
ISO/IEC JTC 1/SC 22/WG 5 N 2230

ISO/IEC JTC 1/SC 22/WG 5 "Fortran"
Convenorship: ANSI
Convenor: Lionel Steve Mr

DIN Suggestions for F202Y

Document type Related content Document date Expected action
General / Other 2024-02-04

Description

This is the formal list of F202Y feature requests from Germany. Please read, consider, and discuss
them as we will be voting on them at the June Berkeley meeting.

https://sd.iso.org/documents/open/5307753f-e4fc-481a-a78a-d8625e6e6d21

Fortran 202y feature suggestions from
DIN

Date: January, 2024

Author: Reinhold Bader

With the expectation that the final feature list for the next Fortran Standard will be voted on by the
2024 meeting of the International Fortran Standards Committee JTC1/SC22/WG5 (https://wg5-
fortran.org/), hereby a list of suggestions from Germany/DIN is submitted for that vote.

Contents
DIN-1 – Execution of collective procedures on a specified team..2

Formal Requirement..2

Rationale..2

Specification...2

Further remarks..2

DIN-2 – extend C interoperability to support UNION types...2

Formal Requirement..2

Rationale..2

Further remarks..2

DIN-3 – support execution on APUs...2

Formal Requirements...2

Rationale..3

Specifications (sketch)..3

Further comments..3

DIN-4 Generic processing of assumed rank objects...3

Rationale..3

Formal Requirement..4

Specifications..4

DIN-5 Generic procedures..4

DIN-6 Proposal for UNSIGNED type..4

Introduction...4

Further information, use cases, basic specifications..4

https://wg5-fortran.org/
https://wg5-fortran.org/

DIN-1 – Execution of collective procedures on a specified
team
Proposed by: R.Bader
Formal Requirement
The collective subroutines from Fortran 2018 should support execution in a team that is not the
current team.

Rationale
If e.g. a reduction operation across the initial team's images is needed within the context of a
CHANGE TEAM construct, this is rather cumbersome to do with the current Fortran semantics. Either
it is necessary to exit the CHANGE TEAM construct (this permits a single CO_REDUCE invocation but
can impose significant overhead on handling of team-specific data), or the reduction must be
manually performed in two phases: first, a team-specific call to CO_REDUCE, followed by an assembly
across teams (this leads to code that is hard to understand and maintain).

Further, the ability to perform a reduction on a subset of images corresponding to a defined team
variable without needing to execute a CHANGE TEAM statement is considered useful.

Specification
Add an optional TEAM argument of type TEAM_TYPE to all collective subroutines and say that
execution of the subroutine applies for the specified team if the argument is present.

Further remarks
See https://j3-fortran.org/doc/year/22/22-163.txt for the original (deferred) paper, which also
includes a suggested set of edits for the already existing collectives.

DIN-2 – extend C interoperability to support UNION types
Proposed by: Steve Lionel
Formal Requirement
It should be possible to directly define and access components of C union types from within Fortran.

Rationale
Many non-Fortran APIs make use of union types. Because the existing C interoperability in Fortran
does not cover such types, writing significant amounts of glue code is necessary to work around this
gap in the semantics.

Further remarks
DIN supports the already existing suggestion for this, see
https://github.com/j3-fortran/fortran_proposals/issues/188. Many compilers already support the
feature as a compiler extension. The feature should not be available for non-interoperable types.

DIN-3 – support execution on APUs

https://github.com/j3-fortran/fortran_proposals/issues/188
https://j3-fortran.org/doc/year/22/22-163.txt

Proposed by: R. Bader
Formal Requirements
It should be possible to execute suitably defined code sections on Accelerated Processing Units if
such are available. It should be possible for the programmer to determine the availability of such
units, and control specific execution on them. Support for asynchronous execution should be
included, to enable concurrent execution of code operating on independent data on multiple APUs,
as well as on the host CPU.

Rationale
Technological development of computational hardware throughout the last decade indicates that
APUs are here to stay, to a large part due to energy efficiency reasons. Currently, support for the use
of such hardware is largely implementation dependent, and is limited to a small set of constructs like
DO CONCURRENT, or depends on (sometimes very complex) semantics defined outside Fortran
proper, like OpenMP.

Specifications (sketch)
The following types of code section should be enabled for APU processing:

1. DO CONCURRENT loop bodies;
2. BLOCK constructs that call PURE (or SIMPLE?) procedures, or contain statements inside the

block that do not produce side effects (this likely needs some additional definition of suitable
semantics). Such a construct nested inside a loop would permit concurrent processing of
irregular data structures.

