoided by making the
variable images_used a coarray and referencing images_used[1]. This
will need the addition of a SYNC ALL statement just before the
statement
 outer : DO
to ensure that the correct value is used on all images on the
first iteration of the loop.

5. No. The variable read_checkpoint is not needed and should be
removed. The initial entry is just the special case of the checkpoint
data being null so that the calculation needs to be started.

6. No. In the line
 images_spare = MAX(NUM_IMAGES()/100,0,MIN(NUM_IMAGES()-10,1))
"10" should be "9".

Some of the noteworthy additional changes are:
 - declarations separated out and many comments added or changed;
 - logical variable START added to distinguish the first execution of
 the outer do loop when READ_CHECKPOINT should be false;
 - rename ME to LOCAL_INDEX and ID to TEAM_NUMBER;
 - code added to calculate the local indices of team 2;
 - THEN keyword added to ELSE IF (done) statement.

EDITS to 18-007r1:

[543:42-545:17] C.6.8 Example involving failed images,
 Replace the entire example with the code below.
 Note that many lines and comments are broken to keep
 them within 70 columns, these should be joined up or
 reformatted in the actual standard.
"

PROGRAM possibly_recoverable_simulation
 USE, INTRINSIC :: ISO_FORTRAN_ENV, ONLY:TEAM_TYPE, STAT_FAILED_IMAGE
 IMPLICIT NONE
 INTEGER, ALLOCATABLE :: failures (:) ! Indices of the failed images.
 INTEGER, ALLOCATABLE :: old_failures(:) ! Previous failures.
 INTEGER, ALLOCATABLE :: map(:) ! For each spare image k in use,
 ! map(k) holds the index of the failed image it replaces.
 INTEGER :: images_spare ! No. spare images.
 ! Not altered in main loop.
 INTEGER :: images_used [*] ! On image 1, max index of image in use.
 INTEGER :: failed ! Index of a failed image.
 INTEGER :: i, j, k ! Temporaries

N2205

 INTEGER :: status ! stat= value
 INTEGER :: team_number [*] ! 1 if in working team; 2 otherwise.
 INTEGER :: local_index [*] ! Index of the image in the team.
 TYPE (TEAM_TYPE) :: simulation_team
 LOGICAL :: done [*] ! True if computation finished on the image.

 ! Keep 1% spare images if we have a lot, just 1 if 10-199 images,
 ! 0 if <10.
 images_spare = MAX(NUM_IMAGES()/100,0,MIN(NUM_IMAGES()-9,1))
 images_used = NUM_IMAGES () - images_spare
 ALLOCATE (old_failures(0), map(images_used+1:NUM_IMAGES()))
 SYNC ALL (STAT=status)

 outer : DO
 local_index = THIS_IMAGE ()
 team_number = MERGE (1, 2, local_index<=images_used[1])
 SYNC ALL (STAT = status)
 IF (status/=0 .AND. status/=STAT_FAILED_IMAGE) EXIT outer
 IF (IMAGE_STATUS (1) == STAT_FAILED_IMAGE) &
 ERROR STOP "cannot recover"
 IF (THIS_IMAGE () == 1) THEN
 ! For each newly failed image in team 1, move into team 1 a
 ! non-failed image of team 2.
 failures = FAILED_IMAGES () ! Note that the values
 ! returned by FAILED_IMAGES increase monotonically.
 k = images_used
 j = 1
 DO i = 1, SIZE (failures)
 IF (failures(i) > images_used) EXIT ! This failed image and
 ! all further failed images are in team 2 and do not matter.
 failed = failures(i)
 ! Check whether this is an old failed image.
 IF (j <= SIZE (old_failures)) THEN
 IF (failed == old_failures(j)) THEN
 j = j+1
 CYCLE ! No action needed for old failed image.
 END IF
 END IF
 ! Allow for the failed image being a replacement image.
 IF (failed > NUM_IMAGES()-images_spare) failed = map(failed)
 ! Seek a non-failed image
 DO k = k+1, NUM_IMAGES ()
 IF (IMAGE_STATUS (k) == 0) EXIT
 END DO
 IF (k > NUM_IMAGES ()) ERROR STOP "cannot recover"
 local_index [k] = failed
 team_number [k] = 1
 map(k) = failed
 END DO
 old_failures = failures
 images_used = k
 ! Find the local indices of team 2
 j = 0
 DO k = k+1, NUM_IMAGES ()
 IF (IMAGE_STATUS (k) == 0) THEN
 j = j+1
 local_index[k] = j

N2205

 END IF
 END DO
 END IF
 SYNC ALL (STAT = status)
 IF (status/=0 .AND. status/=STAT_FAILED_IMAGE) EXIT outer
 !
 ! Set up a simulation team of constant size.
 ! Team 2 is the set of spares, so does not participate.
 FORM TEAM (team_number, simulation_team, NEW_INDEX=local_index, &
 STAT=status)
 IF (status/=0 .AND. status/=STAT_FAILED_IMAGE) EXIT outer

 simulation : CHANGE TEAM (simulation_team, STAT=status)
 IF (status == STAT_FAILED_IMAGE) EXIT simulation
 IF (team_number == 1) THEN
 iter : DO
 CALL simulation_procedure (status, done)
 ! The simulation_procedure:
 ! - sets up and performs some part of the simulation;
 ! - starts from checkpoint data if these are available;
 ! - stores checkpoint data for all images from time to
 ! - time and always before return;
 ! - sets status from its internal synchronizations;
 ! - sets done to .TRUE. when the simulation has completed.
 IF (status == STAT_FAILED_IMAGE) THEN
 EXIT simulation
 ELSE IF (done) THEN
 EXIT iter
 END IF
 END DO iter
 END IF
 END TEAM (STAT=status) simulation

 SYNC ALL (STAT=status)
 IF (team_number == 2) done = done[1]
 IF (done) EXIT outer
 END DO outer
 IF (status/=0 .AND. status/=STAT_FAILED_IMAGE) &
 PRINT *,'Unexpected failure',status
END PROGRAM possibly_recoverable_simulation
"

SUBMITTED BY: John Reid

HISTORY: 19-182 m219 Submitted
 19-182r3 m219 Revised draft - Passed by J3 meeting
 19-228 m220 Failed J3 letter ballot #35
 20-105 m221 Revised answer - Passed by J3 meeting
 20-132 m222 Passed as amended by J3 letter ballot #36
 N2178 n/a Failed WG5 letter ballot N2176.
 21-105 m223 Revised answer
 21-105r1 m223 Further revised, Passed by J3 meeting 223.
 21-184 m225 Passed by J3 letter ballot #37

No WG5 comments

--

N2205

--

NUMBER: F18/019
TITLE: PURE and default initialization
DEFECT TYPE: Erratum
STATUS: Passed by J3 letter ballot

QUESTION:

An essential property of pure procedures is that they do not modify
the values of nonlocal variables except through dummy arguments. The
addition of default initialization of pointer components makes it
possible to violate this property. Because default initialization does
not imply the SAVE attribute, a local variable of derived type in a
pure procedure can include a pointer component whose target is a
nonlocal variable. The definition of pure procedures in subclause 15.7
allows a program to modify the value of a nonlocal variable through
such a component.

