

- 1 -

Proposal for Generic Subprogram

Version 1.3
Hidetoshi Iwashita

June 8, 2023

1. Introduction

The mechanism of a generic identifier for selecting specific procedures is an outstanding feature of Fortran. A
generic identifier (generic name, operator, or assignment) identifies one of the specific procedures whose
argument orders or argument types, kinds, or ranks differ from each other. In Fortran, most intrinsic procedures
and operators are generic, e.g., the arguments of the intrinsic function MAX can be integer, real, or character
types, and the operands of the operator + can be integer, real, or complex types. It is a natural and productive
programming style to use generic names and operators for user-defined (derived) types as well.

Importantly, using a generic identifier does not reduce execution performance as compared to directly using the
specific name selected. In programming languages in general, there is often a trade-off between abstraction and
execution performance. However, in Fortran, there is no performance degradation in the generic identifier
because the following points are considered:

l Selecting a specific procedure depends only on static information and is determined at compile time.
Therefore, no overhead of judgment or branching remains on the runtime code.

l Since the generic identifier is resolved within or before the compiler front-end, it does not affect the
existing advanced optimization and code generation within the compiler back-end.

A major challenge for the generic identifier mechanism is the combinational explosion. As programmers attempt
to generalize the types and ranks of library procedures, the number of specific subprograms can grow enormously,
into the tens or hundreds. For example, to define a function whose argument variable has any arithmetic type
(integer, real or complex with any kind parameter) and any rank (0 through 15 in standard), the programmer
must write totally more than 100 specific function subprograms. Even if such a huge number of specific
subprograms could be written using clever editors and tools, maintaining and improving such a number of
versions is error-prone and a waste of time.

- 2 -

This paper proposes an extension of the generic identifier mechanism to easily define large numbers of specific
procedures. Instead of writing a large number of subprograms, the user only needs to write a generic subprogram
that defines multiple specific procedures.

In this paper, Section 2 demonstrates examples for quick understanding at first, Section 3 describes the syntax,
and Section 4 summarizes.

2. Example

Consider a simple function that returns true if the argument is a NaN (not a number) or has at least one NaN
array element, and false otherwise. The argument is allowed to be a variable of 32, 64, or 128-byte real type with
rank from 0 to 15.

2.1 Original set of specific functions

List 1 shows an example of defining generic function has_nan with 48 specific functions for all types and all
ranks. As you can see, most of the functions have the same body, but since they have different ranks or different
kind parameters from each other, they must be written as separate functions in the current Fortran standard.

- 3 -

List 1. has_nan defined by specific subprograms

MODULE mod_nan_original
 USE :: ieee_arithmetic
 USE :: iso_fortran_env
 IMPLICIT NONE

 INTERFACE has_nan
 MODULE PROCEDURE :: &
 has_nan_r32_0, has_nan_r32_1, has_nan_r32_2, has_nan_r32_3, &
 has_nan_r32_4, has_nan_r32_5, has_nan_r32_6, has_nan_r32_7, &
 has_nan_r32_8, has_nan_r32_9, has_nan_r32_10, has_nan_r32_11, &
 has_nan_r32_12, has_nan_r32_13, has_nan_r32_14, has_nan_r32_15, &
 has_nan_r64_0, has_nan_r64_1, has_nan_r64_2, has_nan_r64_3, &
 has_nan_r64_4, has_nan_r64_5, has_nan_r64_6, has_nan_r64_7, &
 has_nan_r64_8, has_nan_r64_9, has_nan_r64_10, has_nan_r64_11, &
 has_nan_r64_12, has_nan_r64_13, has_nan_r64_14, has_nan_r64_15, &
 has_nan_r128_0, has_nan_r128_1, has_nan_r128_2, has_nan_r128_3, &
 has_nan_r128_4, has_nan_r128_5, has_nan_r128_6, has_nan_r128_7, &
 has_nan_r128_8, has_nan_r128_9, has_nan_r128_10, has_nan_r128_11, &
 has_nan_r128_12, has_nan_r128_13, has_nan_r128_14, has_nan_r128_15
 END INTERFACE has_nan

 PRIVATE
 PUBLIC :: has_nan

CONTAINS

 !!--- real32, rank0-15
 FUNCTION has_nan_r32_0(x) RESULT(ans)
 REAL(REAL32), INTENT(IN) :: x
 LOGICAL :: ans
 ans = ieee_is_nan(x)
 END FUNCTION has_nan_r32_0