The enablement is programmer-directed, and could be achieved by

 adding the keyword ASYNCHRONOUS(id) to the loop or block statement, where id is an
integer variable suitable for later synchronization via a WAIT statement;

 adding a modifier DEVICE(device_name, device_partition) to the loop or block statement. The
variables device_name (of a yet-to-be defined intrinsic derived type) and device_partition (of
type INTEGER) require initialization by intrinsic functions that need to be newly created.

In case no APUs are available, a default execution mode for the CPU should be supported. It would
remain implementation-dependent whether or not execution is actually asynchronous (e.g., in case
two blocks are scheduled to the same partition of the same device, initiation of the second one
would need to wait for completion of the first). Completion of the execution would be signaled by a
subsequent WAIT statement with the respective id variable as argument, or a blanket WAIT in case
all pending executions should complete.

Local variables are expected to be created on device memory. An exception model may be helpful in
dealing with failures to supply the needed memory resources. For pre-existing variables from the
host environment, the ASYNCHRONOUS attribute might be useful, or (alternatively?) a locality
specification.

Atomic operations (separate from those specified for coarray programming) should be supported.
Support for memory alignment settings for various architectures should be added.

A facility for identifying which devices are accessible from which coarray images of a program is
needed, such that the programmer can perform appropriate device management.

Further comments
An earlier proposal similar in spirit is https://github.com/j3-fortran/fortran_proposals/issues/271

https://github.com/j3-fortran/fortran_proposals/issues/271

DIN-4 Generic processing of assumed rank objects
Proposed by: R. Bader
Rationale
The concept of assumed rank permits definition of interfaces that are rank-agnostic.
The addition of the SELECT RANK block construct permits definitions and references to the object by
resolving at run time to whatever rank the actual argument has. This is fine in case the array rank e.g.
reflects different problem dimensions that require different algorithms for its solution. However,
there are also cases in which uniform treatment of the argument's data irrespective of its rank is
needed. This is currently cumbersome to do.

Formal Requirement
Allow generic processing of assumed-rank arguments, possibly under suitable restrictions.

Specifications
None yet. https://github.com/j3-fortran/fortran_proposals/issues/144 gives an initial idea for this,
but this is likely too limited, and outdated anyway, since Fortran 2023 defines new array processing
concepts that could be used or extended for this purpose. DIN would also consider it acceptable if
the concept was realized within the generics facility planned for F202y, see https://github.com/j3-
fortran/generics/blob/main/J3-Papers/use_case_rank_agnostic_loops.txt, or alternatively with the
generic function concept referenced in DIN-5 below.

DIN-5 Generic procedures
Proposed by: Hidetoshi IwashitaDIN hereby indicates its support for introducing generic
procedures as outlined in J3 papers https://j3-fortran.org/doc/year/23/23-223r2.txt and https://j3-
fortran.org/doc/year/23/23-244r1.txt.

DIN notes that the generics facilities being developed (cf. https://github.com/j3-fortran/generics) is
very powerful, but appears not easy to explain and use. Some consideration should be given to keep
the feature orthogonal to that outlined above.

DIN-6 Proposal for UNSIGNED type
Proposal by: Thomas König
Introduction
Unsigned integers are a basic data type used in many programming languages, like C. Arithmetic on
them is typically performed modulo 2^n for a datatype with n bits. They are useful for a range of
applications, including, but not limited to

- hashing

- cryptography (including multi-precision arithmetic)

- image processing

- binary file I/O

- interfacing to the operating system

- signal processing

https://github.com/j3-fortran/generics
https://j3-fortran.org/doc/year/23/23-244r1.txt
https://j3-fortran.org/doc/year/23/23-244r1.txt
https://j3-fortran.org/doc/year/23/23-223r2.txt
https://github.com/j3-fortran/generics/blob/main/J3-Papers/use_case_rank_agnostic_loops.txt
https://github.com/j3-fortran/generics/blob/main/J3-Papers/use_case_rank_agnostic_loops.txt
https://github.com/j3-fortran/fortran_proposals/issues/144

- data compression

Introduction of unsigned integers should not repeat the mistakes of languages like C, and syntax and
functionality should be familiar to people who today use unsigned types in other programming
languages.

Further information, use cases, basic specifications
These are contained in the J3 paper https://j3-fortran.org/doc/year/24/24-102.txt

https://j3-fortran.org/doc/year/24/24-102.txt