For example,

 PROGRAM EXAMPLE1
 REAL, TARGET :: X = 1.0
 TYPE T
 REAL, POINTER :: P => X
 END TYPE T
 CALL SUBR
 PRINT *, X ! X has been changed to 2.0
 CONTAINS
 PURE SUBROUTINE SUBR
 TYPE(T) Y
 Y%P = 2.0
 END SUBROUTINE SUBR
 END

A local variable is not needed, for example,

 PROGRAM example2
 REAL,TARGET :: x = 123
 TYPE t
 REAL,POINTER :: p => x
 END TYPE
 CALL sub
 PRINT *,x ! No longer == 123?
 CONTAINS
 PURE SUBROUTINE sub()
 ASSOCIATE(y=>t())
 y%p = -999 ! Affects x.
 END ASSOCIATE
 END SUBROUTINE
 END PROGRAM

A polymorphic variable can be used, for example,

 PROGRAM example2
 REAL,TARGET :: x = 123

N2205

 TYPE t
 END TYPE
 TYPE,EXTENDS(t0) :: t
 REAL,POINTER :: p => x
 END TYPE
 CALL sub
 PRINT *,x ! No longer == 123?
 CONTAINS
 PURE SUBROUTINE sub()
 CLASS(t0) y ! Declared type has no initialized ptr comp.
 ALLOCATE(t::y) ! Without SOURCE=, gets a pointer to x.
 SELECT TYPE(y)
 TYPE IS (t)
 y%p = -999 ! Affects x.
 END SELECT
 END SUBROUTINE
 END PROGRAM

ALLOCATE with MOLD= instead of a type-spec can do the same.

If component initialization is not an attribute of the component, more
convoluted examples are possible using SEQUENCE types so that the
local variable does not have default initialization but can be
initialized using a compatible type that does.

Q. Was it intended to allow nonlocal variables to be modified by a
 pure procedure in this way?

ANSWER:

A: No. An edit is supplied to correct the standard.

Note: The question of whether component initialization is an attribute
 should be addressed by a separate interpretation request.

EDIT to 18-007r1:

[324:20-] 15.7 Pure procedures, between NOTE 1 and C1590,
 insert new constraint
 "C1589a A named local entity or construct entity of a pure
 subprogram shall not be of a type that has default
 initialization of a data pointer component to a target at
 any level of component selection."
{With no local or construct entity designator of a "bad" type being
 allowed, one cannot write a pointer component reference to it.
 This is stricter than strictly necessary, as it effectively forbids
 such types from any usage within pure, even unproblematic usage.}

SUBMITTED BY: Robert Corbett

HISTORY: 20-151 m222 Submitted
 21-123 m223 Revised with answer
 21-123r1 m223 Passed by J3 meeting 223.
 21-184 m225 Passed as amended by J3 letter ballot #37

Comment:
F18/019

N2205

Corbett:
I do not object to the answer. I object to the proposed edit.

The text explaining the answer in essence says that if no
local or construct variable or named constant is "of a type
that has default initialization of a data pointer component
to a target any level of component selection" the problems
described in the QUESTION portion of the interpretation
request cannot arise. I believe this assertion is correct.

The proposed edit might ban a bit more than is intended. It
clearly suffices to ban the cases that need to be banned.
However, it might be read to ban cases that do not need to
be banned. Specifically, it might be read as banning
type names that name derived types that include default
initializations of pointer components to targets. I do not
think it does, but I am not sure it does not.

A type name can name a local entity that might seem to be
subject to the new constraint. However, I do not think that
a derived type is "of a type" (it is a type), and therefore,
is not subject to the constraint. I find that to be a slender
reed. An alternate edit might be

 C1589a A named local or construct data entity of a pure
 subprogram shall not be of a {declared} type that
 has default initialization of a data pointer
 component to a target at any level of component
 selection.

The word "declared" need not be part of the edit, but I find
the sentence easier to read with it. If the the edit is
changed as indicated, I will change my answer to "-Y-".

If the proposed ban is intended to include type names, I
still do not object to the interpretation, but different
edits will be needed.

(Further discussion in email with Malcolm Cohen disagreeing
with Robert Corbett's objections.)

--

--

NUMBER: F18/023
TITLE: CLASS(*) ambiguous operator overloading
KEYWORDS: CLASS(*) generic OPERATOR
DEFECT TYPE: Erratum
STATUS: Passed by J3 letter ballot

QUESTION:

Consider the program

 Module m

N2205

 Interface Operator(==)
 Module Procedure mp
 End Interface
 Contains
 Logical Function mp(a,b)
 Class(*),Intent(In) :: a,b
 mp = .False.
 Select Type(a)
 Type Is (Integer)
 Select Type(b)
 Type Is (Integer)
 mp = .True.
 End Select
 End Select
 End Function
 End Module
 Program ambiguous
 Use m
 If (13==999) Then
 Print *,'Invoked the user function'
 Else
 Print *,'Did not invoke the user function'
 End If
 End Program

Is this program valid?
If so, does it invoke the user function or the intrinsic operation?

It is clear from the standard that the user is not supposed to be able
to override intrinsic operators, merely extend them. The last sentence
of 15.4.3.4.2p1 "Defined operations" says:
 "If the operator is an intrinsic-operator (R608), the number of dummy
 arguments shall be consistent with the intrinsic uses of that
 operator, and the types, kind type parameters, or ranks of the dummy
 arguments shall differ from those required for the intrinsic
 operation (10.1.5)."

However, CLASS(*) encompasses these while "differing".

ANSWER:

The program is not conforming because it is ambiguous.

However, the interface was intended to be forbidden; as noted, the
standard clearly intended to prohibit overriding intrinsic operations.
An edit is provided to correct this oversight.

EDITS to 18-007r1:

[295:11] 15.4.3.4.2 Defined operations, p1, last sentence,
 After "(10.1.5)"
 insert ", treating a CLASS(*) dummy argument as not differing in
 type or kind".
{A bit ugly, but we can't use "distinguishable" because operations have
 operands not arguments."

SUBMITTED BY: Paul Richard Thomas

N2205

HISTORY: 21-113 m223 Submitted, passed by J3 meeting 223.
 21-184 m225 Passed by J3 letter ballot #37

No WG5 comments

--

--

NUMBER: F18/024
TITLE: CFI_setpointer with result a deferred length character
KEYWORDS: C interoperability
DEFECT TYPE: Erratum
STATUS: Passed by J3 letter ballot

QUESTION:

Is the requirement in CFI_setpointer that the elem_lem member have the
same value in the source and result arguments intended to apply if the
result is of type CHARACTER with the length parameter deferred?

