
To: WG5
Subject: US04: Non-blocking Collective Subroutines
From: Brandon Cook & Damian Rouson & Dan Bonachea
References: J3/23-174, WG5/N2334

Background
==========

In the first code example below, which is substantively similar to code
presented in the Asynchronous Communication sections of the use case
paper passed as 23-174, there is no reason to require that the co_sum and
co_min arguments receive their collectively reduced values immediately
upon completion of each collective subroutine call. Nor is there a reason
to guarantee that the computed value be available before the subsequent
PRINT statement.

real :: A=1., B=2.
call co_sum(A)
call co_min(B)
print *, “Hello world”

In the absence of requirements on the immediate availability of the
computed values for A and B, processors would be free to allow for more
overlap of communication and computation, which is a standard practice to
achieve high performance and efficient use of resources in HPC. For
example, a processor that relies on MPI-3 could express the independent
nature of these operations using nonblocking collectives:

real :: A=1., B=2.
type(MPI_Request) :: R(2)
call MPI_Iallreduce(MPI_IN_PLACE, A, 1, MPI_DOUBLE, MPI_SUM, &
 MPI_COMM_WORLD, R(1))
call MPI_Iallreduce(MPI_IN_PLACE, B, 1, MPI_DOUBLE, MPI_MIN, &
 MPI_COMM_WORLD, R(2))
print *, “Hello world”

At a point when the collective sum of A and collective minimum of B are
required, the processor could guarantee their availability with a call
such as the following:

call MPI_Waitall(2,R,MPI_STATUSES_IGNORE)

where accesses to A and B are not valid until after the MPI_Waitall call.

https://j3-fortran.org/doc/year/23/23-174.pdf
https://wg5-fortran.org/N2201-N2250/N2234.txt

Illustrative Proposal (NOT the final syntax)
=====================

An approach to enable this feature is to introduce a new derived type
with private components named completion_type, and an optional completion
argument to collective subroutines similar to

real :: A=1., B=2.
type(completion_type) :: C
call co_sum(A, completion=C) ! initiate non-blocking collectives
call co_min(B, completion=C)
print *, “Hello world”

 ...
completion wait (C, until_count=2) ! await completion of collectives

where A and B would only be required to attain their respective
collectively reduced values after the COMPLETION WAIT statement.
Additional rules about when access to participating variables (A and B
above) is valid would also be needed.

The notional completion_type above would have some similarities with
event_type and notify_type, but would have useful meaning without
appearing in coarrays, whereas the latter two types are required to be
coarrays.

Paper 23-174 was titled “Asynchronous Tasks in Fortran.” The above
examples, which are adapted from 23-174 while retaining the spirit of the
paper, demonstrate that nonblocking collective subroutines can be
implemented independently from tasks. As described here, the feature is
also likely to be considerably smaller than tasks in terms of impact on
the standard.

WG5 Straw Vote
==============

The following straw vote is to decide on the status of WG5 US-04 as
described in WG5/N2334:

A. Keep work item WG5 US-04 unchanged and on the Accepted F202Y work
list

B. Narrow the scope of F202Y work item WG5 US-04 to include only the
nonblocking collective subroutines described in this paper. Defer
asynchronous tasks to the work list for the next revision after 202Y

C. Defer all of work item WG5 US-04 to the work list for the next
revision after 202Y

