
ISO/IEC JTC1/SC22/WG5 N2212

The new features of Fortran 2023

John Reid

March 13, 2023

Abstract

The aim of this paper is to summarize the new features of the revision of Fortran 2018
that is planned for publication in 2023. It is known informally as Fortran 2023. We take
as our starting point Fortran 2018 (ISO/IEC 2018) and its corrigenda (ISO/IEC (2021) and
ISO/IEC (2023)). This paper supersedes ISO/IEC JTC1/SC22/WG5 N2194.

For an informal description of Fortran 2018, see Metcalf, Reid and Cohen (2018).

NB This article is not an official document and has not been
approved by WG5 or PL22.3 (formerly J3).

2 ISO/IEC JTC1/SC22/WG5 N2212

Contents

1 Introduction 3

2 Language elements 4

2.1 US 01 & 02. Allow much longer statement lines and overall statement length . . 4

2.2 US 14. Automatic allocation of lengths of character variables 4

2.3 US 16. The specifiers typeof and classof . 4

2.4 US 22. Conditional expressions and arguments 5

2.5 US 23. More use of binary, octal, and hexadecimal constants 6

3 Intrinsic procedures and intrinsic modules 7

3.1 US 03. Extracting tokens from a string . 7

3.2 US 04. Trig functions that work in degrees . 8

3.3 US 05. Trig functions that work with half revolutions 9

3.4 US 06. selected logical kind . 9

3.5 Changes to system clock . 9

3.6 Changes for conformance with new IEEE standard 10

3.7 US 07 & 08. Additional named constants to specify kinds 10

4 Interoperability with C 11

4.1 UK 01. Extend the intrinsic procedure c f pointer to allow its pointer result to
have specified lower bounds . 11

4.2 US 09. Procedures for converting between Fortran and C strings 11

5 Input-output 12

5.1 US 10. The at edit descriptor . 12

5.2 US 11. Control over leading zeros in output of real values 12

5.3 Namelist . 13

6 Coarrays 13

6.1 US 12. Allow an object of a type with a coarray ultimate component to be an
array or allocatable . 13

6.2 US 13. Put with notify . 14

ISO/IEC JTC1/SC22/WG5 N2212 3

6.3 Error conditions in collectives . 16

7 Procedures 16

7.1 US 15. Simple procedures . 16

8 Array features 17

8.1 US 17. Using integer arrays to specify subscripts and section subscripts 17

8.2 US 18. Using integer arrays to specify the rank and bounds of an array 18

8.3 Using an integer constant to specify rank . 19

8.4 US 20. Reduction specifier for do concurrent 19

9 US 21. Enumerations 20

9.1 Introduction . 20

9.2 Enumeration types . 20

9.3 Enum types . 23

10 Obsolete and deleted features 24

11 Acknowledgements 24

1 Introduction

Fortran is a computer language for scientific and technical programming that is tailored for
efficient run-time execution on a wide variety of processors. It was first standardized in 1966
and the standard has since been revised six times (1978, 1991, 1997, 2004, 2010, 2018). The first
five revisions alternated between being minor (1978, 1997, and 2010) and major (1991 and 2004).
Concern over implementations not being able to keep up with the revisions of the standard led
to avoiding a major revison in 2018 and the plan is for the next revision to be minor.

The content of the revision was mostly chosen by WG5 at its meeting in 2019, see Resolution T1
in ISO/IEC JTC1/SC22/WG5 N2170. About 20 features were proposed by USA and are labelled
as US 01, US 02, One feature was proposed by UK and is labelled UK 01. Additional small
features were added by J3 in the course of working on the revision.

This document is based on the draft of the new standard that is current at the time of writing,
J3/23-007. For further detail, the reader should consult this. Its introduction contains a list of
the extensions to Fortran 2018. This document provides more detailed descriptions.

We use the convention of indicating the optional arguments of a procedure by enclosing them

4 ISO/IEC JTC1/SC22/WG5 N2212

in square brackets in the argument list. We also use square brackets for other optional syntax
and [] . . . for an item repeated an arbirary number of times, including zero.

2 Language elements

2.1 US 01 & 02. Allow much longer statement lines and overall statement
length

In free source form, the limit on line length is raised to ten thousand characters and this applies
to characters of any kind. The limit of 255 continuation lines is removed and the limit on
statement length is raised to a million characters.

These relaxations are designed to support programs that are constructed mechanically. It not
expected that they will be needed in programs written directly by people.

These are hard limits. Processors are required to issue warnings if they are breached.

2.2 US 14. Automatic allocation of lengths of character variables

When a deferred-length allocatable variable is defined by intrinsic assignment, as in the example

character(:), allocatable :: quotation

:

quotation = ’Now is the winter of our discontent.’

it is allocated by the processor to the correct length. This behaviour is extended to messages
returned through iomsg and errmsg specifiers, writing to a scalar character variable as an
internal file, and intent out and inout scalar character arguments of intrinsic procedures, such
as in call get command(command).

2.3 US 16. The specifiers typeof and classof

The specifier typeof is now available to declare one or more entities to be nonpolymorphic with
the type and type parameters of a previously declared entity, for example:

subroutine work(a)

type(body) :: a(:)

typeof(a) :: b(size(a))

A type parameter is deferred if it is deferred for the previous entity. The previous entity may
have intrinsic type. It may be polymorphic, in which case its declared type is used; it must not
be unlimited polymorphic or abstract.

The specifier classof is available to declare one or more entities to be polymorphic with the
declared type and type parameters of a previously declared entity, for example:

ISO/IEC JTC1/SC22/WG5 N2212 5

subroutine work(a)

class(*) :: a(:)

classof(x), allocatable :: particle(:)

A type parameter is deferred if it is deferred for the previous entity. The previous entity must
not be of assumed type or intrinsic type. It may be unlimited polymorphic.