ANSWER:

No. It is an oversight in the standard that this rule apply to the case
of result being of type CHARACTER and having the length parameter
deferred.

Currently in section 18.5.5.9 "The CFI_setpointer function" states in
para 2 that

"If source is not a null pointer, the corresponding values of the
elem_len, rank, and type members shall be the same in the C
descriptors with the addresses source and result."

The function can therefore not work correctly if the "result"
parameter is a descriptor address for a deferred-length character
entity coming in from Fortran, because the elem_len value is not
available. Manual updates to result->elem_len are prohibited by 18.6
para 1.

The CFI_setpointer function in the intrinsic module ISO_C_BINDING is
intended to provide a means for C programmers to replicate the pointer
association capability in Fortran, for dummy arguments in interfaces
with with interoperable interfaces. Thus, for the case of a character
result having deferred length, which is allowed at [478:21], the
correct action should be for the elem_len value from the source to be
copied to the same member of result as part of execution of the
function.

Edits are supplied to correct this defect.

EDITS to 18-007r1:

In 18.5.5.9 The CFI_setpointer function

N2205

- [491:27] In the description of the source formal parameter, second
 sentence, delete "elem_len, ".

- [491:28+] In the description of the source formal parameter, after
 the second sentence add new sentence:

 "If source is not a null pointer and the C descriptor with the
 address result does not describe a deferred length character
 pointer, the corresponding values of the elem_len member shall be
 the same in the C descriptors with the addresses source and result."

- [491:31] In the first sentence of paragraph 3, "Description" replace
 "base_addr and dim" by "base_addr, dim and possibly elem_len".

- [491:38] At the end of the second bullet point of paragraph 3,
 "Description", add new sentence;

 "If the C descriptor with the address result describes a character
 pointer of deferred length, the value of its elem_len member is set
 to source->elem_len".

SUBMITTED BY: Reinhold Bader

HISTORY: 21-102r1 m223 Submitted
 21-102r3 m223 Passed by J3 meeting 223.
 21-184 m225 Passed by J3 letter ballot #37

Comment:
F18/024
Muxworthy:
At [491:27] also delete "," after "rank".

--

--

NUMBER: F18/026
TITLE: C_SIZEOF argument
DEFECT TYPE: Erratum
STATUS: Passed by J3 letter ballot

QUESTION:

Consider the example
 SUBROUTINE test(b)
 USE iso_c_binding
 REAL(c_double) b(:),a(SIZE(b))
 PRINT *,c_sizeof(a) ! A
 PRINT *,c_sizeof(b) ! B
 PRINT *,c_sizeof(a(::2)) ! C
 PRINT *,c_sizeof(a+1) ! D
 PRINT *,c_sizeof(1.0_c_double) ! E
 END SUBROUTINE

N2205

18.2.3.7 C_SIZEOF (X) states
 "X shall be an interoperable data entity..."

According to that, the reference to C_SIZEOF marked A is valid, as A
is interoperable (an explicit-shape array of interoperable type and
type parameters). And the reference marked B is invalid, as only
explicit-shape arrays and assumed-size arrays are interoperable, thus
assumed-shape arrays are definitely not.

For the references at C and D, the standard seems to be silent on the
matter of whether they are interoperable. It is clear for named
variables, but although subobject designators can denote variables,
they are not names, and expressions are not variables at all. Being
silent implies non-conformance as no interpretation is established.

The reference at E also appears to be non-conforming, as the standard
specifies no criteria for interoperability of expressions.

However, the description of the result of C_SIZEOF only makes use of
the interoperability of the type and type parameters.

Are these references intended to be conforming?
If not, should the standard be clarified to say that X shall be an
interoperable named variable?

ANSWER:

Yes, these references were all intended to be conforming.
An edit is supplied to correct this mistake, with an addition to
require that any pointer or allocatable argument be associated or
allocated.

EDIT to 18-007r1:

[473:27] 18.2.3.7 C_SIZEOF (X), p3 Argument,
 Replace the paragraph with:

 "Argument. X shall be of interoperable type and type parameters,
 and shall not be an assumed-size array, an assumed-rank array
 that is associated with an assumed-size array, an unallocated
 allocatable variable, or a pointer that is not associated."
{Loosen the requirements.}

SUBMITTED BY: Malcolm Cohen

HISTORY: 21-134 m224 Submitted
 21-134r1 m224 Revised
 21-134r2 m224 Revised again
 22-101r1 m226 Disallow unassociated/unallocated argument.
 Passed by J3 meeting 226.
 22-150 m227 Passed by J3 letter ballot #39.

No WG5 comments

--

--

N2205

NUMBER: F18/027
TITLE: CO_BROADCAST with allocatable component
KEYWORDS: CO_BROADCAST allocatable component
DEFECT TYPE: Erratum
STATUS: Passed by J3 letter ballot

QUESTION:

Consider the program

program example
 type :: my_string_t
 character(len=:), allocatable :: contents
 end type
 type(my_string_t) :: string
 if (this_image() == 1) string%contents = "Hello, World!"
 call co_broadcast(string, source_image=1)
 print *, string%contents
end program

Is this program valid?
If so, what is the status of string%contents on images other than 1?

The description for argument A in the standard (Section 16.9.46)
states that A:
 "shall have the same shape, dynamic type, and type parameter value,
 in corresponding references."

and given the example that follows, would indicate that allocatable
array arguments must be allocated to the same shape on all images
prior to the call to CO_BROADCAST. However, it also states that A:
 "becomes defined, as if by intrinsic assignment, on all images"

which would indicate that objects with allocatable components would
have those components (re)allocated.

Is it intended for CO_BROADCAST to be usable by objects with
allocatable components, and have those components be (re)allocated on
the receiving images? Furthermore, can those components be polymorphic,
(i.e. be declared with CLASS instead of TYPE)?

ANSWER:

The program is conforming because argument A satisfies the
requirements:
 "shall have the same shape, dynamic type, and type parameter value,
 in corresponding references."

and string%contents should be allocated with value "Hello, World!"
because string shall:
 "becomes defined, as if by intrinsic assignment, on all images"

EDIT to 18-007r1:

[355:22] 16.9.46 CO_BROADCAST, p3 Arguments, argument A, last sentence
 At the end of the last sentence

N2205

 add ", including (re)allocation of any allocatable ultimate
 component, and setting the dynamic type of any polymorphic
 allocatable ultimate component".

Somewhat redundant because "as if by intrinsic assignment" should
already indicate it, but clearly the clarification is needed, as some
compilers have not interpreted it as such.