 FUNCTION has_nan_r32_1(x) RESULT(ans)
 REAL(REAL32), INTENT(IN) :: x(:)
 LOGICAL :: ans
 ans = any(ieee_is_nan(x))
 END FUNCTION has_nan_r32_1

... (omit 65 lines of code)

 FUNCTION has_nan_r32_15(x) RESULT(ans)
 REAL(REAL32), INTENT(IN) :: x(:,:,:,:,:,:,:,:,:,:,:,:,:,:,:)
 LOGICAL :: ans
 ans = any(ieee_is_nan(x))
 END FUNCTION has_nan_r32_15

 !!--- real64, rank0-15

... (omit 80 lines of code)

 !!--- real128, rank0-15

... (omit 75 lines of code)

 FUNCTION has_nan_r128_15(x) RESULT(ans)
 REAL(REAL128), INTENT(IN) :: x(:,:,:,:,:,:,:,:,:,:,:,:,:,:,:)
 LOGICAL :: ans
 ans = any(ieee_is_nan(x))
 END FUNCTION has_nan_r128_15

END MODULE mod_nan_original

- 4 -

2.2 Generic subprogram

List 2 shows the equivalent code to the code of List 1, written using the generic subprogram proposed in this
paper. A subprogram with the GENERIC prefix is a generic subprogram. The first generic subprogram defines
three specific procedures where x is one of real types of 32, 64, and 128 bytes, respectively. The second generic
subprogram defines 3 × 15 specific procedures where x is one of the combinations of 32, 64, or 128-byte real
types and ranks from 1 to 15, respectively. Every specific procedure defined by the generic subprogram has no
name and is referenced by the generic name.

List 2. has_nan defined with generic subprogram

MODULE mod_nan_proposed
 USE :: ieee_arithmetic
 USE :: iso_fortran_env

 PRIVATE
 PUBLIC :: has_nan

CONTAINS

 GENERIC FUNCTION has_nan(x) RESULT(ans)
 REAL(REAL32,REAL64,REAL128), RANK(0), INTENT(IN) :: x
 LOGICAL :: ans

 ans = ieee_is_nan(x)
 END FUNCTION has_nan

 GENERIC FUNCTION has_nan(x) RESULT(ans)
 REAL(REAL32,REAL64,REAL128), RANK(1:15), INTENT(IN) :: x
 LOGICAL :: ans

 ans = any(ieee_is_nan(x))
 END FUNCTION has_nan

END MODULE mod_nan_proposed

Multiple specific subprograms that have the same body except for type declaration statements for the dummy
arguments can be combined into one generic subprogram. This may greatly reduce the amount of program code.
In addition, since the generic subprogram is expanded to a list of the corresponding specific procedures, there
should be no performance degradation.

- 5 -

3. Syntax

A generic subprogram defines one or more specific procedures that have dummy arguments of different types,
kinds, or ranks from each other. The name of a generic subprogram is a generic name for all defined specific
procedures. Each specific procedure does not have a specific name.

A generic subprogram is a subprogram that has the GENERIC prefix (3.1). A type declaration statement in a
generic subprogram is extended to specify alternative types (3.2).

3.1 GENERIC prefix

The GENERIC prefix of a FUNCTION or SUBROUTINE statement specifies that the subprogram is a generic
subprogram.

The prefix-spec (F2023:15.6.2.1) is extended as follows.

R1530x prefix-spec is …
 or GENERIC

Constraint: If the GENERIC prefix appears in an interface-body, the containing interface-block shall be a
generic interface block. If the interface block has a generic-name, all function-names or subroutine-
names of interface-bodies with the GENERIC prefix shall be the same as the generic-name of the
interface-block.

The description of F2023:15.6.2.2 (Function subprogram) paragraph 2 is changed as follows:

OLD: The name of the function is function-name.

NEW: If GENERIC does not appear in the prefix, the name of the function is function-name. If GENERIC
appears in the prefix, the name of the generic function is function-name and the name of each
specific function procedure is undefined.

The description of F2023:15.6.2.3 (Subroutine subprogram) paragraph 2 is changed as follows:

OLD: The name of the subroutine is subroutine-name.