For both typeof and classof, if the previous entity is an optional dummy argument it must
not have a deferred or assumed type parameter.

2.4 US 22. Conditional expressions and arguments

Conditional expressions, expressions whose value is one of several alternatives, are added. A
simple example is

value = (a>0.0 ? a : 0.0)

which is a short way of writing

if (a>0.0) then

value = a

else

value = 0.0

end if

The general form of a conditional expression is

(condition ? expression [: condition ? expression]... : expression)

where each expression has the same declared type, kind type parameters, and rank. During
execution, each condition in succession is evaluated until either

� one with the value true is found, in which case no further conditions are evaluated and
the conditional expression takes the value of the following expression or

� all are found to be false, in which case the conditional expression takes the value of the
final expression.

A conditional expression is a primary, just as is an expression in parentheses, and can be used
in the same way as any other primary. In particular, it may be used as an expression in a
conditional expression, that is, nesting is permitted. It is polymorphic if and only if one or more
expressions are polymorphic. Its dynamic type is the dynamic type of the chosen expression.
Its declared type, kind type parameters, and rank do not depend on which expression is chosen
because they are required to be the same for each expression.

A conditional expression may also be used as an actual argument in a procedure reference, but
for actual arguments there is a need to allow for variables and absent arguments. An argument
may be a conditional argument, whose general form is

(condition ? consequent [: condition ? consequent]... : consequent)

6 ISO/IEC JTC1/SC22/WG5 N2212

where each consequent is an expression, a variable, or .nil. to specify absence. On execution,
as for a conditional expression, the conditions are evaluated in turn. If one that is true is found,
its consequent is used and no remaining condition is evaluated; otherwise, the final consequent
is used. Nesting of conditional arguments is not allowed, that is a consequent is not permitted
to be a conditional argument, but a consequent may be a conditional expression.

We will refer to a consequent that is an expression or a variable as a consequent argument.
Each consequent argument in a conditional argument must have the same declared type and
kind type parameters. Each must have the same rank or each must be of assumed rank. Each
must satisfy all the requirements for being an actual argument corresponding to its dummy
argument, apart from those that can vary at run time. For example, each must be a variable if
the dummy argument has intent out or inout.

To ensure that the resolution of a generic call does not depend on which consequent argument is
chosen, if any consequent argument in a conditional argument is allocatable or a pointer, they
must all be.

Here is an example using conditional arguments in a procedure reference:

call sub ((x>0? x : y>0? y : z), (edge>0? edge : mode==3? 1.0 : .nil.))

where the interface of sub is

subroutine sub(x, bnd)

real, intent(inout) :: x

real, intent(in), optional :: bnd

2.5 US 23. More use of binary, octal, and hexadecimal constants

The use of binary, octal, and hexadecimal (boz) constants is very limited in Fortran 2018. They
are allowed only in data statements and as actual arguments for appropriate intrinsic procedures.
A boz constant will be allowed

� in an initialization of a named constant or variable of type integer or real,

� as the right-hand side of an intrinsic assignment where the variable is of type integer or
real,

� as an integer value in an enum constructor (Section 9.3), oe

� as a value in an array constructor with a type-spec that specifies the type integer or real.

In an intrinsic assignment to an integer or real variable, the boz constant is converted to the
type as by the intrinsic int or real, respectively, with the kind type parameter of the variable
specified as its kind argument.

In an array constructor with a type-spec that specifies the type integer or real, the boz constant
is converted as for intrinsic assignment. In the real case, the boz constant must be a valid
representation for the specified kind of real.

ISO/IEC JTC1/SC22/WG5 N2212 7

3 Intrinsic procedures and intrinsic modules

3.1 US 03. Extracting tokens from a string

Two intrinsic subroutines, both simple (see Section 7.1), have been added to facilitate the
extraction of tokens from a string. For example, if the separator characters are " " and ";" the
string

"one two three;"

is taken to contain the tokens "one", "two", "three" and "". The tokens can be extracted one
at a time by the positions of the separators or all at once by an array of tokens or by arrays of
starting and ending positions of tokens. No argument of intent out or inout is permitted to be
a coarray or a coindexed object. Note that there are two overloaded forms of tokenize.

call split (string, set, pos [,back]) updates the integer pos to the position of the next
(or previous) separator in string.

string is a scalar character object with intent in.

set is a scalar character object with intent in. It has the same kind value as string and
holds a set of separator characters.

pos is a scalar integer variable with intent inout. If back is absent or is present with
the value false, pos must have a value in the range 0 ≤ pos ≤ len(string) on
entry and is given the position of the first separator in string after position pos or
len(string)+1 if there is no such separator. If back is present with the value true,
pos must have a value in the range 1 ≤ pos ≤ len(string)+1 on entry is given the
position of the last separator in string before position pos or 0 if there is no such
separator.

back is an optional scalar object of type logical and intent in.

call tokenize (string, set, tokens [,separator]) finds all the tokens in a string.

string is a scalar character object with intent in.

set is a scalar character object with intent in. It has the same kind value as string and
holds a set of separator characters.

tokens is of type character and of the same kind as string. It has intent out. It is an
allocatable array of rank one and deferred length. It is allocated by tokenize to have
character length equal to the length of the longest token, lower bound one, and upper
bound the number of tokens in string. It is assigned with the values of the tokens,
in order.

separator is an optional argument of type character and of the same kind as string.
It has intent out. It is an allocatable array of rank one and deferred length. It is
allocated by tokenize to have character length one, lower bound one, and upper
bound the number of separators in string. It is assigned with the values of the
separators, in order.