SUBMITTED BY: Brad Richardson

HISTORY: 21-139 m224 Submitted
 21-139r1 m224 Removed alternate answer, repaired edit,
 passed by J3 meeting 224, 8-5.
 21-184 m225 Passed by J3 letter ballot #37

No WG5 comments

--

--

NUMBER: F18/028
TITLE: Specification inquiry
DEFECT TYPE: Erratum
STATUS: Passed by J3 letter ballot

QUESTION:

Consider the following program:
 implicit type (t) (a-z)
 integer,parameter :: n = storage_size(x)
 type t
 character(len=n) :: s
 end type t
 print *, n
 end

Two compilers tested issue a compile time error message while a third
compiler compiled the program and printed "0" when executed.

Is the use of storage_size(x) a valid specification expression
in this program?

DISCUSSION:

In the above program, x is implicitly typed to be type(t). It is used
in a specification expression requiring knowledge of type(t), prior to
the specification of type(t). There is no text in the standard to
prohibit this usage.

The rules for specification expressions require the type, type
parameters, array bounds, and cobounds of a variable to be known
via prior specification, or use or host association when the variable
is used in a specification expression. If an element of an array whose
value is used in a specification expression, the array must be fully
specified in prior declarations.

N2205

The intent is that specification expressions which are constant ex-
pressions can be evaluated when seen.

ANSWER:

No, the program is not conforming. The use of an implicitly typed var-
iable of derived type in a specification inquiry prior to the spec-
ification of the derived type was overlooked. An edit is provided
to correct this oversight.

EDIT to 18-007r1:

[158:4] 10.1.11 Specification expression p6
 Insert at the end of the paragraph:
 "If a specification inquiry depends on the type of an object of
 derived type, that type shall be previously defined."
{It is only possible for the type of a variable not to be previously
 defined if it is typed by the implicit typing rules, but a pointer
 component can refer a type before its definition.}

SUBMITTED BY: Jon Steidel

HISTORY: 21-146 m224 Submitted
 21-146r1 m224 Revised edit, passed by J3 meeting 224.
 21-184 m225 Passed by J3 letter ballot #37

No WG5 comments

--

--

NUMBER: F18/029
TITLE: Type of main argument of CO_REDUCE
KEYWORDS: CO_REDUCE
DEFECT TYPE: Erratum
STATUS: Passed by J3 letter ballot

QUESTION:

The arguments of OPERATION are required to be scalar data objects that
are nonallocatable, nonpointer, and nonpolymorphic. Was it intended to
allow the type to have components that are allocatable, pointer, or
polymorphic?

ANSWER:

No. The restrictions were imposed to allow an implementation to
involve an image copying a scalar value to another image as for
intrinsic assignment to a scalar coarray. This would not be possible
if the type were to have an ultimate component that is allocatable,
a pointer, or polymorphic. It was intended for this to be forbidden.
An edit is provided to correct this oversight. Forbidding allocatable
and pointer ultimate components is sufficient to forbid polymorphic
ultimate components too.

EDIT to 18-007r1:

N2205

[356:42] In 16.9.49 CO_REDUCE, para 3, after first sentence, add
 "It shall not be of a type with an ultimate component that is
 allocatable or a pointer".

SUBMITTED BY: John Reid

HISTORY: 21-137 m224 Submitted
 21-137 m224 Passed by J3 meeting 224, 8-6.
 21-184 m225 Passed by J3 letter ballot #37

No WG5 comments

--

--

NUMBER: F18/030
TITLE: CO_REDUCE/REDUCE OPERATION with coarray argument
DEFECT TYPE: Erratum
STATUS: Passed by J3 letter ballot

QUESTION:

Consider the function

 Pure Real Function f(a,b) Result(r)
 Real,Intent(In) :: a[*],b[*]
 r = a[1]*b[1]
 End Function

This function appears to satisfy all the requirements on the OPERATION
argument to CO_REDUCE.

Q1. Was this intended to be a valid operation for CO_REDUCE?

Q2. Was this intended to be a valid operation for REDUCE?

ANSWER:

A1. No, this was not intended to be valid; the arguments of OPERATION
 should not have been permitted to be coarrays.

A2. Likewise, this was not intended to be valid.

Edits are supplied to correct this oversight.

EDIT to 18-007r1:

[357:9] 16.9.49 CO_REDUCE, p3 Arguments, OPERATION argument,
 After "nonallocatable," insert "noncoarray,".
 That makes the first sentence of the argument read:
"OPERATION shall be a pure function with exactly two arguments; the
 result and each argument shall be a scalar, nonallocatable,
 noncoarray, nonpointer, nonpolymorphic data object with the
 same type and type parameters as A."
{The "noncoarray" requirement is superfluous for the result,

N2205

 but that is not harmful.}

[408:36] 16.9.161 REDUCE, p3 Arguments, OPERATION argument,
 Before "nonpointer," insert "noncoarray,".
 That makes the first sentence of the argument read:
 "OPERATION shall be a pure function with exactly two arguments; each
 argument shall be a scalar, nonallocatable, noncoarray,
 nonpointer, nonpolymorphic, nonoptional dummy data object
 with the same type and type parameters as ARRAY."
{It is "interesting" that these two very similar requirements are
 being expressed differently. Perhaps there is a good reason.}

SUBMITTED BY: Malcolm Cohen

HISTORY: 21-150 m224 Submitted, passed by J3 meeting 224.
 21-184 m225 Passed by J3 letter ballot #37

No WG5 comments
--

--

NUMBER: F18/031
TITLE: CO_BROADCAST with polymorphic argument
DEFECT TYPE: Erratum
STATUS: Passed by J3 letter ballot

QUESTION:

Consider the code fragment

 Subroutine asgn_for_image(a,b,srcimg)
 Class(*) a,b
 Integer,Intent(In) :: srcimg
 ! The assignment A = B is not allowed, so...
 If (This_Image()==srcimg) Then
 Call asgn(b)
 Else
 Call asgn(a)
 End If
 Contains
 Subroutine asgn(x)
 Class(*) x
 Call co_broadcast(x,Source_Image=srcimg)
 End Subroutine
 End Subroutine

There is no requirement forbidding the A argument of CO_BROADCAST
from being polymorphic, so on the face of it, this appears to get
around the prohibition against nonallocatable polymorphic
assignment.

However, CO_BROADCAST states
 "A becomes defined, as if by intrinsic assignment"
but intrinsic assignment is not defined when the variable is a
nonallocatable polymorphic. It can be convincingly argued that
the standard therefore does not establish an interpretation, and

N2205

thus the call to CO_BROADCAST is not valid.

Philosophically, it would seem to be strange to allow polymorphic
broadcast across images, but not to allow polymorphic assignment
of a single variable within an image let alone across images.

Is the call to CO_BROADCAST in the example standard-conforming?

(And if so, what are the actual semantics?)

ANSWER:

No, this was not intended to be conforming. Edits are supplied to
correct this.