NEW: If GENERIC does not appear in the prefix, the name of the subroutine is subroutine-name. If
GENERIC appears in the prefix, the name of the generic subroutine is subroutine-name and the
name of each specific subroutine procedure is undefined.

- 6 -

NOTE 1

The following is an example of a module that has generic function subprograms as the module subprograms.

MODULE M_ABSMAX

CONTAINS

 GENERIC FUNCTION ABSMAX(X) RESULT(Y)
 TYPE(INTEGER,REAL,DOUBLE PRECISION) :: X(:)
 TYPEOF(X) :: Y

 Y = MAXVAL(ABS(X))
 RETURN
 END FUNCTION ABSMAX

 GENERIC FUNCTION ABSMAX(X) RESULT(Y)
 COMPLEX :: X(:)
 REAL :: Y

 Y = MAXVAL(ABS(X))
 RETURN
 END FUNCTION ABSMAX

END MODULE M_ABSMAX

Where TYPE(INTEGER,REAL,DOUBLE PRECISION) specifies that X is an integer, real, or double precision
type for each specific procedure (3.2.1). Two module subprograms are generic and specify the same generic
name. Since their interfaces are explicit, they can be referenced in the host and sibling scopes. Therefore, the
above program is equivalent to the following program.

MODULE M_ABSMAX

 INTERFACE ABSMAX
 MODULE PROCEDURE :: ABSMAX_I, ABSMAX_R, ABSMAX_D, ABSMAX_Z
 END INTERFACE

 PRIVATE
 PUBLIC :: ABSMAX

CONTAINS

 FUNCTION ABSMAX_I(X) RESULT(Y)
 TYPE(INTEGER) :: X(:)
 TYPEOF(X) :: Y

 Y = MAXVAL(ABS(X))
 RETURN

- 7 -

 END FUNCTION ABSMAX_I

 FUNCTION ABSMAX_R(X) RESULT(Y)
 TYPE(REAL) :: X(:)
 TYPEOF(X) :: Y

 Y = MAXVAL(ABS(X))
 RETURN
 END FUNCTION ABSMAX_R

 FUNCTION ABSMAX_D(X) RESULT(Y)
 TYPE(DOUBLE PRECISION) :: X(:)
 TYPEOF(X) :: Y

 Y = MAXVAL(ABS(X))
 RETURN
 END FUNCTION ABSMAX_D

 FUNCTION ABSMAX_Z(X) RESULT(Y)
 COMPLEX :: X(:)
 REAL :: Y

 Y = MAXVAL(ABS(X))
 RETURN
 END FUNCTION ABSMAX_Z

END MODULE M_ABSMAX

NOTE 2

Generic subprograms can be external. The following shows an interface block when the module generic
function ABSMAX of NOTE 1 is external.

 INTERFACE ABSMAX
 GENERIC FUNCTION ABSMAX(X) RESULT(Y)
 TYPE(INTEGER,REAL,DOUBLE PRECISION) :: X(:)
 TYPEOF(X) :: Y
 END FUNCTION ABSMAX

 GENERIC FUNCTION ABSMAX(X) RESULT(Y)
 COMPLEX :: X(:)
 REAL :: Y
 END FUNCTION ABSMAX
 END INTERFACE ABSMAX

- 8 -

NOTE 3

Using the interface block, a generic subprogram can be defined as an operator, assignment, or defined-io-
generic-spec (Fortran2023:R1509). For example, the following interface block defines that “A+B” means
“MYADD(A,B)”, where the type of A is MYTYPE1 or MYTYPE2, the type of B is MYTYPE1 or MYTYPE2, and the
type of the result is the same as the type of A.

 INTERFACE OPERATOR(+)
 GENERIC FUNCTION MYADD(X,Y) RESULT(Z)
 TYPE(MYTYPE1, MYTYPE2),INTENT(IN) :: X
 TYPE(MYTYPE1, MYTYPE2),INTENT(IN) :: Y
 TYPEOF(X) :: Z
 END FUNCTION MYADD
 END INTERFACE

Comment:

l Constraints for the interface block seems not sufficient.

l Specific procedure names are undefined. Do we need to identify the specific procedures by name or
in some other way? If so, how can it be specified?