8 ISO/IEC JTC1/SC22/WG5 N2212

call tokenize (string, set, first, last) finds the starts and ends of all the tokens in a
string.

string is a scalar character object with intent in.

set is a scalar character object with intent in. It has the same kind value as string and
holds a set of separator characters.

first is an allocatable integer array of rank one and intent out. It is allocated by
tokenize to have lower bound one and upper bound the number of tokens in string.
It is assigned with the starting positions of the tokens, in order. A token of zero length
is taken as starting immediately after the token that precedes it or at position 1 if at
the start of string.

last is an allocatable integer array of rank one and intent out. It is allocated by tokenize
to have lower bound one and upper bound the number of tokens in string. It is
assigned with the finishing positions of the tokens, in order. A token of zero length
is taken as finishing immediately before its starting position.

3.2 US 04. Trig functions that work in degrees

The following are elemental functions that evaluate elementary mathematical functions for real
arguments, working in degrees instead of radians. Each result is real with the kind type param-
eter of the first argument. They have been added because they have been widely implemented
as extensions of the standard and are widely used.

acosd (x) returns the arc cosine (inverse cosine) function value for a real value x such that
|x| ≤ 1, expressed in degrees in the range 0 ≤ acosd(x) ≤ 180.

asind (x) returns the arc sine (inverse sine) function value for a real value x such that |x| ≤ 1,
expressed in degrees such that −90 ≤ asind(x) ≤ 90.

atand (x) returns the arc tangent (inverse tangent) function value for a real value x, expressed
in degrees in the range −90 ≤ atand(x) ≤ 90.

atand (y, x) is the same as atan2d (y, x), see below.

atan2d (y, x) returns the arc tangent (inverse tangent) function value in degrees for a pair of
real values, x and y, with the same kind type parameter. They must not both be zero.
The result is expressed in degrees in the range −180 ≤ atan2d(y,x) ≤ 180. It has a value
equal to a processor-dependent approximation to atan2(y, x)×180/π.

cosd (x) returns the cosine function value for real values x in degrees.

sind (x) returns the sine function value for real values x in degrees.

tand (x) returns the tangent function value for real values x in degrees.

ISO/IEC JTC1/SC22/WG5 N2212 9

3.3 US 05. Trig functions that work with half revolutions

The following are elemental functions that evaluate elementary mathematical functions for real
arguments, working in half revolutions (180 degrees). Each result is real with the kind type
parameter of the first argument. They have been added because they are mentioned in the
IEEE standard for floating-point arithmetic and have been implemented as extensions of the
Fortran standard.

acospi (x) returns the arc cosine (inverse cosine) function value for a real value x such that
|x| ≤ 1, expressed in half revolutions in the range 0 ≤ acospi(x) ≤ 1.

asinpi (x) returns the arc sine (inverse sine) function value for a real value x such that |x| ≤ 1,
expressed in half revolutions in the range −0.5 ≤ asinpi(x) ≤ 0.5.

atanpi (x) returns the arc tangent (inverse tangent) function value for a real value x, expressed
in half revolutions in the range −0.5 ≤ atanpi(x) ≤ 0.5.

atanpi (y, x) is the same as atan2pi (y, x), see below.

atan2pi (y, x) returns the arc tangent (inverse tangent) function value in half revolutions for
a pair of real values, x and y, with the same kind type parameter. They must not both be
zero. The result is expressed in half revolutions in the range −1 ≤ atan2pi(y,x) ≤ 1. It
has a value equal to a processor-dependent approximation to atan2(y, x)/π.

cospi (x) returns the cosine function value for real values x in half revolutions.

sinpi (x) returns the sine function value for real values x in half revolutions.

tanpi (x) returns the tangent function value for real values x in half revolutions.

3.4 US 06. selected logical kind

The function selected logical kind is added to match the existing functions for choosing a
suitable kind for a type.

selected logical kind (bits) is a transformational function that returns as a default integer
scalar the value of a kind type parameter of a logical type whose storage size in bits is at
least bits, or -1 if no such type is available. If there is more than one such kind, the one
with smallest kind value from those with smallest storage size is chosen.

3.5 Changes to system clock

In Fortran 2018, users are free to use integers of any kind as actual arguments for system clock.
It was intended that this would allow the use of long integers for accurate timing on modern
hardware with fast clocks. However, this left vendors unclear about how to accommodate default

10 ISO/IEC JTC1/SC22/WG5 N2212

integers or even short (16-bit) integers — some provided an imprecise clock or caused an error
return. There was also uncertainty over the effect of disagreement in kinds within a single call.

These problems are addressed by requiring that all integer arguments in a single call have the
same kind. Furthermore, their decimal exponent range is required to be at least that of default
integer, and implementations are recommended to support long integers (decimal exponent range
at least 18). The processor is permitted to provide any number of clocks, including zero. Which
clock is referenced depends on the kind of the integer arguments. Whether an image has no
clock, has one or more clocks of its own, or shares a clock with another image, is processor
dependent. It is recommended that a call with a real argument count rate include one or more
integer arguments in order to specify the clock.

3.6 Changes for conformance with new IEEE standard

Changes are made to the intrinsic module ieee arithmetic for conformance with the new IEEE
standard, ISO/IEC 60559:2020.

Four elemental functions have been added for the IEEE operations of maximum, maximumMag-
nitude, minimum, and minimumMagnitude:

ieee_max (x, y)

ieee_max_mag (x, y)

ieee_min(x, y)

ieee_min_mag (x, y)

where x and y are real with the same kind type parameter, return either x or y. The result is
x if x>y, abs(x)>abs(y), x<y, or abs(x)<abs(y), respectively. It is y if x<y, abs(x)<abs(y),
x>y, or abs(x)>abs(y), respectively. If either x or y is a NaN, the result is a quiet NaN. If x=y,
and the signs are the same, the result is the value of either x or y. If one argument is negative
zero and the other is positive zero, the result is positive zero. If both of x and y are signaling
NaNs, ieee invalid signals; otherwise, no exception is signaled.