EDITS to 18-007r1:

[355:19] 16.9.46 CO_BROADCAST, p3 Arguments, argument A, sentence 1,
delete "dynamic" to make the sentence read
 "A shall have the same shape, type, and type parameter values, in
 corresponding references."
{The word "dynamic" would be confusing here.}

[355:20] 16.9.46 CO_BROADCAST, p3 Arguments, argument A, sentence 2,
after "It shall not be" insert "polymorphic or" making the sentence read
 "It shall not be polymorphic or a coindexed object."

SUBMITTED BY: Malcolm Cohen

HISTORY: 21-151 m224 Submitted
 21-151r1 m224 Eliminated alternative answer,
 passed by J3 meeting 224.
 21-184r1 m225 Failed J3 letter ballot.
 22-100 m226 Revised
 22-100r1 m226 Passed by J3 meeting 226.
 22-150 m227 Passed by J3 letter ballot #39.

No WG5 comments

--

--

NUMBER: F18/032
TITLE: CO_BROADCAST and pointer components
DEFECT TYPE: Clarification
STATUS: Passed by J3 letter ballot

QUESTION:

Consider the following program fragment:

 TYPE t
 CHARACTER(100) name
 REAL location(3)
 TYPE(t),POINTER :: antecedent
 END TYPE

N2205

 TYPE(t) x
 INTEGER src_image
 ...
 CALL co_broadcast(x,src_image)

On every image other than src_image itself, this will leave x with its
antecedent component having an undefined pointer association status
(except when it is disassociated on src_image).
This would seem to be not useful and likely to lead to further errors.

Was it intended to permit the A argument of CO_BROADCAST to have an
ultimate pointer component?

ANSWER:

Yes, this was intended. Otherwise, individual CO_BROADCAST executions
would be required for every other component; this would be very
inconvenient.

EDIT to 18-007r1:

None.

SUBMITTED BY: Malcolm Cohen

HISTORY: 21-167 m224 Submitted
 21-167r1 m224 Selected alternative answer,
 passed by J3 meeting 224.
 21-184 m225 Passed by J3 letter ballot #37

No WG5 comments

--

--

NUMBER: F18/033
TITLE: E/EN/ES/D output exponent when w=0
KEYWORDS: I/O, E_format
DEFECT TYPE: Erratum
STATUS: Passed by J3 letter ballot

QUESTION:

Consider the following program:

integer, parameter :: DP = selected_real_kind (10,300)
integer, parameter :: QP = selected_real_kind (10,3000)
real(DP) :: A
real(QP) :: B

A = 0.12345E123_DP
write (*,'(E0.7)') A ! (1)

B = 0.12345E1234_QP
write (*,'(E0.7)') B ! (2)

N2205

end

13.7.2.1 p1(6) says:

"On output, with I, B, O, Z, D, E, EN, ES, EX, F, and G editing, the
 specified value of the field width w may be zero. In such cases, the
 processor selects the smallest positive actual field width that does
 not result in a field filled with asterisks."

and (5) above it says:

"On output, if an exponent exceeds its specified or implied width
 using the E, EN, ES, EX, D, or G edit descriptor, or the number of
 characters produced exceeds the field width, the processor shall fill
 the entire field of width w with asterisks. However, the processor
 shall not produce asterisks if the field width is not exceeded when
 optional characters are omitted."

If we then look at 13.7.2.3.3 (E and D editing), table 13.1 (Exponent
forms) says that for the Ew.d form and where the absolute value of the
exponent is greater than 99 but less than or equal to 999, the form of
the exponent omits the exponent letter.

Q1: According to the text of the standard, the exponent form for the
 output at (1) must be "+123", omitting the exponent letter. Was
 this intended? Isn't the whole point of w=0 to produce minimal
 width but complete values? Note that the exponent letter is not an
 "optional character".

Q2: What should the output at (2) be? It would seem that the standard
 does not provide an interpretation that results in anything but
 the whole field being filled with asterisks, since the exponent
 overflows three digits, yet w=0 disallows that.

ANSWER:

A1: No, this was not intended. E0.d should behave as if it were E0.dE0
 (similarly for EN and ES), where the exponent letter is present
 and there are the minimum number of digits needed to represent the
 exponent. There is no D0.dE0 form, however, so it needs to be a
 special case in the standard.

A2: The current text provides no interpretation. The proposed change
 to behave as E0.dE0 provides a reasonable interpretation.

Note that G0.d does not have this problem, as the exponent form is
specified as a "reasonable processor-dependent value ... of e".
The EX descriptor also does not have this problem.

EDITS to 18-007r1:

13.7.2.3.3 (E and D editing)

264:Table 13.1 (E and D Exponent forms)

Row 1: Add after "Ew.d": " with w > 0"

N2205

Row 3: Add after "Ew.dE0": " or E0.d"
Row 4: Add after "Dw.d": " with w > 0"
Add new Row 5:
 Column 1: "D0.d"
 Column 2: "any"
 Column 3: "D\pmz1z2 . . . zs or E\pmz1z2 . . . zs"

13.7.2.3.4 (EN editing)

265:Table 13.2 (EN Exponent forms)

Row 1: Add after "ENw.d": " with w > 0"
Row 3: Add after "ENw.dE0": " or EN0.d"

13.7.2.3.5 (ES editing)

266:Table 13.3 (ES Exponent forms)

Row 1: Add after "ESw.d": " with w > 0"
Row 3: Add after "ESw.dE0": " or ES0.d"

SUBMITTED BY: Steve Lionel

HISTORY: 21-172 m225 Submitted
 21-172r1 m225 Revised, passed by J3 meeting 225.
 21-130 m226 Passed by J3 letter ballot #38

No WG5 comments

--

--

NUMBER: F18/034
TITLE: Purity of IEEE_GET_FLAG and IEEE_GET_HALTING_MODE
KEYWORDS: IEEE_GET_FLAG, IEEE_GET_HALTING_MODE, PURE
DEFECT TYPE: Erratum
STATUS: Passed by J3 letter ballot

QUESTION:

17.11.1 General (in 17.11 Specifications of the procedures) states
 "all the subroutines are impure unless otherwise stated".

Table 17.3 in 17.10 Summary of the procedures classes these as "ES",
where "ES indicates that the procedure is an elemental subroutine".

Since Fortran 2008, being elemental has no bearing on whether a
procedure is pure or impure. If it is declared with the ELEMENTAL
keyword it is pure by default, that is, if the IMPURE keyword does not
appear; this however only applies to elemental procedures defined by
subprograms, not ones defined by standard intrinsic modules.

Looking at 17.11.5 and 17.11.6, the standard merely has
 "Class: Elemental subroutine"
which again, does not indicate purity or impurity.

N2205

The lack of a statement to the contrary means that the specification
in 17.11.1 is operative, and therefore IEEE_GET_FLAG and
IEEE_GET_HALTING_MODE must be impure.

However, these were considered to be pure in Fortran 2003, as Fortran
2003 had no concept of an impure elemental procedure - it only had
pure elemental procedures.