– An actual argument can be a procedure name, which must be a specific name. Should we have a
notation such as “ABSMAX when the first argument is the default real type”?

– There seems to be a need to call generic procedures from C language. Is there a need to extend
the BIND statement for this case? For example,

BIND (C, NAME="c_name", ARGS=("float","char[10]")) :: generic_name

3.2 Extension of the type declaration statement

The type declaration statement is defined as follows in Fortran 2023:

R801(as is) type-declaration-statement is declaration-type-spec [[, attr-spec] ... ::] entity-decl-list

The declaration-type-spec and the attr-spec are extended to specify alternative types (3.2.1), kinds (3.2.2), and
ranks (3.2.3).

Constraint: If a type-declaration-statement has alternative types or kinds, at least one entity in the entity-
decl-list shall be a dummy argument.

Constraint: If a type-declaration-statement has alternative ranks, at least one entity in the entity-decl-list
shall be a dummy argument that does not have the array-spec.

- 9 -

3.2.1 Alternative type specifier

A type declaration statement has alternative types if the declaration-type-spec has two or more type-specs.

The declaration-type-spec is extended to have alternative types.

R703x declaration-type-spec is intrinsic-type-spec
 or TYPE (alter-type-spec)
 or CLASS (alter-derived-type-spec)
 or CLASS (*)
 or TYPE (*)
 or TYPEOF (data-ref)
 or CLASSOF (data-ref)

R703a alter-type-spec is type-spec-list

Constraint: An alter-type-spec shall be just one type-spec except in a declaration-type-spec of a type-
declaration-statement appearing in the specification part of a generic subprogram.

Constraint: Both DOUBLE PRECISION and REAL with kind-selector shall not appear in a type-spec-list.

Constraint: Any two type-specs in a type-spec-list shall not be the same type specifier.

R703b alter-derived-type-spec is derived-type-spec-list

Constraint: An alter-derived-type-spec shall be just one derived-type-spec except in a declaration-type-spec
of a type-declaration-statement appearing in the specification part of a generic subprogram.

Constraint: Any two derived-type-specs in a derived-type-spec-list shall not be the same type specifier.

NOTE 1

A data-component-def-stmt (F2023:R737), the prefix of a function-stmt (F2023:R1529), or an implicit-spec
(F2023:R867) cannot specify alternative types for entities in the entity-decl-list.

NOTE 2

In a generic subprogram, type declaration statement:

TYPE(INTEGER(2,4)) :: X, Y

represents that either both X and Y are of integer(kind=2), or both X and Y are of integer(kind=4). The
corresponding specific procedures are two. The statement can also be rewritten as follows, keeping the
meaning:

TYPE(INTEGER(2,4)) :: X
TYPEOF(X) :: Y

- 10 -

Next, the following combination of type declaration statements:

TYPE(INTEGER(2,4)) :: X
TYPE(INTEGER(2,4)) :: Y

has a different meaning from the previous example. It represents four alternatives that correspond to four
specific procedures, as follows:

TYPE(INTEGER(2)) :: X; TYPE(INTEGER(2)) :: Y
TYPE(INTEGER(4)) :: X; TYPE(INTEGER(2)) :: Y
TYPE(INTEGER(2)) :: X; TYPE(INTEGER(4)) :: Y
TYPE(INTEGER(4)) :: X; TYPE(INTEGER(4)) :: Y

Comment:

l A type-generic subprogram can only unite specific subprograms that have exactly the same program
code except for type declaration statements. To allow partially different program codes, one of the
following extensions may be helpful.

– Use a new META SELECT TYPE construct; unlike the SELECT TYPE construct, the selector of
the META SELECT TYPE construct shall be nonpolymorphic and the processor selects the one
of constituent blocks at compile time.

 GENERIC FUNCTION foo(x) RESULT(y)
 TYPE(type1,type2) :: x, y

 !! code if x is type1 or type2
 META SELECT TYPE (x)
 META TYPE IS (type1)

 !! code if x is type1
 META TYPE IS (type2)

 !! code if x is type2
 END META SELECT

 !! code if x is type1 or type2
 END FUNCTION foo

– Allow the SELECT TYPE construct to have the same role as above. Namely, the selector in the
SELECT TYPE statement is extended to have a nonpolymorphic type, and then select a
constituent block at compile time.