The four elemental functions ieee max num, ieee max num mag, ieee min num, and
ieee min num mag now conform to the operations maximumNumber, maximumMagnitudeNum-
ber, minimumNumber and minimumMagnitudeNumber in ISO/IEC 60559:2020; the changes
affect the treatment of zeros and NaNs, which are as for ieee max, ieee max mag, ieee min,
and ieee min mag (see previous paragraph).

3.7 US 07 & 08. Additional named constants to specify kinds

These additional named constants are available in the module iso fortran env for kind type
parameter values of types of given storage sizes in bits:

ISO/IEC JTC1/SC22/WG5 N2212 11

logical8 8-bit logical
logical16 16-bit logical
logical32 32-bit logical
logical64 64-bit logical

real16 16-bit real

They are default integer scalars. If the compiler supports more than one kind with a particular
size, which one is chosen is processor dependent. If the compiler does not support a kind with a
particular size, that constant has a value of −2 if it supports a kind with a larger size, and −1
if it does not support any larger size.

4 Interoperability with C

4.1 UK 01. Extend the intrinsic procedure c f pointer to allow its pointer
result to have specified lower bounds

An extra optional argument lower has been added at the end of the argument list of the
intrinsic subroutine c f pointer. It has intent in, is an array of rank one with the same size
as the argument shape, and can be present only if shape is present. If present, it specifies the
lower bounds of the pointer result, which otherwise all have the value 1.

This brings c f pointer into line with pointer assignment, which allows the lower bounds of an
array pointer to be specified.

4.2 US 09. Procedures for converting between Fortran and C strings

On processors that support C character kind (c char ̸= −1), these procedures are added to the
intrinsic module iso c binding for passing strings between C functions and Fortran procedures.
Note that there are two overloaded forms of c f strpointer.

f c string (string [, asis]) where string is a character scalar of kind c char and asis

is an optional logical scalar, is a transformational function. It returns a character scalar of
the same type and kind as string whose value is string//c null char if asis is present
with the value true and is trim(string)//c null char otherwise.

call c f strpointer (cstrarray, fstrptr[, nchars]) is an impure subroutine with argu-
ments:

cstrarray is a rank-one character array of kind c char and character length one. It is
an intent in argument. Its actual argument must be simply contiguous and have the
target attribute.

fstrptr is a scalar deferred-length character pointer of kind c char. It is an intent out
argument whose character length len is the largest value for which cstrarray(1:len)

12 ISO/IEC JTC1/SC22/WG5 N2212

contains no C null characters, len ≤ size(cstrarray), and len ≤ nchars if nchars
is present. fstrptr becomes pointer associated with the first len characters of the
element sequence of cstrarray.

nchars is an optional integer scalar with intent in. If cstrarray is assumed-size, nchars
must be present. If nchars is present, its value must be nonnegative and not greater
than the size of cstrarray.

call c f strpointer (cstrptr, fstrptr, nchars) is an impure subroutine with argu-
ments:

cstrptr is a scalar of type c ptr. It is an intent in argument holding the C address of
a contiguous array s of nchars characters. Its value must not be the C address of a
Fortran variable without the target attribute.

fstrptr is a deferred-length character pointer of kind c char. It is an intent out ar-
gument whose character length len is the largest value for which s contains no C
null characters. It become pointer associated with the leftmost characters (in array
element order) of the array s.

nchars is an integer scalar with intent in. Its value must be nonnegative.

5 Input-output

5.1 US 10. The at edit descriptor

The at edit descriptor has been added to give the effect of trim on the corresponding character
list item during data output with the a edit descriptor. It is not available for input.

5.2 US 11. Control over leading zeros in output of real values

The leading zero mode controls optional leading zero characters in output with f, e, d, and g

edit descriptors. When the mode is print, the processor produces a zero in any position that
normally contains an optional leading zero. When the mode is suppress, the processor does
not produce such a zero. When the mode is processor defined, the processor has the choice.

The default mode for a file can be set on its open statement with a leading zero= spec-
ifier with one of the values print, suppress, and processor defined. If not specified, it
is processor defined. An inquire statement can inquire about the mode for a connec-
tion with a leading zero= specifier which is assigned one of the values print, suppress, or
processor defined if the connection is for formatted i/o and undefined otherwise.

The lzp, lzs, and lz edit descriptors change the mode temporarily during the execution of
an output statement to print, suppress, and processor defined, respectively. They have no
effect during the execution of an input statement.

ISO/IEC JTC1/SC22/WG5 N2212 13

5.3 Namelist

A public namelist group is allowed to have a private namelist group object.

6 Coarrays

6.1 US 12. Allow an object of a type with a coarray ultimate component to
be an array or allocatable

An object of a type that has a coarray ultimate component is allowed to be an array and is
allowed to be allocatable, but it remains not allowed to be a coarray (which would be confusing).
This can happen at any depth of component selection so a type is allowed to have a potential
subobject component that is a coarray.

An allocate statement for an object with a coarray potential subobject component is not an
image control statement, that is, it involves only the executing image, because the coarray is
unallocated so that no image is able to reference it. Fortran 2018 has the constraint that an
allocate statement must not have a source= specifier that is an object with a coarray ultimate
component because the need to copy the coarray if it is allocated would make the statement
an image control statement. This is retained but has to be generalized to an object with a
coarray potential subobject component. However, the corresponding constraint for a type-spec
or mold= specifier is not needed and is removed, except for the case where the object is unlimited
polymorphic (see the paragraph after next).