Further evidence that the current situation might be a mistake is that
the non-elemental subroutines IEEE_SET_FLAG and IEEE_SET_HALTING_MODE
are explicitly specified to be pure.

Are IEEE_GET_FLAG and IEEE_GET_HALTING_MODE intended to be pure?

ANSWER:

Yes, these subroutines were intended to be pure.
Edits are provided to correct this mistake.

EDITS to 18-007r1:

[440:8] 17.10 Summary of the procedures, p3, line "ES indicates...",
 "an elemental subroutine" -> "a pure elemental subroutine".

[443:23] 17.11.5 IEEE_GET_FLAG (FLAG, FLAG_VALUE), para 2 Class,
 "Elemental" -> "Pure elemental".

[443:34] 17.11.6 IEEE_GET_HALTING_MODE (FLAG, HALTING), para 2 Class,
 "Elemental" -> "Pure elemental".

SUBMITTED BY: Malcolm Cohen

HISTORY: 21-202 m225 Submitted, passed by J3 meeting 225.
 21-130 m226 Passed by J3 letter ballot #38

No WG5 comments

--

--

NUMBER: F18/035
TITLE: Defining or referencing a coarray component of a dummy argument
DEFECT TYPE: Erratum
STATUS: Passed by J3 letter ballot

QUESTION 1:

On page 311 of 18-007r1, in 15.5.2.13, we have
"While an entity is associated with a dummy argument, the following
restrictions hold.
 ...
(3) Action that affects the value of the entity or any subobject of it
 shall be taken only through the dummy argument unless
 ...
 (d) the dummy argument is a coarray and the action is a coindexed
 definition of the corresponding ultimate argument coarray by a

N2205

 different image."

Should there be a similar exception for a coarray that is an ultimate
component of a dummy argument?

QUESTION 2:

On page 312 of 18-007r1, in 15.5.2.13, we have
"While an entity is associated with a dummy argument, the following
restrictions hold.
 ...
(4) If the value of the entity or any subobject of it is affected
 through the dummy argument, then at any time during the invocation
 and execution of the procedure, either before or after the
 definition, it shall be referenced only through that dummy argument
 unless
 ...
 (d) the dummy argument is a coarray and the reference is a coindexed
 reference of its corresponding ultimate argument coarray by a
 different image.

Should there be a similar exception for a coarray that is an ultimate
component of a dummy argument?

ANSWERS:

For both questions, the answer is "yes". It was intended that a
subobject of a coarray that is an ultimate component of a dummy
argument may be referenced or defined on another image by coindexing
the corresponding coarray subobject of the actual argument.

Edits are provided.

EDITS to 18-007r1:

[xiv] Introduction, Program units and procedures, last sentence,
 Insert ", or a coarray ultimate component of a dummy argument,"
 After "argument", making that sentence read
 "A coarray dummy argument, or a coarray ultimate component of a
 dummy argument, can be referenced or defined by another image."
{Add to new feature list since Fortran 2008.}

[311:44-46] In 15.5.2.13 Restrictions on entities associated with dummy
arguments, para 1,
at the end of (3)(c) delete "or", and
at the end of (3)(d) replace "image." by
"image, or
(e) the dummy argument has a coarray ultimate component and the action
 is a coindexed definition of the corresponding coarray by a
 different image."

[312:9-11] In 15.5.2.13 Restrictions on entities associated with dummy
arguments, para 1,
at the end of (4)(c) delete "or", and
at the end of (4)(d) replace "image." by
"image, or
(e) the dummy argument has a coarray ultimate component and the

N2205

 reference is a coindexed reference of the corresponding coarray
 by a different image."

[314:1-]. At the end of 15.5.2.13 Restrictions on entities associated
with dummy arguments, NOTE 5, sentence 1, replace "exception" by
"exceptions" and "coarrays enables" by "arguments that are coarrays or
have coarray ultimate components enable" so that the sentence reads
"The exceptions to the aliasing restrictions for dummy arguments that
are coarrays or have coarray ultimate components enable cross-image
access while the procedure is executing."

SUBMITTED BY: John Reid

HISTORY: 22-107 m226 Submitted
 22-107r1 m226 Revised. Passed by J3 meeting 226.
 22-150 m227 Passed by J3 letter ballot #39.

No WG5 comments

--

--

NUMBER: F18/036
TITLE: Array element argument for sequence association
DEFECT TYPE: Erratum
STATUS: Passed by J3 letter ballot

QUESTION:

Paragraph 14 of 15.5.2.4 Ordinary dummy variables states

If the actual argument is a noncoindexed scalar, the corresponding
dummy argument shall be scalar unless
 - the actual argument is default character, of type character with
 the C character kind (18.2.2), or is an element or substring of an
 element of an array that is not an assumed-shape, pointer, or
 polymorphic array,
 - the dummy argument has assumed-rank, or
 - the dummy argument is an assumed-type assumed-size array.

15.5.2.11 Sequence association, paragraphs 2 and 3, say

 "An actual argument represents an element sequence if it is ... an
 array element designator...
 If the dummy argument is not of type character with default or C
 character kind, and the actual argument is an array element
 designator, the element sequence consists of that array element
 and each element that follows it in array element order.

 If the dummy argument is of type character with default or C
 character kind, and has nonzero character length, the storage unit
 sequence is as follows:
 ...
 - if the actual argument is an array element or array element
 substring designator, the storage units starting from the first

N2205

 storage unit of the designator and continuing to the end of the
 array;"

Consider
 SUBROUTINE sub2
 CHARACTER(10),TARGET :: a2(20,30)
 CHARACTER(:),POINTER :: p2(:,:)
 p2 => a2(::2,::3)(3:4)
 CALL bad2(p2(1,1))
 END SUBROUTINE
 ! There is no explicit interface here.
 SUBROUTINE bad2(b2)
 CHARACTER b2(*)
 ...
 END SUBROUTINE

15.5.2.11 says that the storage units of b2 are the storage units of
p2 starting from the array element - in this case p2(1,1) - going on
to the end of the array (p2); these are
 a2(1,1)(3:3), a2(1,1)(4:4), a2(3,1)(3:3), a2(3,1)(4:4), ...
which are discontiguous in storage. But as an assumed-size array, b2
is supposed to have contiguous storage units.

If there were an explicit interface, the compiler could gather all the
elements of p2 into a temporary, and pass that, similarly to how it
handles passing p2 itself as an actual argument to an "old style"
dummy array. But there is not, and it would be completely unreasonable
to copy the whole of the rest of p2 starting from some arbitrary array
element into a temporary, when the dummy argument might be scalar.

Q1. Was sequence association for default/C character to the storage
 units of the whole of the rest of the array intended to apply to
 non-contiguous arrays, or was the sequence association intended to
 apply only to the storage units of the array element itself?