- 11 -

3.2.2 Alternative kind specifier

A type declaration statement has alternative kinds if a kind-selector or a char-selector in the declaration-type-
spec has two or more kind-specs.

The kind-selector and the char-selector are extended to have alternative kind parameters.

R706x kind-selector is ([KIND =] alter-kind-spec)

R706a alter-kind-spec is *
 or kind-spec-list

R706b kind-spec is scalar-int-constant-expr

R721x char-selector is length-selector
 or ([LEN =] type-param-value , KIND = alter-kind-spec)
 or (KIND = alter-kind-spec [, LEN = type-param-value])

An alter-kind-spec designated as * specifies that the alternative kind parameters are all kind type parameters for
the intrinsic type supported by the processor. An alter-kind-spec designated by kind-spec-list specifies that the
alternative kind parameters are the values of kind-spec-list.

Constraint: Any two kind parameters specified in an alter-kind-spec shall not have the same value.

Constraint: An alter-kind-spec shall be just one kind-spec except in a declaration-type-spec of a type-
declaration-statement appearing in the specification part of a generic subprogram.

NOTE 1

A data-component-def-stmt (F2023:R737), the prefix of a function-stmt (F2023:R1529), or an implicit-spec
(F2023:R867) cannot specify alternative kind parameters for entities in the entity-decl-list.

NOTE 2

Examples of type declaration statements with alternative types and kinds are:

TYPE(INTEGER, LOGICAL) :: A
INTEGER(kind=2,4),DIMENSION(10,10) :: B
TYPE(INTEGER(kind=2,4), REAL(*), MYTYPE) :: X, Y(100)

Where MYTYPE is the name of a derived type. If the processor supports kind type parameters 4, 8, and 16 for
real type, the last statement above represents the following alternative type declaration statements.

TYPE(INTEGER(kind=2)) :: X, Y(100)
TYPE(INTEGER(kind=4)) :: X, Y(100)
TYPE(REAL(kind=4)) :: X, Y(100)
TYPE(REAL(kind=8)) :: X, Y(100)

- 12 -

TYPE(REAL(kind=16)) :: X, Y(100)
TYPE(MYTYPE) :: X, Y(100)

Comment:

l Derived types might also have alternative kind parameters.

3.2.3 Alternative rank specifier

A type declaration statement has alternative ranks if the rank-clause as an attr-spec has two or more rank-specs.

The rank-clause is extended to have alternative ranks and to have the RANKOF keyword, as follows.

R829x rank-clause is RANK (rank-value-range-list)
 or RANKOF (data-ref)

Constraint: A data-ref shall not be assumed-rank.

R1148a rank-value-range is rank-value
 or rank-value :
 or : rank-value
 or rank-value : rank-value

R1149a rank-value is scalar-int-constant-expr

Constraint: A rank-value in rank-value-range-list shall be nonnegative and the value is less than or equal to
the maximum rank supported by the processor.

The interpretation of rank-value-range-list is the same as the one of case-value-range-list described in
F2023:11.1.9.2 “Execution of a SELECT CASE construct”. The alternative ranks specified in rank-clause are all
ranks for which matching occurs.

Constraint: A rank-value-range shall be just one rank-value except in a rank-clause of a type-declaration-
statement appearing in the specification part of a generic subprogram.

RANKOF with a data-ref specifies the same rank as the declared rank of data-ref.

NOTE 1

Examples of type declaration statements with alternative ranks are:

- 13 -

REAL(8), RANK(0:3) :: A
TYPE(REAL(8)), RANK(1,2,3) :: B
REAL, RANK(10:) :: X, Y(100)

If the maximum array rank supported by the processor is 15, the last statement above represents the following
alternative TYPE declaration statements.

REAL, RANK(10) :: X, Y(100)
REAL, RANK(11) :: X, Y(100)
REAL, RANK(12) :: X, Y(100)
REAL, RANK(13) :: X, Y(100)
REAL, RANK(14) :: X, Y(100)
REAL, RANK(15) :: X, Y(100)

Comment:

l The RANK clause cannot specify lower and upper bounds of assumed-shape arrays. So further
extension might be allowed, for example:

– REAL(8), DIMENSION(0:),(:, 2:10),(0:,:,:) :: A

– REAL(8) :: A(0:),(:, 2:10),(0:,:,:)

l A rank-generic subprogram can only unite specific subprograms that have exactly the same program
code except for type declaration statements. To allow partially different program codes, one of the
following extensions may be helpful.