In an intrinsic assignment for an an object with a coarray potential subobject component, the
component is subject to the rules of intrinsic assignment for a coarray so the statement is not
an image control statement.

On the other hand, a deallocate statement for an object of a type that has a coarray potential
subobject component involves the deallocation of all its coarray subobjects. It therefore needs
to be an image control statement and involve synchronization of all the images in the current
team. To make sure that an unlimited polymorphic object does not get a dynamic type with a
coarray potential subobject component and cause its deallocate statement to become an image
control statement, an allocate statement that allocates an unlimited polymorphic object is not
permitted to have an object with a coarray potential subobject component in a type-spec, mold=
specifier, or source= specifier.

An allocate statement for a coarray that is a potential subobject component of an object
remains an image control statement and involves image synchronization. For an allocate or
deallocate statement of such a coarray, there need to be the following additional conditions
on the object itself to ensure that the coarray is properly aligned on the images. On each active
image of the current team:

� if it is polymorphic, its dynamic type is the same,

� if it is an element of an array that is not a dummy argument, its position in array element

14 ISO/IEC JTC1/SC22/WG5 N2212

order in the array is the same,

� if it is an element of an array that is a dummy argument, its position in array element
order in the ultimate argument is the same,

� if it is an unsaved local variable of a recursive procedure or an element of such a variable,
the depth of recursion of that procedure is the same1, and

� if it is a dummy argument whose ultimate argument is an unsaved local variable of a
recursive procedure or an element of such a dummy argument, the depth of recursion of
that procedure is the same.

Copy-in copy-out needs to be avoided for a dummy argument that is a non-allocatable array of
a type with a coarray potential subobject component. Here, the actual argument is required to
be simply contiguous or an element of a simply contiguous array.

6.2 US 13. Put with notify

Put with notify is popular in the SHMEM community as a very efficient synchronization tech-
nique for data transfers between images. The basic idea is to combine a ‘put’ (definition of a
variable on a different image) with a notification mechanism that allows the receiving image to
know that the data has arrived. It is especially efficient if network hardware can ensure that
the data arrive before the notification occurs.

The derived type notify type is defined by the intrinsic module iso fortran env. Its compo-
nents are private and it is extensible. A scalar coarray of the type is a notify variable.

Here is a simple example of the new feature:

use iso_fortran_env

type(notify_type) nx[*]

:

me = this_image()

if (me == 1) then

x[10, notify=nx] = y

else if (me == 10) then

notify wait (nx, until_count=1)

z = x

end if

Here nx is a notify variable. On every image it contains a count that has the initial value 0. After
an image has assigned its value of y to x on image 10, the count value of nx[10] incremented
to 1. Image 10 waits until the count of its nx is at least 1, then decrements the count by 1 and
continues execution.

1This also clarifies the behaviour for the existing Fortran 2018 functionality.

ISO/IEC JTC1/SC22/WG5 N2212 15

The value of a notify variable includes its notify count, which always has the initial value zero
and can be altered only by

� execution of an intrinsic assignment statement whose left-hand-side variable has an image
selector that selects the image of the notify variable and has a notify= specifier that
specifies the notify variable, or

� execution of a notify wait statement on the image of the notify variable.

The intrinsic assignment statement increases the count by one. The notify wait statement has
a threshold value that is its until count specifier if it appears or one otherwise and waits until
the count is at least the threshold value and then decreases the count by the threshold value.
Here is an example

use iso_fortran_env

type(notify_type) nx[*]

:

me = this_image()

if (me <= 4) then

x(me)[10, notify=nx] = y

else if (me == 10) then

notify wait (nx, until_count=4)

z(1:4) = x(1:4)

end if

The effect of each update is as if the intrinsic subroutine atomic add were executed for a variable
that stores the notify count and has type integer with kind atomic int kind.

To ensure that the counts of notify variables are initialized to zero and not altered except as
explained in the previous paragraph, the only additional ways a notify variable is permitted to
appear in a variable definition context are in an allocate statement without a source= specifier,
in a deallocate statement, or as an actual argument corresponding to a dummy argument with
intent inout in a reference to a procedure with an explicit interface. Furthermore, a variable
with a nonpointer subobject of type notify type is permitted to appear in a variable definition
context only in an allocate statement without a source= specifier, in a deallocate statement,
or as an actual argument corresponding to a dummy argument with intent inout in a reference
to a procedure with an explicit interface.

A named entity with declared type notify type, or which has a noncoarray potential subobject
component with declared type notify type, must be a coarray. A component that is of such a
type must be a data component.

The notify wait statement is not an image control statement. It takes the general form

notify wait (notify-variable[, event-wait-spec-list])

where an event-wait-spec is an until count= specifier, stat= specifier, or errmsg= specifier.

16 ISO/IEC JTC1/SC22/WG5 N2212

6.3 Error conditions in collectives

Fortran 2018 defines a collective subroutine as an “intrinsic subroutine that performs a calcula-
tion on a team of images without requiring synchronization”. For performance reasons, it was
intended that once an image has completed its calculation it should be free to execute other
statements without waiting for the other images to do so. Fortran 2018 does not recognize that
it might be the case that a collective is successful on one image while having an error condition
on others. The revision acknowledges this and allows for different images to have different error
conditions.

7 Procedures

7.1 US 15. Simple procedures

A pure procedure changes variables outside its scope only through its arguments. This allows
it to be used in parallel constructs, where concurrency issues would otherwise prevent use. A
simple procedure is a pure procedure that in addition is restricted to reference variables outside
its scope only through its arguments. It represents an entirely local calculation. It may be
executed independently by a thread that accesses program data only through the arguments. If
all the intent in arguments are constants and there are no intent inout arguments, it may be
performed by the compiler at compile time.