Further consider

 SUBROUTINE sub1
 REAL,TARGET :: a(10,20,30)
 REAL,POINTER :: p(:,:,:)
 p => a(::2,::4,::3)
 CALL bad1(p(1,1,1))
 END SUBROUTINE
 SUBROUTINE bad1(b)
 TYPE(*) b(*)
 ...
 END SUBROUTINE

15.5.2.11 says that the element sequence of the actual argument is the
element sequence of the whole array p, starting from the specified
array element - in this case p(1,1,1), i.e.
 p(1,1,1), p(2,1,1),...
But these correspond to the discontiguous array elements
 A(1,1,1), A(3,1,1),...

One cannot do anything much with an assumed-type variable other than
pass it to C, but a C routine is allowed to access all the elements of

N2205

an array so passed. That would be difficult in this case unless the
Fortran processor makes a copy of the entire rest of P and pass that
as an argument instead (and copy-back on return if not INTENT(IN)).

Q2. Was sequence association for assumed type to the element sequence
 of the whole of the rest of the array intended to apply to
 non-contiguous arrays, or was the sequence association intended to
 apply only to the array element itself?

ANSWER:

A1. When the array element or array element substring designator is of
 a potentially discontiguous array is passed, only the storage
 units of that array element or substring are intended to be
 passed.

An edit is provided to correct this error.

A2. When an array element of a potentially discontiguous array is
 passed to an assumed-type assumed-size dummy argument, only that
 element is intended to be passed.

An edit is provided to correct this error.

EDITS to 18-007r1:

[310:14] 15.5.2.11 Sequence association, p2,
 After the first sentence, ending "C character kind (18.2.2).",
 insert a paragraph break.
 After that (in was-end-of-p2 now-new-p3), factor out
 "If the dummy argument is not of type character with default
 or C character kind,"
 changing the comma to a colon, and turn those two sentences into
 a bullet list with semicolons.
 After "and the actual argument is an array element designator"
 insert "of a simply contiguous array",
{Avoid the hostages to fortune of listing the allowed ones or the
 disallowed ones, in favour of what property we want the array to
 have.}
 At the end of (was-p2 now-new-p3) append bullet
 "otherwise, if the actual argument is scalar, the element
 sequence consists of that scalar".

This makes the new p3 read
 "If the dummy argument is not of type character with default or C
 character kind:
 - if the actual argument is an array expression, the element
 sequence consists of the elements in array element order;
 - if the actual argument is an array element designator of a
 simply contiguous array, the element sequence consists of that
 array element and each element that follows it in array element
 order;
 - otherwise, if the actual argument is scalar, the element
 sequence consists of that scalar."

[310:19-21] Same subclause, next paragraph (was p3),
 After "substring designator"

N2205

 insert "of a simply contiguous array".
 Change the last "if the actual" to "otherwise, if the actual",
 and delete "and not an array ... designator".

This makes the old p3 read
 "If the dummy argument is of type character with default or C
 character kind, and has nonzero character length, the storage unit
 sequence is as follows:
 - if the actual argument is an array expression, the storage units
 of the array;
 - if the actual argument is an array element or array element
 substring designator of a simply contiguous array, the storage
 units starting from the first storage unit of the designator and
 continuing to the end of the array;
 - otherwise, if the actual argument is scalar, the storage units
 of the scalar object."

SUBMITTED BY: John Reid

HISTORY: 22-105 m226 Submitted
 22-136 m226 Revised. Passed by J3 meeting 226.
 22-150 m227 Passed by J3 letter ballot #39.

No WG5 comments

--

--

NUMBER: F18/037
TITLE: Locality spec limitations
DEFECT TYPE: Erratum
STATUS: Passed by J3 letter ballot

BACKGROUND

In 11.1.7.2 Form of the DO construct, C1128 states
 "A <variable-name> that appears in a LOCAL or LOCAL_INIT
 <locality-spec> shall not have the ALLOCATABLE, INTENT (IN), or
 OPTIONAL attribute, shall not be of finalizable type, shall not be
 a nonpointer polymorphic dummy argument, and shall not be a coarray
 or an assumed-size array."

QUESTION:

Q1. Was it intended to allow a variable with an ultimate component of
 finalizable type here?

Q2. Was it intended to allow a variable with a coarray ultimate
 component here?

Q3. Was it intended to allow a variable with an allocatable ultimate
 component here?

ANSWER:

A variable with an ultimate allocatable component was not intended to

N2205

be allowed here. All the questions above involve such a component.

An edit is provided to correct this oversight.

EDIT to 18-007r1:

[181:22-24] 11.1.7.2 Form of the DO construct, C1128, first sentence,
 After "of finalizable type,"
 insert "shall not have an ultimate allocatable component,"
 making the whole constraint read

 "C1128 A variable-name that appears in a LOCAL or LOCAL_INIT
 locality-spec shall not have the ALLOCATABLE, INTENT (IN), or
 OPTIONAL attribute, shall not be of finalizable type, shall
 not have an allocatable ultimate component, shall not be a
 nonpointer polymorphic dummy argument, and shall not be a
 coarray or an assumed-size array. A variable-name that is not
 permitted to appear in a variable definition context shall
 not appear in a LOCAL or LOCAL_INIT locality-spec."

SUBMITTED BY: John Reid

HISTORY: 22-109 m226 Submitted
 22-109r1 m226 Revised
 22-109r2 m226 Further revised. Passed by J3 meeting 226.
 22-150 m227 Passed by J3 letter ballot #39.

No WG5 comments

--

--

NUMBER: F18/038
TITLE: SIZE= with no reason
DEFECT TYPE: Erratum
STATUS: Passed by J3 letter ballot

QUESTION:

Fortran 2018 permits SIZE= in an input statement without ADVANCE=.
SIZE= assigns to its variable the number of character transferred by
edit descriptors.

This means that SIZE= is also allowed for list-directed and namelist
input/output, but no edit descriptor is involved, so this will always
assign the value zero to the variable.

For example,
 READ(*,*,SIZE=N) X
 PRINT *,N ! Always prints zero.

Was this superfluous additional way of assigning zero to an integer
variable deliberately added?

ANSWER:

N2205

No, this was not a deliberate addition.
An edit is provided to remove this inadvertent feature.

EDIT to 18-007r1:

[225:29+] 12.6.2.1 Syntax, in 12.6.2 Control information list,
 After constraint C1213 that begins
 "(R1213) A BLANK=, PAD=, END=, EOR=, or SIZE= specifier..."
 insert new constraint
 "C1213a A SIZE= specifier shall not appear in a list-directed
 or namelist input statement."

SUBMITTED BY: Malcolm Cohen

HISTORY: 22-137 m226 Submitted
 22-137r1 m226 Passed by J3 meeting
 22-150 m227 Passed by J3 letter ballot #39.