– Use a new META SELECT RANK construct; unlike the SELECT RANK construct, the selector
of the META SELECT RANK construct shall not be assumed-rank and the processor selects the
one of constituent blocks at compile time. The program of List 2 in 2.2 can be written using the
construct as follows.

 GENERIC FUNCTION has_nan(x) RESULT(ans)
 REAL(REAL32,REAL64,REAL128), RANK(0:15), INTENT(IN) :: x
 LOGICAL :: ans
 META SELECT RANK (x)
 META RANK (0)
 ans = ieee_is_nan(x)
 META RANK (1:15)
 ans = any(ieee_is_nan(x))
 END META SELECT
 END FUNCTION has_nan

– Allow the SELECT RANK construct to have the same role as above. Namely, the selector in the
SELECT TYPE statement is extended to be able to have a non-assumed-rank variable name, and
then select a constituent block at compile time.

- 14 -

4. Summary

This paper proposed the following language extensions for the generic subprogram:

l The GENERIC prefix of a FUNCTION or SUBROUTINE statement,

l Listed type specifiers of the declaration-type-spec in a type declaration statement,

l Listed kind specifiers or * of the kind-selector or char-selector in a type declaration statement, and

l rank-value-range-list of RANK clause and RANKOF clause in a type declaration statement.

A function or subroutine subprogram with the GENERIC prefix is a generic subprogram. A generic subprogram
defines the generic name and multiple specific procedures with no names. The generic name can also be
associated with an operator or assignment.

The generic names and operators provided by the generic identifier mechanism bring great convenience to
library users. However, this often required the library provider to create tens or hundreds of specific
subprograms; otherwise, they had no choice but to program in a processor-dependent manner or to program
leaving decision and branch costs at runtime. Since the generic subprogram significantly reduces the size of the
code that describes the specific subprograms, it reduces programming and maintenance costs without
compromising execution performance and portability.

5. Acknowledgments

I would like to thank John Reid for reading this paper and suggesting some improvements to the presentation
and Tomohiro Degawa and the user group Fortran-jp for discussing it from the userʼs perspective and offering
practical suggestions. And I also thank Hiroyuki Sato for useful comments, and Masayuki Takata and Toshihiro
Suzuki for pointing out improvements in examples and descriptions.

- 15 -

History

Version 1.0 à 1.1
l Multiple type specs are allowed not only in the TYPE clause but also in the CLASS clause.

– R703x was modified with CLASS (alter-derived-type-spec).
– R703b was added.
– Three constraints are added:

– Constraint: Any two type-specs in a type-spec-list shall not be the same type specifier.
– Constraint: An alter-derived-type-spec shall be just one derived-type-spec except in a

declaration-type-spec of a type-declaration-statement appearing in the specification part of
a generic subprogram.

– Constraint: Any two derived-type-specs in a derived-type-spec-list shall not be the same
type specifier.

– Comments about the difference between TYPE and CLASS clauses were eliminated.
l Comment about the idea of TYPE(INTRINSIC), TYPE(ARITHMETIC), etc. were eliminated.
l Mentioned the META SELECT TYPE construct in Comments of 3.2.1.
l Mentioned the META SELECT RANK construct in Comments of 3.2.3.

Version 1.1 à 1.2
l The title was changed from “Generic Subprogram” to “Proposal for Generic Subprogram.”

Version 1.2 à 1.3
l In List 1, “LOC” was replaced by “lines of code” in three places.
l In 3.1 and 4, “function or subroutine statement” to “FUNCTION or SUBROUTINE statement.”
l In NOTE 3 of 3.1, modified from:

 TYPE(MYTYPE1, MYTYPE2),INTENT(IN) :: X,Y
to:
 TYPE(MYTYPE1, MYTYPE2),INTENT(IN) :: X
 TYPE(MYTYPE1, MYTYPE2),INTENT(IN) :: Y

l In Comment of 3.2.1, added more explanations and one alternative idea.
l In the second item of Comment of 3.2.3, added more explanations and one alternative idea.
l In 5 Acknowledgment, added thanks to Schuko, Makki, and Suzu-P.
l Some typos and trivial modifications.