All the intrinsic functions are simple. All the module functions in all of the intrinsic
modules are simple. The intrinsic subroutines mvbits, split (Section 3.1), and tokenize

(Section 3.1) are simple. The intrinsic subroutine move alloc is simple when the argu-
ment from is not a coarray. The module subroutines c f procpointer, ieee get flag,
ieee get halting mode, ieee get modes, ieee get rounding mode, ieee get status,
ieee get underflow mode, ieee set flag, ieee set modes, ieee set rounding mode,
ieee set status, ieee set underflow mode, and ieee set halting mode are simple. The
elemental operators == and /= for two values of one of the types ieee class type and
ieee round type are simple.

A procedure may be specified as simple with the keyword simple in the prefix of its function
or subroutine statement, for example

real simple elemental function convert(a)

type(mine) :: a

:

Of course, if simple is specified, neither pure nor impure may be specified. A simple procedure
automatically has the property of being pure. A simple procedure may also be elemental. A
dummy procedure or a procedure pointer may be specified to be simple. A type-bound procedure
is simple if it is bound to a simple procedure. A deferred type-bound procedure is simple if its
interface specifies it to be simple; any overriding type-bound procedure must then also be simple.

ISO/IEC JTC1/SC22/WG5 N2212 17

A simple procedure must satisfy all the requirements of a pure procedure. In addition,

� it must not reference a variable by use or host association,
� it must not reference a variable in a common block,
� all its dummy procedures must be simple,
� all its internal procedures must be simple,
� all procedures it references must be simple,
� when used in a context that requires it to be simple, its interface must be explicit and
specify that it is simple, and

� it must not contain a entry statement.

8 Array features

8.1 US 17. Using integer arrays to specify subscripts and section subscripts

It is possible to use an integer array, known as a multiple subscript, to specify a sequence of
subscripts, for example

A(@[3,5]) ! Array element, equivalent to A(3, 5)

A(6, @[3,5], 1) ! Array element, equivalent to A(6, 3, 5, 1)

A(@V1, :, @V2) ! Rank-one array section, the rank of A being

! SIZE (V1) + 1 + SIZE (V2).

A multiple subscript consists of a commercial at symbol followed by an integer expression that
is an array of rank one and the array elements are interpreted as a sequence of subscripts.

A multiple subscript triplet uses rank-one integer arrays to specify a sequence of section sub-
scripts. It has the form

@ [int-expr] : [int-expr] [: int-expr]

where each int-expr is a rank-one integer array or an integer scalar. At least one must be an
array and if there are more than one they must have the same size.

If the integer expressions are the arrays l, u, and s of size k, the effect is that of k section
subscripts with the elements of l as lower bounds, elements of u as upper bounds, and elements
of s as strides, for example

A(@[3,5]:[9,10]:[2,3]) ! Equivalent to A(3:9:2, 5:10:3)

If any int-expr is a scalar, its value is used for each bound or stride, for example

A(@[3,5]:[9,10]:2) ! Equivalent to A(3:9:2, 5:10:2)

Where an int-expr is omitted, the bound or stride is omitted from the equivalent section sub-
script, for example

A(@[3,5]:[9,10]) ! Equivalent to A(3:9, 5:10)

18 ISO/IEC JTC1/SC22/WG5 N2212

8.2 US 18. Using integer arrays to specify the rank and bounds of an array

Integer expressions that are rank-one arrays may be used to specify the rank and bounds of an
array.

For an assumed-shape array, the rank and lower bounds may be determined by a rank-one
integer array, for example

integer, dimension(3) :: lb_array = 0

real :: zz(lb_array+2:)

real, dimension(lb_array:) :: x, y

The size of the integer array must be constant and this determines the rank of each array being
declared.

For an explicit-shape array, one or both sets of bounds may be determined by rank-one integer
arrays of a constant size, and the size determines the rank. If both sets of bounds are specified
in this way, the sizes must be the same. The lower bounds may be specified all to have the value
of an integer scalar or by omission all to be one. The upper bounds may be specified all to have
the value of an integer scalar. Here are some examples

real, dimension(lb_array:ub_array) :: z

real :: zz(lb_array+2:n), x(ub_array), y(0:ub_array)

real :: u(shape(w)) ! Array with the same shape as w

For allocating an allocatable array, one or both sets of bounds may be given by rank-one integer
array expressions of size equal to the rank of the array. Also, one may be given as an array
expression and the other as a scalar expression, in which case the scalar value is broadcast to
all dimensions. Here are some examples:

real, allocatable, dimension(:,:,:) :: x, y, z

integer :: lower(3), upper(3)

: ! Code that gives values to lower and upper

allocate(x(:upper), y(lower:upper), z(0:upper))

Note that this feature is not provided for cobounds.

Similarly, in a pointer assignment the set of lower bounds or both sets of bounds in a remapping
may be given by integer array expressions. The sizes of the array expressions must equal the rank
of the pointer array and if one is an array the other may be a scalar whose value is broadcast.
Here are some examples:

real, pointer, dimension(:,:,:) :: x, y, z

integer :: lower(3), upper(3)