No WG5 comments

--

--

NUMBER: F18/039
TITLE: Corresponding coarrays in recursive procedures
KEYWORDS: coarray, recursive, allocatable
DEFECT TYPE: Erratum
STATUS: Passed by J3 letter ballot

QUESTION:

Consider the following program:

program recu_caf_1
 call csub(1)
contains
 recursive subroutine csub (depth)
 integer :: depth
 real, allocatable :: x[:]
 integer :: k

 if (this_image() == depth) then
 allocate(x[*], source=real(depth))
 else if (depth < num_images()) then
 call csub (depth + 1)
 end if
 if (allocated(x)) then
 write(*, *) "image: ", this_image(), "depth: ", depth, &
 "x: ", (x[k],k = 1, num_images())
 else
 write(*, *) "image: ", this_image(), "depth: ", depth, &
 "x not allocated"
 end if
 end subroutine
end program

N2205

Q1: Is program recu_caf_1 standard-conforming?
 It establishes a single coarray on each image, but at different
 recursion depths on each image, so the question is really whether
 these correspond (each recursion level has its own set of unsaved
 local variables).

Q2: If the SAVE attribute is added to the declaration of coarray "x"
 in the example, does that make the program standard-conforming?
 (There is only one saved variable, shared with each recursion
 level.)

ANSWER:

A1: No, unsaved local variables are different at each level, and it
 was intended that coarrays at the same level correspond.
 An edit is provided to clarify this.

A2: Yes, the modified program is standard-conforming.

EDITS to 18-007r1:

[41:25] 5.4.7 Coarray, paragraph 2, append new sentence
 "If a coarray is an unsaved local variable of a recursive
 procedure, its corresponding coarrays are the ones at the same
 depth of recursion on each image."

[134:17] 9.7.1.2 Execution of an ALLOCATE statement, paragraph 3,
 append new sentence
"If the coarray is an unsaved local variable of a recursive procedure,
 the execution of the ALLOCATE statement shall be at the same depth of
 recursion on every active image in the current team."

SUBMITTED BY: John Reid and Reinhold Bader

HISTORY: 22-113 m226 Submitted
 22-113r1 m226 Revised. Passed by J3 meeting 226.
 22-150 m227 Passed by J3 letter ballot #39.

Comment:
F18/039 and F18/040
Iwashita:
I don't think "depth of recursion" is clear. Is it the number of
invocations of the recursive procedure in question, or the total
number of invocations of all recursive procedures?
For example, is the following program conforming?

program rec_wrap
> if (this_image() =3D=3D 1) then
> call wrapper(3)
> else
> call csub(3)
> end if
>
> contains
> recursive subroutine wrapper(n)
> integer :: n

N2205

>
> call csub(n)
> end subroutine wrapper
>
> recursive subroutine csub (n)
> integer :: n
> real, allocatable :: x(:)[:]
>
> if (n =3D=3D 0) then
> return
> end if
>
> allocate(x(n*100)[*])
>
> if (this_image() =3D=3D 1) then
> call wrapper(n - 1)
> else
> call csub(n - 1)
> end if
>
> end subroutine
> end program
>

--

--

NUMBER: F18/040
TITLE: Allocating a dummy argument with a coarray ultimate component
DEFECT TYPE: Erratum
STATUS: Passed by J3 letter ballot

QUESTION:

On page 134 of 18-007r1, 9.7.1.2, para 3, we have
"If an allocation specifies a coarray, its dynamic type and the values
of corresponding type parameters shall be the same on every active image
in the current team. The values of corresponding bounds and
corresponding cobounds shall be the same on those images. If the coarray
is a dummy argument, its ultimate argument (15.5.2.3) shall be the same
coarray on those images."
Should there be a similar restriction for a coarray that is an ultimate
component of a dummy argument? For example, does the following program
conform to the standard?

program test
 type new
 real, allocatable :: a[:]
 end type
 integer :: i
 type(new) x,y
 if(this_image()<=2) then
 call work(x)
 else

N2205

 call work(y)
 end if
 sync all
 if (this_image()==2)then
 do i = 1, num_images()
 x%a[i] = i
 end do
 end if
 sync all
 if (this_image()==4)then
 do i = 1, num_images()
 write(*,*) i, y%a[i]
 end do
 end if
contains
 subroutine work(z)
 type(new) :: z
 allocate (z%a[*])
 end subroutine
end program

Here, the calls of subroutine work create a coarray that is accessible
on images 1 and 2 as x%a[i] and on other images as y%a[i]. Was this
intended?

ANSWER:

A similar restriction was intended. It was not intended to allow the
creation of a coarray that is accessible in a scope as an ultimate
component of one object on some images and as an ultimate component of
another object on other images.

An edit is provided. We have taken the opportunity to change "same" in
the quoted text to "corresponding". Coarrays on different images cannot
be the same, but they can correspond, see 5.4.7. We need the concept of
"same" for objects of a type with coarray ultimate components. It seems
appropriate to require that they be declared with the same name in the
same set of statements.

EDIT to 18-007r1:

[134:16-17] In 9.7.1.2 Execution of an ALLOCATE statement, para 3,
replace the final sentence by the two sentences
"If the coarray is a dummy argument, the ultimate arguments (15.5.2.3)
on those images shall be corresponding coarrays. If the coarray is an
ultimate component of a dummy argument, the ultimate arguments on those
images shall be declared with the same name in the same scoping unit and
if in a recursive procedure at the same depth of recursion."

SUBMITTED BY: John Reid

HISTORY: 22-110 m226 Submitted. Passed by J3 meeting 226.
 22-150 m227 Passed by J3 letter ballot #39.

See comment at F18/038

--

N2205

--

NUMBER: F18/041
TITLE: NULL() passed to assumed-rank dummy
KEYWORDS: NULL, assumed-rank
DEFECT TYPE: Erratum
STATUS: Passed by J3 letter ballot

QUESTION:

Consider:

 call foo(null())
contains
 subroutine foo(x)
 integer, pointer, intent(in) :: x(..)
 print *, rank(x)
 end subroutine
end

What should be printed? According to Table 16.5 (Characteristics of
the result of NULL()), the actual argument has the rank of "the
corresponding dummy argument". In this case, however, the corresponding
dummy has no defined rank, instead taking its rank from the actual
argument. Was this intended to be undefined?

ANSWER:

No, this combination was intended to be non-conforming.
An edit is provided to correct this mistake.

EDITS to 18-007r1:

[400:33] 16.9.144 NULL, p6 "If the context...",
 Add a new sentence to the end of the paragraph:
 "If the context of the reference to NULL is an <actual argument>
 corresponding to an <assumed-rank> dummy argument, MOLD shall be
 present."
{Add restriction. It could also be appended to p5, or be a new para.}

SUBMITTED BY: Steve Lionel

HISTORY: 22-146 m226 F18/041 Submitted. Passed by J3 meeting 226.
 22-150 m227 Passed by J3 letter ballot #39.

No WG5 comments

	August 11, 2022