: ! Code that allocates x and gives values to lower and upper

y(lower:) => x

z(0:upper) => x

ISO/IEC JTC1/SC22/WG5 N2212 19

8.3 Using an integer constant to specify rank

The rank of an assumed-shape or deferred-shape entity may be specified by an integer constant
in a rank clause in a type declaration statement. For example,

subroutine ex(a)

real, rank(2) :: a ! Equivalent to real :: a(:,:)

declares a to be an assumed-shape array of rank 2. The value of the integer constant is required
to be non-negative and not greater that the maximum rank supported by the processor. The
value zero specifies a scalar. With the allocatable or pointer attribute, it specifies a deferred-
shape array; otherwise, it specifies an assumed-shape array with all lower bounds equal to one.
Here are some examples

integer :: x0(10,10,10)

logical, rank(rank(x0)), allocatable :: x1 ! rank 3, deferred shape

complex, rank(2), pointer :: x2 ! rank 2, deferred-shape

logical, rank(rank(x0)) :: x3 ! rank 3, assumed-shape

real, rank(0) :: x4 ! scalar

8.4 US 20. Reduction specifier for do concurrent

A named variable may be declared in a do concurrent construct to have reduce locality within
it, for example

real :: a, b, x(n)

:

a = 0.

b = -huge(b)

do concurrent (i = 1, n) reduce(+:a) reduce(max:b)

a = a + x(i)**2

b = max(b,x(i))

end do

allows the computations
∑n

i=1 x
2
i and maxni=1 xi to be parallelized. We will refer to a variable

that computes such a result as a reduction variable. It must be a named variable. Its name
and the operator or function name must be specified in a reduce clause on the do concurrent

statement.

A named variable with reduce locality must be of an intrinsic type that is suitable for its
operator or function, and permitted to appear in a variable definition context. It must not be
a coarray or an assumed-size array. It must not be asychronous or volatile. It must not be an
optional argument.

A reduction variable is allowed to appear within its do parallel construct only in an intrinsic
assignment of one of the forms var = var op expr and var = expr op var where op is one of the

20 ISO/IEC JTC1/SC22/WG5 N2212

intrinsic operators +, *, .and., .or., .eqv., or .neqv., or as the left-hand side of an intrinsic
assignment whose right-hand side is one of the intrinsic functions max, min, iand, ieor, or ior
with the reduction variable as an argument. All occurences in the construct must have the same
form.

The effect is as if each iteration has a separate reduction variable with exactly the same properties
as its original, the ‘outside’ variable. If the outside variable is allocatable it must be allocated. If
it is a pointer, it must have a target. The inside variable does not have the allocatable, bind,
intent, pointer, protected, save, target, or value attribute, even if the outside variable
does. Each inside variable is initialized at the start of execution of its iteration to

� 0 for +, ieor, or ior;

� 1 for *;

� all 1s for iand;

� .true. for .and. or .eqv.;

� .false. for .or. or .neqv.;

� the least representable value of the type and kind for max; and

� the largest representable value of the type and kind for min.

On termination of the do concurrent construct the outside variable, or its target if it is a
pointer, is updated by using the reduction operation to combine it with the values of all the
inner variables. The updates may be performed in any order.

A reduce clause may be given a list of variables for a single reduction and there may be any
number of reduce clauses, for example

do concurrent (i = 1, n) reduce(+:a, b, c) reduce(max:d, e, f)

9 US 21. Enumerations

9.1 Introduction

Fortran 2023 supports two variants of enumeration types. One variant extends the pre-existing
C-interoperability feature of enum and the other one provides Fortran-specific enumeration types
with additional semantics that are incompatible with those of C-style enums. We start with the
description of the Fortran-specific variant.

9.2 Enumeration types

Enumeration types are added. Each is defined by the user to contain a set of named constants
that are without any associated data. A scalar variable of the type has one of the constants as
its value, which allows it to control an action, for example

ISO/IEC JTC1/SC22/WG5 N2212 21

enumeration type :: colour

enumerator :: red, orange, green

end enumeration type

type(colour) light

:

if (light==red) ...

There may be more than one enumerator statement in an enumeration type declaration and
the separators :: are optional. The names of the types and their constants have exactly the
same scoping rules as for other types and constants; for example, a procedure that contains the
above declaration must not contain a real variable named red. An enumeration type is not
a derived type but behaves like a derived type with no components, except that variables are
not permitted to be polymorphic and the only values of scalar constants are the enumerators
of the type definition. Apart from no polymorphism, variables have the usual properties and
attributes. They may be arrays, coarrays, pointers, allocatable, etc. A component of a derived
type may be declared to be of enumeration type. Enumeration types are not interoperable
because there are no corresponding C types.

The intrinsic function int is extended to allow its main argument a to be of enumeration type
and it returns the position of a in its type declaration as an integer.

In an intrinsic assignment statement with a variable (left-hand side) of enumeration type, the
expression (right-hand side) must be of the same enumeration type. The intrinsic operations
==, /=, <, <=, >, and >= are available in an expression when both operands are objects of the
same enumeration type and the result is of type default logical. They work with the positions
of the operands in the type declaration. No other intrinsic operations are available for one or
both operands of enumeration type.

An enumerator may be accessed as an ‘enumeration constructor’ through its position in the type
declaration. For example colour(2) has the value orange. This allows the enumerators to be
accessed in a do loop such as:

do i = 1,3

light = colour(i)

:

end do

The general form of an enumeration constructor is type(scalar-int-expr) for any scalar integer
expression scalar-int-expr. An enumeration constructor whose scalar-int-expr is constant may
appear in a data statement.

An array constructor with the usual syntax is available to construct an array of an enumera-
tion type, for example, [red, (colour(i),i=2,3)]. All the array elements specified must be
enumerators of the same type.

Objects of an enumeration type may be used in a select case construct, for example

22 ISO/IEC JTC1/SC22/WG5 N2212

select case (light)

case (red)

:

case (orange:green)

:

end select

When a colon is present in a case statement the enumerators are selected by their positions in
the type declaration.

For other kinds of sequential access to the enumerators of an enumeration type, the first enu-
merator of type t is available as t(1), the intrinsic function huge is extended so that the last
enumerator of the type of enumerator a is available as huge(a), and there are two elemental
intrinsic functions:

next(a [,stat]) returns the next enumerator after a in the sequence of the type of a or a

itself if it is last in this sequence.

a is of an enumeration type and has intent in.

stat (optional) is an integer scalar with a decimal exponent range of at least four. If
present, it has intent out and is given the value zero if a is not last or a processor-
dependent positive value if it is last.

previous(a [,stat]) returns the previous enumerator to a in the sequence of the type of a
or a itself if it is first in this sequence.

a is of an enumeration type and has intent in.

stat (optional) is an integer scalar with a decimal exponent range of at least four. If
present, it has intent out and is given the value zero if a is not first or a processor-
dependent positive value if it is first.

For either function, if stat is not present but would have been assigned a nonzero value if
present, error termination is initiated.

An enumeration type that is declared in a module may be given the private or public attribute
when it is declared, for example,

enumeration type, private :: colour

enumerator :: red, orange, green

end type

The attribute may be given in a private or public statement, which overrides any declaration
in the type definition. If declared in neither of these ways, the accessibility of the type is the
default for entities of the module.

An object of enumeration type is not permitted in list-directed or namelist I/O. In formatted
I/O, it corresponds to an i, b, o, or z edit descriptor. For output of a value of enumeration
type, the position in its type definition is transferred. For input, the value must be positive and
less than or equal to the number of enumerators in its type definition and the enumerator with
this position is transferred.

ISO/IEC JTC1/SC22/WG5 N2212 23

9.3 Enum types

In Fortran 2018, an enumeration is an ordered collection of enumerators, which are named
integer constants of a single kind. The integer type with this kind is interoperable with the
enumeration type that the C companion processor chooses for the same set of enumerators in
the same order. This has the disadvantage that the Fortran integer type has many other uses.
The revision of the standard allows the definition of an enumeration to create a new type, known
as an ‘enum type’, that also interoperates with the C enumeration type. The name of the type
is declared on the enum statement. For example,

enum, bind(c) :: season

enumerator :: spring=5, summer=7, autumn, winter

end enum

type(season) my_season

defines the enum type season and the variable my season of this type. A component of a derived
type may be declared to be of an enum type. The enumerators are just as in Fortran 2018. The
name of the type and the names of its enumerators have exactly the same scoping rules as have
other types and constants; for example, a procedure that contains the above declaration must
not contain a real variable called spring.

Note that a scalar object of an enum type is not an integer but interoperates with a C integer
that may have a value or be undefined. It is convenient to refer to this as the ‘integer value of
the object’. For an enumerator, the integer value was provided in the enumeration definition.
The intrinsic function int is extended to allow its main argument a to be of enum type and
return its integer value. An ‘enum constructor’ of the form type-name(expr), where expr is a
scalar integer expression or a boz constant, provides the object of enum type type-name that
has integer value expr. For example, season(7) has the value summer. Values that represent
no enumerator are permitted as long as they can be represented in the corresponding C integer
type. An enum constructor whose expr is constant may appear in a data statement.

An integer expression is said to ‘in type conformance’ with an enum type if it contains a primary
that is an enumerator of the type. In an assignment statement with a variable (left-hand side)
of an enum type, the expression (right-hand side) must be of the same enum type or an integer
expression that is in type conformance with it, for example

enum, bind(c) :: season

enumerator :: spring=5, summer=7, autumn, winter

end enum

type(season) my_season, your_season

my_season = spring

your_season = autumn+1 ! winter

The intrinsic operations ==, /=, <, <=, >, and >= are available when both operands are objects
of the same enum type or one is of enum type and other is an integer expression that is in
type conformance with it. They compare the integer values. No other intrinsic operations are
available for objects of an enum type.

24 ISO/IEC JTC1/SC22/WG5 N2212

An array constructor with the usual syntax is available to construct an array of an enum type,
for example, [red, (colour(i),i=2,3)] . All the array elements specified must be of a single
enum type or be integer expressons that are in type conformance with it.

Enum types may be used in a select case construct, for example

select case (my_season)

case (spring)

:

case (summer:)

:

end select

When a colon is present in a case statement the enumerators are selected by their integer values.

An effective item of enum type in namelist or list-directed I/O is treated as if it were an integer
with the item’s integer value. In formatted I/O, an i, b, o, z, or g edit descriptor may be used.

An enum type that is declared in a module has the private or public attribute that is the
default for its module unless it is included in a private or public statement.

10 Obsolete and deleted features

No more features have been added to the lists of obsolete and deleted features.

11 Acknowledgements

I would like to express my thanks to Bill Long, David Muxworthy, and Van Snyder for sug-
gesting improvements to the first version, N2194, and to Steve Lionel and Reinhold Bader for
their careful reading of this version of the paper. Reinhold suggested several corrections and
improvements for this version.

References

ISO/IEC (2018), ‘International Standard ISO/IEC 1539-1:2018 Information technology - Pro-
gramming languages - Fortran - Part 1: Base language’, ISO/IEC, Geneva.

ISO/IEC (2021), ‘International Standard ISO/IEC 1539-1:2018/Cor 1:2021 Information technol-
ogy - Programming languages - Fortran - Part 1: Base language - Technical Corrigendum
1’, ISO/IEC, Geneva.

ISO/IEC (2023), ‘International Standard ISO/IEC 1539-1:2018/Cor 2:2023 Information technol-
ogy - Programming languages - Fortran - Part 1: Base language - Technical Corrigendum
2’, ISO/IEC, Geneva.

ISO/IEC JTC1/SC22/WG5 N2212 25

Metcalf, M., Reid, J. and Cohen, M. (2018), Modern Fortran Explained, Incorporating Fortran
2018, Oxford University Press.

